ON INTEGRAL GRAPHS WHICH BELONG TO THE CLASS $\overline{\alpha K_{a, a, \ldots, a, b, b, \ldots, b}}$

Mirko Lepović

Let G be a simple graph and let \bar{G} denote its complement. We say that G is integral if its spectrum consists of integral values. Let $K_{x a, y b}=K_{a, a, \ldots, a, b, b \ldots, b}$ be the complete m-partite graph with $x a+y b$ vertices, where x and y are positive integers and $m=x+y$. In this work we consider integral graphs which belong to the class $\overline{\alpha K_{x a, y b}}$ for any $\alpha>1$ and $a>b$, where $m G$ denotes the m-fold union of the graph G.

Let G be a simple graph of order n and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be its eigenvalues with respect to its $(0,1)$ adjacency matrix A. The spectrum of G is the set of its eigenvalues and is denoted by $\sigma(G)$. We say that G is integral if its spectrum $\sigma(G)$ consists only of integers [1].

An eigenvalue μ of G is main if and only if $\langle\mathbf{j}, \mathbf{P} \mathbf{j}\rangle=n \cos ^{2} \alpha>0$, where \mathbf{j} is the main vector (with coordinates equal to 1) and \mathbf{P} is the orthogonal projection of the space \mathbb{R}^{n} onto the eigenspace $\mathcal{E}_{A}(\mu)$. The quantity $\beta=|\cos \alpha|$ is called the main angle of μ. The main spectrum of G is the set of all its main eigenvalues and is denoted by $\mathcal{M}(G)$.

Let G be a graph with exactly two main eigenvalues μ_{1} and μ_{2} with $\mu_{1}>\mu_{2}$ and let β_{1} and β_{2} be the main angles of μ_{1} and μ_{2}, respectively. Then according to [3] we have

$$
\begin{equation*}
\bar{\mu}_{1,2}=\frac{n-2-\mu_{1}-\mu_{2}}{2} \pm \frac{\sqrt{\left(\mu_{1}-\mu_{2}+n\right)^{2}-4 n_{1}\left(\mu_{1}-\mu_{2}\right)}}{2} \tag{1}
\end{equation*}
$$

where $\bar{\mu}_{1}$ and $\bar{\mu}_{2}$ are the main eigenvalues of its complementary graph \bar{G}. Besides, we have [3]

$$
\begin{equation*}
\bar{n}_{1,2}=\frac{n}{2} \pm \frac{n^{2}+\left(n-2 n_{1}\right)\left(\mu_{1}-\mu_{2}\right)}{2 \sqrt{\left(\mu_{1}-\mu_{2}+n\right)^{2}-4 n_{1}\left(\mu_{1}-\mu_{2}\right)}} . \tag{2}
\end{equation*}
$$

Here, $n_{i}=n \beta_{i}{ }^{2}$ and $\bar{n}_{i}=n \bar{\beta}_{i}{ }^{2}(i=1,2), \bar{\beta}_{1}$ and $\bar{\beta}_{2}$ denote the main angles of $\bar{\mu}_{1}$ and $\bar{\mu}_{2}$, respectively.

Further, let K_{n} and $K_{m, n}$ denote the complete graph and the complete bipartite graph, respectively. Let $K_{x a, y b}=K_{a, a, \ldots, a, b, b \ldots, b}$ be the complete m-partite graph with $x a+y b$ vertices, where x and y are positive integers and $m=x+y$. We note that $x K_{a} \cup y K_{b}$ with $a>b$ is an integral graph with two main eigenvalues $\mu_{1}=(a-1)$ and $\mu_{2}=(b-1)$, where $m G$ denotes the m-fold union of the graph G. Applying (1) and (2) to its complement $\overline{x K_{a} \cup y K_{b}}=K_{x a, y b}$, keeping in mind that $n_{1}=x a$ and $n_{2}=y b$, we obtain that $\bar{\mu}_{1,2}=\frac{x a+y b-a-b \pm \Delta}{2}$ and $\bar{n}_{1,2}=\frac{x a+y b}{2} \pm \frac{(x a+y b)^{2}-(x a-y b)(a-b)}{2 \Delta}$, where

$$
\Delta^{2}=((x+1) a+(y-1) b)^{2}-4 x a(a-b)
$$

Thus, for $\alpha K_{x a, y b}$ we have $\mu_{1,2}=\frac{x a+y b-a-b \pm \Delta}{2}$ and

$$
n_{1,2}=\frac{(x a+y b) \alpha}{2} \pm \frac{\alpha(x a+y b)^{2}-\alpha(x a-y b)(a-b)}{2 \Delta} .
$$

We note that $\alpha K_{x a, y b}$ is integral if and only if $K_{x a, y b}=\overline{x K_{a} \cup y K_{b}}$ is integral. Due to relations (1) and (2) we have recently described all integral graph which belong to the classes $\overline{\alpha K_{a} \cup \beta K_{b}}, \overline{\alpha K_{a} \cup \beta K_{b, b}}$ and $\overline{\alpha K_{a, a} \cup \beta K_{b, b}}$ (see [5]-[7], respectively).

We now proceed to establish a characterization of μ-integral graphs which belong to the class $\overline{\alpha K_{x a, y b}}$. We say that a graph G is μ-integral if its main spectrum $\mathcal{M}(G)$ consists only of integral values. In view of this note that $\overline{\alpha K_{x a, y b}}$ is an integral graph if and only if it is μ-integral and its complement $\alpha K_{x a, y b}$ is integral. We also note that $\overline{\alpha K_{x a, y b}}$ is μ-integral if and only if its largest eigenvalue $\bar{\mu}_{1} \in \mathbb{N}$. Then according to (1) we get

$$
\begin{equation*}
\bar{\mu}_{1,2}=\frac{(x a+y b) \alpha-(x-1) a-(y-1) b-2 \pm \delta}{2} \tag{3}
\end{equation*}
$$

where $\delta=\sqrt{((\alpha-1)(x a+y b)-(a-b))^{2}+4 x a(\alpha-1)(a-b)}$. It is clear that $\overline{\alpha K_{x a, y b}}$ is μ-integral if and only if $(\alpha, x, y, a, b, \delta)$ represents a positive integral solution of the Diophantine equation

$$
\begin{equation*}
[(\alpha-1)(x a+y b)-(a-b)]^{2}+4 x a(\alpha-1)(a-b)=\delta^{2} \tag{4}
\end{equation*}
$$

Therefore, the characterization of μ-integral graphs which are related to the class $\overline{\alpha K_{x a, x b}}$ is reduced to the problem of finding the most general integral solution of the equation (4). The general solution of (4) is based on the procedure which is applied in [4] for describing μ-integral graphs which belong to the class $\overline{\alpha K_{a, b}}$.

In this work it will be excluded two special cases of the Diophantine equation (4). First, setting $\alpha=1$ in relation (4) we obtain $\delta^{2}=(a-b)^{2}$, which provides that
$\overline{K_{x a, y b}}=x K_{a} \cup y K_{b}$ is integral for any $a, b, x, y \in \mathbb{N}$. Besides, for $a=b$ according to (4) we get $\delta=(\alpha-1)(x+y) a$, which also implies that $\overline{\alpha K_{x a, y a}}$ is integral for any $\alpha, a, x, y \in \mathbb{N}$. Since these two cases are well-known in the Spectral theory of graphs, in what follows it will be assumed that $\alpha>1$ and $a>b$.

Next, $\bar{\mu}_{1} \bar{\mu}_{2}=\mu_{1} \mu_{2}-\left(n_{2}-1\right) \mu_{1}-\left(n_{1}-1\right) \mu_{2}-(n-1)$ for any G with two main eigenvalues [3]. If $G=\alpha K_{x a, y b}$ this relation is transformed into

$$
\begin{equation*}
\left(\bar{\mu}_{1}+1\right)\left(\bar{\mu}_{2}+1\right)=a b[(\alpha-1)(x+y)+1] . \tag{5}
\end{equation*}
$$

Remark 1. With condition $a>b$ the parameters α, x, y, a, b determine the graph $\alpha K_{x a, y b}$ up to isomorphism, which provides that α, x, y, a, b also uniquely determine the graph $\overline{\alpha K_{x a, y b}}$.

In what follows (m, n) denotes the greatest common divisor of integers $m, n \in$ \mathbb{N} while $m \mid n$ means that m divides n.
Proposition 1. The linear Diophantine equation $a x+b y=c$ has at least one solution if and only if $d \mid c$ where $d=(a, b)$. In that case the most general solution of this equation is given in the form

$$
x=\frac{c}{d} x_{0}-\frac{b}{d} z \quad \text { and } \quad y=\frac{c}{d} y_{0}+\frac{a}{d} z \quad(z \in \mathbb{Z})
$$

where $\left(x_{0}, y_{0}\right)$ represents a particular solution ${ }^{1}$ of the equation $a x+b y=d$.
In order to demonstrate a method applied in this paper, we first prove the following result:

Theorem 1. If $\overline{\alpha K_{x a, y b}}$ is integral with $\bar{\mu}_{1}=(a b-1)$ then it belongs to the class of μ-integral graphs

$$
\begin{equation*}
\overline{\left.(\ell m+1) K_{\left[\frac{k n}{\tau}\right.}^{\tau} x_{0}-\frac{\ell n}{\tau} z\right] a,\left[\frac{k n}{\tau} y_{0}+\frac{k m}{\tau} z\right] b}, \tag{6}
\end{equation*}
$$

where (i) $a=k m+1$ and $b=\ell n+1$ such that $(m, n)=1$ and $k m>\ell n$; (ii) $\tau=(k m, \ell n)$ such that $\tau \mid n k$; (iii) $\left(x_{0}, y_{0}\right)$ is a particular solution of the linear Diophantine equation $(k m) x+(\ell n) y=\tau$ and (iv) z is any integer such that

$$
\left(\frac{k n}{\tau} x_{0}-\frac{\ell n}{\tau} z\right) \geq 1 \quad \text { and } \quad\left(\frac{k n}{\tau} y_{0}+\frac{k m}{\tau} z\right) \geq 1
$$

Proof. If $\left(\bar{\mu}_{1}+1\right)=a b$ using (3) and (5) we easily get (i) $\left(\bar{\mu}_{2}+1\right)=(\alpha-1)(x+y)+1$ and (ii) $\delta=a b-(\alpha-1)(x+y)-1$. Using (i) and (ii) it is not difficult to see that (4) is transformed to

$$
\begin{equation*}
(a-1)(b-1)=(\alpha-1)[(a-1) x+(b-1) y] \tag{7}
\end{equation*}
$$

[^0]Setting $(\alpha-1, b-1)=\ell$ we have $\alpha-1=\ell m$ and $b-1=\ell n$ such that $(m, n)=1$. In view of this it follows that $m \mid a-1$. Setting $a-1=k m$ relation (7) is reduced to the linear Diophantine equation $(k m) x+(\ell n) y=k n$. This equation has at least one solution if and only if $(k m, \ell n)=\tau \mid k n$. In that case, according to Proposition 1, we get $x=\frac{k n}{\tau} x_{0}-\frac{\ell n}{\tau} z \quad$ and $\quad y=\frac{k n}{\tau} y_{0}+\frac{k m}{\tau} z$, where $(k m) x_{0}+(\ell n) y_{0}=\tau$.

In what follows we show that there exists an one-to-one correspondence between the μ-integral graphs $\overline{\alpha K_{x a, y b}}$ with $\bar{\mu}_{1}=(a b-1)$ and the parameters k, ℓ, m, n.
Proposition 2. If $\overline{\alpha K_{x a, y b}}$ is μ-integral with $\bar{\mu}_{1}=(a b-1)$ then it uniquely determines the parameters k, ℓ, m, n.
Proof. Suppose that $k_{1}, \ell_{1}, m_{1}, n_{1}$ and $k_{2}, \ell_{2}, m_{2}, n_{2}$ determine the same μ-integral graph $\overline{\alpha K_{a, b}}$ with the largest eigenvalue $\bar{\mu}_{1}=(a b-1)$. Then according to Remark 1 and using that $(\alpha-1, b-1)=\ell$ we get $\ell_{1}=\ell_{2}$. Since $\alpha-1=\ell m$ and $b-1=\ell n$ we obtain $m_{1}=m_{2}$ and $n_{1}=n_{2}$. Since $a-1=k m$ we obtain $k_{1}=k_{2}$.
Remark 2. If (x_{0}, y_{0}) is obtained by using the EUCLID algorithm then a fixed μ-integral graph $\overline{\alpha K_{x a, y b}}$ with the largest eigenvalue $\bar{\mu}_{1}=(a b-1)$ also uniquely determines the parameters x_{0}, y_{0}, z.
Theorem 2. If $\overline{\alpha K_{x a, y b}}$ is integral then it belongs to the class of μ-integral graphs

$$
\begin{equation*}
(k m n+1) K_{\left[(r s t) x_{0}-(m q t) z\right] a,\left[(r s t) y_{0}+(n p s) z\right] b}, \tag{8}
\end{equation*}
$$

where (i) $a=\left(\frac{k n p r s+p q}{\tau}\right) z^{+}$and $b=\left(\frac{k m q r t+p q}{\tau}\right) z^{+}$such that (knprs + $p q, k m q r t+p q)=\tau$ and $(\tau, p q)=1,(k, p q r s t)=1,(m q t, n p s)=1$ and $n p s>$ mqt, $(r, p q)=1$ and $z^{+} \in \mathbb{N}$; (ii) $\left(x_{0}, y_{0}\right)$ is a particular solution of the linear Diophantine equation $(n p s) x+(m q t) y=1$ and (iii) z is any integer such that (rst) $x_{0}-(m q t) z \geq 1$ and (rst) $y_{0}+(n p s) z \geq 1$.
Proof. We note first that if $\overline{\alpha K_{x a, y b}}$ is integral then according to (3) and (4) it turns out that $\overline{\alpha K_{x\left(a z^{+}\right), y\left(b z^{+}\right)}}$is integral for any $z^{+} \in \mathbb{N}$. Consequently, without loss of generality we can assume that $(a, b)=1$.

Setting $\left(\bar{\mu}_{1}+1\right)=\theta a b$ where $\theta=\frac{\tau}{\beta}$ such that $(\tau, \beta)=1$, by using (3) and (5) we obtain

$$
\begin{equation*}
\bar{\mu}_{2}+1=\frac{(\alpha-1)(x+y)+1}{\theta} \quad \text { and } \quad \delta=\theta a b-\frac{(\alpha-1)(x+y)+1}{\theta} . \tag{9}
\end{equation*}
$$

Then by a straightforward calculation it is not difficult to see that equation (4) is reduced to the form $(\theta a-1)(\theta b-1)=(\alpha-1)[(\theta a-1) x+(\theta b-1) y]$. We now arrive at

$$
\begin{equation*}
(\tau a-\beta)(\tau b-\beta)=(\alpha-1) \beta[(\tau a-\beta) x+(\tau b-\beta) y] \tag{10}
\end{equation*}
$$

Let $(\tau a-\beta, \tau b-\beta)=\gamma$. Then $\tau a=\gamma \rho+\beta$ and $\tau b=\gamma \varphi+\beta$ where $(\rho, \varphi)=1$. In view of this and according to (10), we easily get $\gamma \rho \varphi=(\alpha-1) \beta(\rho x+\varphi y)$. We
note that $(\gamma \rho+\beta, \gamma \varphi+\beta)=\tau$ because $(a, b)=1$. Besides, since $(\tau, \beta)=1$ and $(a, b)=1$ we have $(\beta, \gamma)=1$. Consequently, it turns out that $\beta \mid \rho \varphi$. Let $(\beta, \rho)=p$ and let $\beta=p q$ and $\rho=p \pi$. Then $(q, \pi)=1,(p, \gamma)=1$ and $(q, \gamma)=1$. Thus, it must be $q \mid \varphi$. Setting $\varphi=q \omega$ we get $(p, q)=1,(p, \omega)=1$ and $(\pi, \omega)=1$. So we obtain that

$$
\begin{equation*}
\gamma \pi \omega=(\alpha-1)[(p \pi) x+(q \omega) y] . \tag{11}
\end{equation*}
$$

Further, if we set $(\alpha-1, \omega)=m$ then $\alpha-1=m \nu$ and $\omega=m t$ so that $(t, \nu)=1$. Setting $(\nu, \pi)=n$ we get $\nu=k n$ and $\pi=n s$ so that $(k, s)=1$. In view of this it follows that $k \mid \gamma$. Setting $\gamma=k r$ we arrive at $\alpha=k m n+1, a=$ $\frac{k n p r s+p q}{\tau}$ and $b=\frac{k m q r t+p q}{\tau}$. Besides, we note that (11) is transformed in the following linear Diophantine equation $(n p s) x+(m q t) y=r s t$. Since $(n p s, m q t)=1$ this equation has at least one solution. The general solution of this equation is $x=(r s t) x_{0}-(m q t) z$ and $y=(r s t) y_{0}+(n p s) z$, where $(n p s) x_{0}+(m q t) y_{0}=1$.

Proposition 3. If $\overline{\alpha K_{x a, y b}}$ is a μ-integral graph then it uniquely determines the parameters $k, m, n, p, q, r, s, t, \tau$ and z^{+}.
Proof. Assume that $k_{1}, m_{1}, n_{1}, p_{1}, q_{1}, r_{1}, s_{1}, t_{1}, \tau_{1}, z_{1}^{+}$and $k_{2}, m_{2}, n_{2}, p_{2}, q_{2}$, $r_{2}, s_{2}, t_{2}, \tau_{2}, z_{2}^{+}$determine the same μ-integral graph $\overline{\alpha K_{x a, y b}}$.

Since $\left(\frac{k n p r s+p q}{\tau}, \frac{k m q r t+p q}{\tau}\right)=1$ it follows that $(a, b)=z^{+}$. From this and according to Remark 1 we have $z_{1}^{+}=z_{2}^{+}$. Therefore, without loss of generality we may suppose $(a, b)=1$. Since $\left(\bar{\mu}_{1}+1\right)=\theta a b$ and $(\tau, \beta)=1$ we obtain $\tau_{1}=\tau_{2}$ and $\beta_{1}=\beta_{2}$, that is $p_{1} q_{1}=p_{2} q_{2}$. Keeping in mind that $(\tau a-\alpha \beta, \tau b-\alpha \beta)=\gamma$ we get $\gamma_{1}=\gamma_{2}$. So from $\tau a=\gamma \rho+\beta$ and $\tau b=\gamma \varphi+\beta$ we get $\rho_{1}=\rho_{2}$ and $\varphi_{1}=\varphi_{2}$. Since $(\beta, \rho)=p$ it turns out that $p_{1}=p_{2}$ and $q_{1}=q_{2}$. Further, since $\rho=p \pi$ we get $\pi_{1}=\pi_{2}$ and since $\varphi=q \omega$ we get $\omega_{1}=\omega_{2}$. Next, since $(\alpha-1, \omega)=m$ and $\alpha-1=\nu m$ and $\omega=m t$ we easily find that $m_{1}=m_{2}, \nu_{1}=\nu_{2}$ and $t_{1}=t_{2}$. Since $(\nu, \pi)=n, \nu=k n$ and $\pi=n s$ we get $n_{1}=n_{2}, k_{1}=k_{2}$ and $s_{1}=s_{2}$. Finely, since $\gamma=k r$ we obtain that $r_{1}=r_{2}$.
REMARK 3. If (x_{0}, y_{0}) is obtained by using the EUCLID algorithm then a fixed μ-integral graph $\overline{\alpha K_{x a, y b}}$ also uniquely determines the parameters x_{0}, y_{0}, z.

Table 1 contains the set of all μ-integral graphs from the class $\overline{\alpha K_{x a, y b}}$, whose order ' o ' does not exceed 50 . In this table a μ-integral graph is described ${ }^{2}$ by the parameters α, x, a, y, b and ones presented in the class of integral graphs in Theorem 2. In Table 1 identification numbers $6,7,14,25,51,54$ and 56 are related to the integral graphs whose complementary graphs are also integral. Identification numbers $3,18,22,35,40$ and 50 are related to the μ-integral graphs with the largest eigenvalue $\bar{\mu}_{1}=(a b-1)$. Graphs whose order does not exceed 50 with the largest eigenvalue $\bar{\mu}_{1}<(a b-1)$ have the identification numbers $10,19,27,36,43$, $44,45,52$ and 55.

[^1]| i | | y_{0} | z | o | α | x | a | y | b | k | | n | p | q | r | s | t | τ | z^{+} | μ_{1} | μ_{2} |
| :---: |
| 1 | 0 | 1 | -1 | 14 | 2 | 1 | 3 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 3 | 1 | 8 | 1 |
| 2 | 0 | 1 | -1 | 14 | 2 | 1 | 4 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 5 | 1 | 9 | 1 |
| 3 | 0 | 1 | -1 | 22 | 2 | 1 | 5 | 2 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 14 | 3 |
| 4 | 0 | 1 | -1 | 22 | 2 | 1 | 8 | 1 | 3 | 1 | 1 | 1 | 4 | 1 | 5 | 1 | 1 | 3 | 1 | 17 | 3 |
| 5 | 0 | 1 | -1 | 24 | 2 | 1 | 5 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 7 | 1 | 3 | 1 | 14 | 2 |
| 6 | 0 | 1 | -1 | 24 | 2 | 1 | 6 | 6 | 1 | 1 | 1 | 1 | 3 | 1 | 5 | 3 | 1 | 8 | 1 | 15 | 2 |
| 7 | 0 | 1 | -1 | 24 | 3 | 1 | 6 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 5 | 2 | 1 | 7 | 1 | 20 | 1 |
| 8 | 1 | -3 | 13 | 26 | 2 | 2 | 3 | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 7 | 2 | 5 | 1 | 14 | 1 |
| 9 | 0 | 1 | -2 | 26 | 2 | 2 | 4 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | 1 | 4 | 1 | 15 | 1 |
| 10 | 0 | 1 | -1 | 26 | 2 | 1 | 8 | 1 | 5 | 1 | 1 | 1 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 19 | 5 |
| 11 | 0 | 1 | -1 | 28 | 2 | 1 | 4 | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 5 | 1 | 4 | 1 | 15 | 2 |
| 12 | 0 | 1 | -1 | 28 | 2 | 1 | 6 | 4 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 3 | 2 | 17 | 3 |
| 13 | 0 | 1 | -1 | 28 | 2 | 1 | 8 | 3 | 2 | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 5 | 2 | 19 | 3 |
| 14 | 0 | 1 | -1 | 28 | 2 | 1 | 9 | 5 | 1 | 1 | 1 | 1 | 3 | 1 | 4 | 5 | 1 | 7 | 1 | 20 | 2 |
| 15 | 0 | 1 | -1 | 28 | 4 | 1 | 5 | 2 | 1 | 1 | 1 | 3 | 1 | 1 | 4 | 2 | 1 | 5 | 1 | 24 | 1 |
| 16 | 0 | 1 | -2 | 32 | 2 | 2 | 5 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 1 | 19 | 2 |
| 17 | 0 | 1 | -2 | 32 | 2 | 2 | 6 | 4 | 1 | 1 | 1 | 1 | 2 | 1 | 5 | 4 | 1 | 7 | 1 | 20 | 1 |
| 18 | 0 | 1 | -1 | 32 | 2 | 1 | 7 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 1 | 20 | 4 |
| 19 | 0 | 1 | -1 | 32 | 2 | 1 | 10 | 2 | 3 | 1 | 1 | 1 | 5 | 1 | 7 | 1 | 1 | 4 | 1 | 23 | 4 |
| 20 | 0 | 1 | -1 | 33 | 3 | 1 | 5 | 6 | 1 | 1 | 1 | 2 | 1 | 1 | 4 | 3 | 1 | 5 | 1 | 24 | 2 |
| 21 | 1 | -7 | 12 | 33 | 3 | 1 | 6 | 5 | 1 | 1 | 2 | 1 | 3 | 1 | 5 | 5 | 1 | 13 | 1 | 25 | 2 |
| 22 | 0 | 1 | -1 | 33 | 3 | 1 | 7 | 1 | 4 | 1 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 27 | 4 |
| 23 | 0 | 1 | -1 | 33 | 3 | 1 | 9 | 1 | 2 | 1 | | 2 | 3 | 1 | 7 | 1 | 1 | 5 | 1 | 29 | 2 |
| 24 | | 1 | -1 | 34 | 2 | 1 | 5 | 6 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 1 | 19 | 3 |
| 25 | | 1 | -1 | 34 | 2 | 1 | 7 | 10 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 10 | 1 | 3 | 1 | 20 | 3 |
| 26 | 0 | 1 | -1 | 34 | 2 | 1 | 8 | 9 | 1 | 1 | 1 | 1 | 4 | 1 | 7 | 3 | 1 | 11 | 1 | 21 | 3 |
| 27 | 0 | 1 | -1 | 34 | 2 | 1 | 9 | 2 | 4 | 1 | 1 | 1 | 3 | 1 | 5 | 1 | 1 | 2 | 1 | 23 | 5 |
| 28 | 0 | 1 | -1 | 36 | 2 | 1 | 6 | 12 | 1 | 1 | 1 | 1 | 2 | 1 | 5 | 4 | 1 | 7 | 1 | 20 | 3 |
| 29 | 0 | 1 | -1 | 36 | 2 | 1 | 10 | 8 | 1 | 1 | 1 | | 2 | 1 | 3 | 8 | 1 | 5 | 1 | 24 | 3 |
| 30 | 1 | -3 | 19 | 38 | 2 | 3 | 3 | 10 | 1 | 1 | | 1 | 1 | 1 | 2 | 10 | 3 | 7 | 1 | 20 | 1 |
| 31 | 2 | -9 | 41 | 38 | 2 | 3 | 4 | 7 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 7 | 3 | 11 | 1 | 21 | 1 |
| 32 | 1 | -4 | 13 | 39 | 3 | 1 | 4 | 9 | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 9 | 1 | 7 | 1 | 27 | 2 |
| 33 | 0 | 1 | -1 | 39 | 3 | 1 | 9 | 4 | 1 | 1 | 1 | 2 | 3 | 1 | 8 | 2 | 1 | 11 | 1 | 32 | 2 |
| 34 | 0 | , | -3 | 42 | 2 | 3 | 5 | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 6 | 1 | 5 | 1 | 24 | 1 |
| 35 | 0 | 1 | -1 | 42 | 2 | 1 | 9 | 4 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 1 | 3 | 3 | 26 | 5 |
| 36 | 0 | 1 | -1 | 42 | 2 | 1 | 12 | 3 | 3 | 1 | 1 | 1 | 2 | 1 | 3 | 3 | 1 | 5 | 3 | 29 | 5 |
| 37 | 0 | 1 | -2 | 44 | 2 | 2 | 5 | 12 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 6 | 1 | 5 | 1 | 24 | 2 |
| 38 | 1 | -7 | 24 | 44 | 2 | 2 | 6 | 10 | 1 | 1 | 1 | 1 | 3 | 1 | 5 | 5 | 2 | 13 | 1 | 25 | 2 |
| 39 | 0 | 1 | -1 | 44 | 2 | 1 | 9 | 13 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 13 | 1 | 3 | 1 | 26 | 4 |
| 40 | 0 | 1 | -2 | 44 | 2 | 2 | 7 | 2 | 4 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 27 | 4 |
| 41 | 0 | | -1 | 44 | 2 | 1 | 10 | 12 | 1 | 1 | 1 | 1 | 5 | 1 | 9 | 3 | 1 | 14 | 1 | 27 | 4 |
| 42 | 0 | 1 | -2 | 44 | 2 | 2 | 9 | 2 | 2 | 1 | 1 | 1 | 3 | 1 | 7 | 2 | 1 | 5 | 1 | 29 | 2 |

Table 1. (continued)

| i | x_{0} | y_{0} | z | o | α | x | a | y | b | k | m | n | p | q | r | s | t | τ | z^{+} | μ_{1} | μ_{2} |
| ---: |
| 43 | 0 | 1 | -1 | 44 | 2 | 1 | 10 | 2 | 6 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 29 | 7 |
| 44 | 0 | 1 | -1 | 44 | 2 | 1 | 15 | 1 | 7 | 1 | 1 | 1 | 3 | 1 | 4 | 1 | 1 | 1 | 1 | 34 | 8 |
| 45 | 0 | 1 | -1 | 44 | 2 | 1 | 16 | 1 | 6 | 1 | 1 | 1 | 4 | 1 | 5 | 1 | 1 | 3 | 2 | 35 | 7 |
| 46 | 0 | 1 | -1 | 45 | 5 | 1 | 7 | 1 | 2 | 1 | 1 | 4 | 1 | 1 | 5 | 1 | 1 | 3 | 1 | 41 | 2 |
| 47 | 0 | 1 | -1 | 46 | 2 | 1 | 5 | 18 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 6 | 1 | 5 | 1 | 24 | 3 |
| 48 | 0 | 1 | -2 | 46 | 2 | 2 | 7 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 9 | 1 | 4 | 1 | 27 | 2 |
| 49 | 1 | -3 | 8 | 46 | 2 | 1 | 8 | 5 | 3 | 1 | 1 | 1 | 2 | 3 | 5 | 5 | 1 | 7 | 1 | 27 | 5 |
| 50 | 0 | 1 | -1 | 46 | 2 | 1 | 7 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 27 | 5 |
| 51 | 0 | 1 | -1 | 46 | 2 | 1 | 16 | 7 | 1 | 1 | 1 | 1 | 4 | 1 | 5 | 7 | 1 | 9 | 1 | 35 | 3 |
| 52 | 1 | -2 | 3 | 46 | 2 | 1 | 15 | 1 | 8 | 1 | 1 | 1 | 5 | 2 | 7 | 1 | 1 | 3 | 1 | 35 | 9 |
| 53 | 0 | 1 | -1 | 48 | 2 | 1 | 10 | 7 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 7 | 1 | 3 | 2 | 29 | 5 |
| 54 | 0 | 1 | -1 | 48 | 2 | 1 | 12 | 6 | 2 | 1 | 1 | 1 | 3 | 1 | 5 | 3 | 1 | 8 | 2 | 31 | 5 |
| 55 | 0 | 1 | -1 | 48 | 2 | 1 | 14 | 2 | 5 | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 34 | 7 |
| 56 | 0 | 1 | -1 | 48 | 3 | 1 | 12 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 5 | 2 | 1 | 7 | 2 | 41 | 3 |
| 57 | 1 | -3 | 25 | 50 | 2 | 4 | 3 | 13 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 13 | 4 | 9 | 1 | 26 | 1 |
| 58 | 1 | -4 | 25 | 50 | 2 | 4 | 4 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 9 | 2 | 7 | 1 | 27 | 1 |
| 59 | 0 | 1 | -1 | 50 | 2 | 1 | 7 | 18 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 9 | 1 | 4 | 1 | 27 | 4 |
| 60 | 0 | 1 | -1 | 50 | 2 | 1 | 9 | 8 | 2 | 1 | 1 | 1 | 3 | 1 | 7 | 2 | 1 | 5 | 1 | 29 | 5 |
| 61 | 0 | 1 | -1 | 50 | 2 | 1 | 15 | 10 | 1 | 1 | 1 | 1 | 5 | 1 | 7 | 5 | 1 | 12 | 1 | 35 | 4 |

Table 1.
Theorem 3. The most general positive integral solution of the Diophantine equation (4) is in the form:

- $\alpha=k m n+1$;
- $a=\left[\frac{k n p r s+p q}{\tau}\right] z^{+} \quad$ and $\quad b=\left[\frac{k m q r t+p q}{\tau}\right] z^{+} ;$
- $\quad x=(r s t) x_{0}-(m q t) z \quad$ and $\quad y=(r s t) y_{0}+(n p s) z ;$
- $\delta=2\left[\frac{(k n r s+q)(k m r t+p)}{\tau}\right] z^{+}-(a+b)-k m n(a x+b y)$,
with the same conditions (i), (ii) and (iii) as given in Theorem (2).
Proof. According to Theorem 2 it suffices to derive the last relation of the Theorem 3. We note first if $(\alpha, x, y, a, b, \delta)$ is a solution of the equation (4) then $\left(\alpha, x, y, a z^{+}, b z^{+}, \delta z^{+}\right)$also represents a solution of (4) for any $z^{+} \in \mathbb{N}$. Consequently, without loss of generality we may assume that $(a, b)=1$.

Using (3) we have $\bar{\mu}_{1}+\bar{\mu}_{2}=(x a+y b)-(x-1) a-(y-1) b-2$. Since $\left(\bar{\mu}_{1}+1\right)=\theta a b$ we get $\bar{\mu}_{1}=\frac{(k n r s+q)(k m r t+p)}{\tau}-1$, which provides the proof using that $\delta=\bar{\mu}_{1}-\bar{\mu}_{2}$.

REFERENCES

1. D. Cvetković, M. Doob, H. Sachs: Spectra of graphs - Theory and applications. 3rd revised and enlarged edition, J.A. Barth Verlag, Heidelberg - Leipzig, 1995.
2. G. H. Hardy, E. M. Wright: An introduction to the theory of numbers. 4th edition, Oxford University Press, 1960.
3. M. Lepović: Some results on graphs with exactly two main eigenvalues. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 12 (2001), 68-84.
4. M. Lepović: On integral graphs which belong to the class $\overline{\alpha K_{a, b}}$. Graphs and Combinatorics, 19 (2003), 527-532.
5. M. Lepović: On integral graphs which belong to the class $\overline{\alpha K_{a} \cup \beta K_{b}}$. J. Appl. Math. and Computing, 14, No. 1-2 (2004), 39-49.
6. M. Lepović: On integral graphs which belong to the class $\overline{\alpha K_{a} \cup \beta K_{b, b}}$. Discrete Mathematics, 285 (2004), 183-190.
7. M. Lepović: On integral graphs which belong to the class $\overline{\alpha K_{a, a} \cup \beta K_{b, b}}$ (submitted to J. Appl. Math. and Computing).

Tihomira Vuksanovića 32,

Serbia

E-mail: lepovic@knez.uis.kg.ac.yu

[^0]: ${ }^{1}$ A particular solution of the equation $a x+b y=d$ may be obtained by using the EUCLID algorithm. In that case the coefficients a and b uniquely determine x_{0} and y_{0}.

[^1]: ${ }^{2}$ In this work the data given in Table 1 are obtained in two different ways: (i) they are generated by using relation (8) and (ii) by varying the parameters α, x, a, y, b in all possible ways in equation (4).

