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ON INTEGRAL GRAPHS WHICH BELONG
TO THE CLASS O4](a,a,...,a,b,b,...,b

Mirko Lepovié

Let G be a simple graph and let G denote its complement. We say that G is in-
tegral if its spectrum consists of integral values. Let Kua,yp = Ka,a,...,a,bb....b
be the complete m-partite graph with za + yb vertices, where x and y are
positive integers and m = x + y. In this work we consider integral graphs
which belong to the class aKq,y for any a > 1 and a > b, where mG denotes
the m-fold union of the graph G.

Let G be a simple graph of order n and let Ay > Ao > --- > A, be its
eigenvalues with respect to its (0,1) adjacency matrix A. The spectrum of G is
the set of its eigenvalues and is denoted by o(G). We say that G is integral if its
spectrum o(G) consists only of integers [1].

An eigenvalue u of G is main if and only if (j, Pj) = ncos? a > 0, where j is
the main vector (with coordinates equal to 1) and P is the orthogonal projection
of the space R™ onto the eigenspace £4(u). The quantity 8 = |cos ] is called the
main angle of p. The main spectrum of G is the set of all its main eigenvalues and
is denoted by M(G).

Let G be a graph with exactly two main eigenvalues pq and po with pg > po
and let 8; and (B2 be the main angles of p; and ps, respectively. Then according
to [3] we have

_ _n—Q—Ml—mi V(1 — p2 4+ n)? — 4ny (u1 — p2)
’ 2 2 ’

where 7i; and Ji, are the main eigenvalues of its complementary graph G. Besides,
we have [3]

n® 4 (n = 2n1) (1 — p2) .
2v/ (1 — pz +n)? — 4ny (u — po)
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Here, n; = n3;?> and m; = nﬁf (i = 1,2), B, and 3, denote the main angles of 7,
and fiy, respectively.

Further, let K,, and K,, , denote the complete graph and the complete bi-
partite graph, respectively. Let K;q yb = Kaq,...,a.b,p....b De the complete m-partite
graph with xa + yb vertices, where x and y are positive integers and m = x + y.
We note that K, U yK;, with a > b is an integral graph with two main eigenval-
ues p1 = (@ — 1) and s = (b — 1), where mG denotes the m-fold union of the
graph G. Applying (1) and (2) to its complement zK, U yKy = Ky 45, keeping

za+yb—a—b+t A

in mind that ny = wa and ny = yb, we obtain that 1z, , = 5 and
2 — — p—
Tiis = za —21— yb I (za + yb) ;:XL yb)(a b)7 where

A’ = ((z+Da+(y— 1)b)2 —4zala —b).

rza+yb—a—b+ A a

5 nd

Thus, for K4 4 we have g 2 =

(ra+yb)a  alra+yb)? — a(za — yb)(a — b)
ni2 = +

2 2A

We note that akKyq 4 is integral if and only if Ky 45 = 2K Uy Ky is integral. Due
to relations (1) and (2) we have recently described all integral graph which belong to
the classes aK, U BK,, oK, U Ky, and oK, , U 8Ky (see [5]-[7], respectively).

We now proceed to establish a characterization of u-integral graphs which
belong to the class aKyq,p. We say that a graph G is p-integral if its main
spectrum M (G) consists only of integral values. In view of this note that ok ,q yp
is an integral graph if and only if it is u-integral and its complement oK 4 yp is
integral. We also note that af;, ,p is p-integral if and only if its largest eigenvalue
7i; € N. Then according to (1) we get

(3) ﬁm:(xa—l—yb)oz—(x—l%a—(y—l)b—Zi(S’

s

where 6 = \/((a — 1)(za+ yb) — (a — b))2 +4za(a —1)(a —b). It is clear that
aKyqup is p-integral if and only if (o, x,y,a,b,d) represents a positive integral
solution of the Diophantine equation

(4) [(o— 1) (za+y1) — (a b))+ dzafa 1) (a—b) = 5*.

Therefore, the characterization of p-integral graphs which are related to the class
oK g zp is reduced to the problem of finding the most general integral solution of
the equation (4). The general solution of (4) is based on the procedure which is
applied in [4] for describing p-integral graphs which belong to the class ak, .

In this work it will be excluded two special cases of the Diophantine equation
(4). First, setting o = 1 in relation (4) we obtain 62 = (a—b)?, which provides that
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Koy = K, UyK)y is integral for any a,b, z,y € N. Besides, for a = b according
to (4) we get § = (o — 1)(z + y)a, which also implies that kK, 4, is integral for
any «,a,z,y € N. Since these two cases are well-known in the Spectral theory of
graphs, in what follows it will be assumed that o > 1 and a > b.

Next, iy fig = p1 pi2 — (ne — 1) g — (n1 — 1) po — (n — 1) for any G with two
main eigenvalues [3]. If G = aKq 4 this relation is transformed into

(5) (7 +1) (7 +1) = ab[ (o = 1) (w +) +1].

REMARK 1. With condition a > b the parameters a, x,y, a,b determine the graph
oK yq, b Up to isomorphism, which provides that o, z, y, a, b also uniquely determine
the graph aK,q yp-

In what follows (m, n) denotes the greatest common divisor of integers m,n €

N while m | n means that m divides n.

Proposition 1. The linear Diophantine equation ax + by = c has at least one
solution if and only if d | ¢ where d = (a,b). In that case the most general solution
of this equation is given in the form

c

b c a
= — —_ — = — — Z
T = w0 — =2 and vy dy0+dz (z€7Z),

where (x0,10) represents a particular solution' of the equation ax + by = d.

In order to demonstrate a method applied in this paper, we first prove the
following result:

Theorem 1. If aK,q . is integral with fi; = (ab — 1) then it belongs to the class
of p-integral graphs

(6) (£m+ 1)K[k7” zof% 2]a [ B yo+Em 2] h

where (i) a = km + 1 and b = ¢n + 1 such that (m,n) = 1 and km > fn; (ii)
7 = (km,{n) such that 7 | nk; (iil) (zo,y0) is a particular solution of the linear
Diophantine equation (km)x + (¢n)y = 7 and (iv) z is any integer such that

k 14 k k
(—nxo——nz>21 and (—nyo—i——mz)zl.
T T T
Proof. If (fi;+1) = ab using (3) and (5) we easily get (i) (fi,+1) = (a—1)(z+y)+1

and (i) d = ab— (o —1)(z+y) — 1. Using (i) and (ii) it is not difficult to see that
(4) is transformed to

(7) (a=1)(b=1) = (@=D[(a=1z+(-1)y].

LA particular solution of the equation ax + by = d may be obtained by using the EUCLID
algorithm. In that case the coefficients a and b uniquely determine zo and yo.
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Setting (o — 1,b — 1) = £ we have &« — 1 = ¢m and b — 1 = ¢n such that
(m,n) = 1. In view of this it follows that m | a — 1. Setting a — 1 = km
relation (7) is reduced to the linear Diophantine equation (km)x + (¢n)y = kn.

This equation has at least one solution if and only if (km,fn) = 7 | kn. In that

. " n n n km
case, according to Proposition 1, weget t = — 29— —2 and y= —yo+— 2,
T T T T

where (km)xo + (In)yo = 7. O

In what follows we show that there exists an one-to-one correspondence be-
tween the p-integral graphs oK zq p with fi; = (ab—1) and the parameters k, £, m, n.
Proposition 2. If oKy, 4 s p-integral with fi; = (ab— 1) then it uniquely deter-
mines the parameters k, £, m,n.

Proof. Suppose that k1, ¢1, m1,n1 and ks, €2, ma, no determine the same p-integral
graph al, , with the largest eigenvalue fi; = (ab — 1). Then according to Remark
1 and using that (e —1,b0—1) = ¢ we get {1 = {5. Since a — 1 ={fm and b—1 = In
we obtain m; = mso and n; = ng. Since a — 1 = km we obtain k1 = ks. O

REMARK 2. If (zg,yo) is obtained by using the EUCLID algorithm then a fixed

p-integral graph oK., ,» with the largest eigenvalue fi; = (ab — 1) also uniquely
determines the parameters xg, yo, 2.

Theorem 2. If aK 4y is integral then it belongs to the class of p-integral graphs

(8) (kmn + I)K[ (rst) xo—(maqt)z]a, [ (rst)yo+(nps)z]b >

where (i) a = (M>z+ and b = w)z“' such that (knprs +
pg, kmart + pq) = 7 and (1,pq) = 1, (k,pgrst) = 1, (mgt,nps) = 1 and nps >
mqt, (r,pq) = 1 and 27 € N; (ii) (z0,%0) 8 a particular solution of the linear
Diophantine equation (nps)x + (mqt)y = 1 and (iii) z is any integer such that
(rst)zg — (mgt)z > 1 and (rst)yo + (nps)z > 1.
Proof. We note first that if oK, 4 is integral then according to (3) and (4) it
turns out that Ak, (a.+), yb2+) is integral for any 2T € N. Consequently, without
loss of generality we can assume that (a,b) = 1.

Setting (71; + 1) = Oab where § = % such that (7,8) = 1, by using (3) and

(5) we obtain

(a—l)(:c9+y)+1 and 5= fab — (a—l)(fre—ky)—i—l'

Then by a straightforward calculation it is not difficult to see that equation
(4) is reduced to the form (fa — 1)(6b — 1) = (o — 1)[(fa — 1)z + (0b — 1)y]. We

now arrive at

(10) (ra = B)(rb = B) = (= 1)8|(ra — Bz + (16— By .

(9) Az +1=

Let (ra—f3,7b— () = «. Then 7a = yp+ 3 and 7b = vyp+ [ where (p, p) = 1.
In view of this and according to (10), we easily get vpp = (o — 1)B(pz + ¢y). We
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note that (yp + B,v¢ + B8) = 7 because (a,b) = 1. Besides, since (7,3) = 1 and
(a,b) = 1 we have (8,v) = 1. Consequently, it turns out that 3 | pp. Let (8,p) =p
and let 8 = pq and p = pr. Then (¢,7) = 1, (p,7) = 1 and (q,7) = 1. Thus, it
must be ¢ | . Setting ¢ = qw we get (p,q) =1, (p,w) =1 and (7,w) = 1. So we
obtain that

(11) vrw = (a—1)[(pm)z + (qw)y] -

Further, if we set (o« — 1,w) = m then o — 1 = mv and w = mt so that
(t,v) = 1. Setting (v,m) = n we get v = kn and © = ns so that (k,s) = 1. In
view of this it follows that &k | 7. Setting v = kr we arrive at « = kmn + 1, a =
knprs + pq and b = w Besides, we note that (11) is transformed in the

T T

following linear Diophantine equation (nps)x + (mgt)y = rst. Since (nps, mqt) = 1
this equation has at least one solution. The general solution of this equation is
x = (rst)xg — (mqt)z and y = (rst)yo + (nps)z, where (nps)zo + (mgt)yo =1. O

Proposition 3. If oK,y @5 a p-integral graph then it uniquely determines the
parameters k, m, n, p, q, 7, s, t,7 and z 7.

+
Proof. Assume that ki, mi, n1, p1, q1, r1, s1, t1, 71, 27 _and ka, ma, na, p2, g2,
T9, So, ta, To, z; determine the same p-integral graph oK q yp.

Since (k’nprs—&—pq’ k’mqrt-i—pq) = 1 it follows that (a,b) = 2. From this

T T
and according to Remark 1 we have 2~ = z;". Therefore, without loss of generality

we may suppose (a,b) = 1. Since (fi; + 1) = 6ab and (7,8) = 1 we obtain 71 = 7
and 1 = (3, that is p1q1 = p2g2. Keeping in mind that (7a — af,70 — af) = v we
get v1 = ¥2. So from 7a = yp+ B and b = yp + 0 we get p1 = p2 and p; = Ws.
Since (8, p) = p it turns out that p; = ps and ¢1 = ¢o. Further, since p = pm we
get m = mo and since p = qw we get w1 = ws. Next, since (o — 1,w) = m and
a — 1 =rvm and w = mt we easily find that m; = mo, 1 = v and t; = t5. Since
(v,m) =n, v =kn and ™ = ns we get ny = ng, k1 = ko and s; = s2. Finely, since
v = kr we obtain that r; = rs. O

REMARK 3. If (zg,y0) is obtained by using the EUCLID algorithm then a fixed

p-integral graph oK, 45 also uniquely determines the parameters xg, yo, 2.

Table 1 contains the set of all u-integral graphs from the class a K4 45, Whose
order 'o0’ does not exceed 50. In this table a u-integral graph is described 2 by the
parameters «, x, a, y, b and ones presented in the class of integral graphs in Theorem
2. In Table 1 identification numbers 6, 7, 14, 25, 51, 54 and 56 are related to
the integral graphs whose complementary graphs are also integral. Identification
numbers 3, 18, 22, 35, 40 and 50 are related to the p-integral graphs with the
largest eigenvalue fi; = (ab — 1). Graphs whose order does not exceed 50 with the
largest eigenvalue fi; < (ab — 1) have the identification numbers 10, 19, 27, 36, 43,
44, 45, 52 and 55.

2In this work the data given in Table 1 are obtained in two different ways: (i) they are generated
by using relation (8) and (ii) by varying the parameters a, z, a, y, b in all possible ways in equation

().
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Table 1. (continued)
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ilzo yo 2| o a x a y blk m n pqgr s t T 2V |p pe
431 0 1 -1{4 2 1 10 2 6(1 1 1 112 21 1 229 7
41 0 1 -1{4 2 1 15 1 71 113 14 1 1 1 1|34 8
451 0 1 -1/4 2 1 16 1 6|1 1 1 4 15 11 3 2|3 7
46| 0 1 -1{45 51 7 121 1 4115 11 3 1|41 2
471 0 1 -1{46 2 1 5 18 11 1 1 1 14 6 1 5 1 |24 3
481 0 1 -2/46 2 2 7 9 1|1 1 1113 91 4 1|27 2
491 1 -3 8|46 2 1 8 5 3|1 1 1 2 35 5 1 7 1|27 5
50| 0 1 -1{46 2 1 7 441 1 1 113 21 1 1|27 5
51| 0O 1 -1/46 2 1 16 7 1|1 1 1 4 15 71 9 1|3 3
52 1 -2 3146 2 1 15 1 81 1 1 5 2 7 1 1 3 13 9
53| 0 1 -1/48 2 110 7 2|1 11112 71 3 2|29 5
54| 0 1 -1/48 2 1 12 6 2|1 1 13 15 31 8 2|31 5
55| 0 1 -1{48 2 1 14 2 51 11213 21 1 1|34 7
56| 0 1 -1{48 3 1 12 2 21 1 2 2 15 21 7 2|41 3
571 1 -3 25|50 2 4 3 13 1/1 1 1 1 1 2 13 4 9 1|26 1
58]/ 1 -4 25|50 2 4 4 911 1 1 113 9 2 7 1|27 1
591 0 1 -1/50 21 7 18 11 11113 91 4 1|27 4
60| O 1 -1/50 2 1 9 &8 2|1 1 1317 21 5 1|29 5
61| 0O 1 -1|50 2 1 15 10 1|1 1 1 5 1 7 5 1 12 1 |35 4

Table 1.

Theorem 3. The most general positive integral solution of the Diophantine equa-
tion (4) is in the form:

e a=kmn+1;

R a:{knprs—&-pq}ﬁ_ and b:{kmqrt-i-pﬂz-i-;

T T
o I = (rst)zo — (mqt)z and y = (rst)yo + (nps)z;

(knrs + q) (kmrt + p)
T

. 52[ }z*(a+b)kmn(ax+by),

with the same conditions (i), (ii) and (iii) as given in Theorem (2).

Proof. According to Theorem 2 it suffices to derive the last relation of the The-
orem 3. We note first if (a,,y,a,b,d) is a solution of the equation (4) then
(a,z,y,azt,bzT,82T) also represents a solution of (4) for any 2™ € N. Conse-
quently, without loss of generality we may assume that (a,b) = 1.

Using (3) we have iy + fi, = (za + yb) — (z — 1)a — (y — 1)b — 2. Since
(knrs + q)(kmrt + p)

T

(t; + 1) = Oab we get 1, = — 1, which provides the proof

using that § = fi; — 7.
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