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ON INTEGRAL GRAPHS WHICH BELONG
TO THE CLASS αKa,a,...,a,b,b,...,b

Mirko Lepović

Let G be a simple graph and let G denote its complement. We say that G is in-
tegral if its spectrum consists of integral values. Let Kxa,yb = Ka,a,...,a,b,b...,b

be the complete m-partite graph with xa + yb vertices, where x and y are
positive integers and m = x + y. In this work we consider integral graphs
which belong to the class αKxa,yb for any α > 1 and a > b, where mG denotes
the m-fold union of the graph G.

Let G be a simple graph of order n and let λ1 ≥ λ2 ≥ · · · ≥ λn be its
eigenvalues with respect to its (0,1) adjacency matrix A. The spectrum of G is
the set of its eigenvalues and is denoted by σ(G). We say that G is integral if its
spectrum σ(G) consists only of integers [1].

An eigenvalue µ of G is main if and only if 〈j,Pj〉 = n cos2 α > 0, where j is
the main vector (with coordinates equal to 1) and P is the orthogonal projection
of the space Rn onto the eigenspace EA(µ). The quantity β = | cos α| is called the
main angle of µ. The main spectrum of G is the set of all its main eigenvalues and
is denoted by M(G).

Let G be a graph with exactly two main eigenvalues µ1 and µ2 with µ1 > µ2

and let β1 and β2 be the main angles of µ1 and µ2, respectively. Then according
to [3] we have

(1) µ1,2 =
n− 2− µ1 − µ2

2
±

√
(µ1 − µ2 + n)2 − 4n1(µ1 − µ2)

2
,

where µ1 and µ2 are the main eigenvalues of its complementary graph G. Besides,
we have [3]

(2) n1,2 =
n

2
± n2 + (n− 2n1)(µ1 − µ2)

2
√

(µ1 − µ2 + n)2 − 4n1(µ1 − µ2)
.
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Here, ni = nβ 2
i and ni = nβ

2

i (i = 1, 2), β1 and β2 denote the main angles of µ1

and µ2, respectively.
Further, let Kn and Km,n denote the complete graph and the complete bi-

partite graph, respectively. Let Kxa,yb = Ka,a,...,a,b,b...,b be the complete m-partite
graph with xa + yb vertices, where x and y are positive integers and m = x + y.
We note that xKa ∪ yKb with a > b is an integral graph with two main eigenval-
ues µ1 = (a − 1) and µ2 = (b − 1), where mG denotes the m-fold union of the
graph G. Applying (1) and (2) to its complement xKa ∪ yKb = Kxa,yb, keeping

in mind that n1 = xa and n2 = yb, we obtain that µ1,2 = xa + yb− a− b±∆

2
and

n1,2 = xa + yb

2
± (xa + yb)2 − (xa− yb)(a− b)

2∆
, where

∆2 =
(
(x + 1)a + (y − 1)b

)2 − 4xa(a− b) .

Thus, for αKxa,yb we have µ1,2 = xa + yb− a− b±∆

2
and

n1,2 =
(xa + yb)α

2
± α(xa + yb)2 − α(xa− yb)(a− b)

2∆
.

We note that αKxa,yb is integral if and only if Kxa,yb = xKa ∪ yKb is integral. Due
to relations (1) and (2) we have recently described all integral graph which belong to
the classes αKa ∪ βKb, αKa ∪ βKb,b and αKa,a ∪ βKb,b (see [5]–[7], respectively).

We now proceed to establish a characterization of µ-integral graphs which
belong to the class αKxa,yb. We say that a graph G is µ-integral if its main
spectrum M(G) consists only of integral values. In view of this note that αKxa,yb

is an integral graph if and only if it is µ-integral and its complement αKxa,yb is
integral. We also note that αKxa,yb is µ-integral if and only if its largest eigenvalue
µ1 ∈ N. Then according to (1) we get

(3) µ1,2 =

(
xa + yb

)
α− (

x− 1
)
a− (

y − 1
)
b− 2± δ

2
,

where δ =
√(

(α− 1)(xa + yb)− (a− b)
)2 + 4xa(α− 1)(a− b). It is clear that

αKxa,yb is µ-integral if and only if (α, x, y, a, b, δ) represents a positive integral
solution of the Diophantine equation

(4)
[(

α− 1
)(

xa + yb
)− (

a− b
)]2

+ 4xa
(
α− 1

)(
a− b

)
= δ2 .

Therefore, the characterization of µ-integral graphs which are related to the class
αKxa,xb is reduced to the problem of finding the most general integral solution of
the equation (4). The general solution of (4) is based on the procedure which is
applied in [4] for describing µ-integral graphs which belong to the class αKa,b.

In this work it will be excluded two special cases of the Diophantine equation
(4). First, setting α = 1 in relation (4) we obtain δ2 = (a−b)2, which provides that
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Kxa,yb = xKa ∪ yKb is integral for any a, b, x, y ∈ N. Besides, for a = b according
to (4) we get δ = (α − 1)(x + y)a, which also implies that αKxa,ya is integral for
any α, a, x, y ∈ N. Since these two cases are well-known in the Spectral theory of
graphs, in what follows it will be assumed that α > 1 and a > b.

Next, µ1 µ2 = µ1 µ2 − (n2 − 1)µ1 − (n1 − 1) µ2 − (n− 1) for any G with two
main eigenvalues [3]. If G = αKxa,yb this relation is transformed into

(5)
(
µ1 + 1

)(
µ2 + 1

)
= ab

[(
α− 1

)(
x + y

)
+ 1

]
.

Remark 1. With condition a > b the parameters α, x, y, a, b determine the graph
αKxa,yb up to isomorphism, which provides that α, x, y, a, b also uniquely determine
the graph αKxa,yb.

In what follows (m,n) denotes the greatest common divisor of integers m,n ∈
N while m | n means that m divides n.

Proposition 1. The linear Diophantine equation ax + by = c has at least one
solution if and only if d | c where d = (a, b). In that case the most general solution
of this equation is given in the form

x =
c

d
x0 − b

d
z and y =

c

d
y0 +

a

d
z (z ∈ Z) ,

where (x0, y0) represents a particular solution1of the equation ax + by = d.

In order to demonstrate a method applied in this paper, we first prove the
following result:

Theorem 1. If αKxa,yb is integral with µ1 = (ab− 1) then it belongs to the class
of µ-integral graphs

(6) (`m + 1)K[ kn
τ x0− `n

τ z]a ,[ kn
τ y0+

km
τ z] b ,

where (i) a = km + 1 and b = `n + 1 such that (m,n) = 1 and km > `n; (ii)
τ = (km, `n) such that τ | nk; (iii) (x0, y0) is a particular solution of the linear
Diophantine equation (km)x + (`n)y = τ and (iv) z is any integer such that

(kn

τ
x0 − `n

τ
z
)
≥ 1 and

(kn

τ
y0 +

km

τ
z
)
≥ 1.

Proof. If (µ1+1) = ab using (3) and (5) we easily get (i) (µ2+1) = (α−1)(x+y)+1
and (ii) δ = ab− (α− 1)(x + y)− 1. Using (i) and (ii) it is not difficult to see that
(4) is transformed to

(7)
(
a− 1

)(
b− 1

)
=

(
α− 1)

[(
a− 1

)
x +

(
b− 1

)
y
]
.

1A particular solution of the equation ax + by = d may be obtained by using the EUCLID
algorithm. In that case the coefficients a and b uniquely determine x0 and y0.
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Setting (α − 1, b − 1) = ` we have α − 1 = `m and b − 1 = `n such that
(m,n) = 1. In view of this it follows that m | a − 1. Setting a − 1 = km
relation (7) is reduced to the linear Diophantine equation (km)x + (`n)y = kn.
This equation has at least one solution if and only if (km, `n) = τ | kn. In that

case, according to Proposition 1, we get x = kn

τ
x0− `n

τ
z and y = kn

τ
y0+ km

τ
z,

where (km)x0 + (`n)y0 = τ .
In what follows we show that there exists an one-to-one correspondence be-

tween the µ-integral graphs αKxa,yb with µ1 = (ab−1) and the parameters k, `,m, n.

Proposition 2. If αKxa,yb is µ-integral with µ1 = (ab− 1) then it uniquely deter-
mines the parameters k, `, m, n.

Proof. Suppose that k1, `1,m1, n1 and k2, `2,m2, n2 determine the same µ-integral
graph αKa,b with the largest eigenvalue µ1 = (ab− 1). Then according to Remark
1 and using that (α− 1, b− 1) = ` we get `1 = `2. Since α− 1 = `m and b− 1 = `n
we obtain m1 = m2 and n1 = n2. Since a− 1 = km we obtain k1 = k2.

Remark 2. If (x0, y0) is obtained by using the EUCLID algorithm then a fixed
µ-integral graph αKxa,yb with the largest eigenvalue µ1 = (ab − 1) also uniquely
determines the parameters x0, y0, z.

Theorem 2. If αKxa,yb is integral then it belongs to the class of µ-integral graphs

(8)
(
kmn + 1

)
K[ (rst) x0−(mqt)z]a , [ (rst)y0+(nps)z]b ,

where (i) a =
(

knprs + pq

τ

)
z+ and b =

(
kmqrt + pq

τ

)
z+ such that (knprs +

pq, kmqrt + pq) = τ and (τ, pq) = 1, (k, pqrst) = 1, (mqt, nps) = 1 and nps >
mqt, (r, pq) = 1 and z+ ∈ N; (ii) (x0, y0) is a particular solution of the linear
Diophantine equation (nps)x + (mqt)y = 1 and (iii) z is any integer such that
(rst)x0 − (mqt)z ≥ 1 and (rst)y0 + (nps)z ≥ 1.

Proof. We note first that if αKxa,yb is integral then according to (3) and (4) it
turns out that αKx(az+) , y(bz+) is integral for any z+ ∈ N. Consequently, without
loss of generality we can assume that (a, b) = 1.

Setting (µ1 + 1) = θab where θ = τ

β
such that (τ, β) = 1, by using (3) and

(5) we obtain

(9) µ2 + 1 =
(α− 1)(x + y) + 1

θ
and δ = θab− (α− 1)(x + y) + 1

θ
.

Then by a straightforward calculation it is not difficult to see that equation
(4) is reduced to the form (θa − 1)(θb − 1) = (α − 1)[(θa − 1)x + (θb − 1)y]. We
now arrive at

(10)
(
τa− β

)(
τb− β

)
=

(
α− 1

)
β
[(

τa− β
)
x +

(
τb− β

)
y
]
.

Let (τa−β, τb−β) = γ. Then τa = γρ+β and τb = γϕ+β where (ρ, ϕ) = 1.
In view of this and according to (10), we easily get γρϕ = (α− 1)β(ρx + ϕy). We
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note that (γρ + β, γϕ + β) = τ because (a, b) = 1. Besides, since (τ, β) = 1 and
(a, b) = 1 we have (β, γ) = 1. Consequently, it turns out that β | ρϕ. Let (β, ρ) = p
and let β = pq and ρ = pπ. Then (q, π) = 1, (p, γ) = 1 and (q, γ) = 1. Thus, it
must be q | ϕ. Setting ϕ = qω we get (p, q) = 1, (p, ω) = 1 and (π, ω) = 1. So we
obtain that

(11) γπω = (α− 1)
[
(pπ)x + (qω)y

]
.

Further, if we set (α − 1, ω) = m then α − 1 = mν and ω = mt so that
(t, ν) = 1. Setting (ν, π) = n we get ν = kn and π = ns so that (k, s) = 1. In
view of this it follows that k | γ. Setting γ = kr we arrive at α = kmn + 1, a =
knprs + pq

τ
and b = kmqrt + pq

τ
. Besides, we note that (11) is transformed in the

following linear Diophantine equation (nps)x+(mqt)y = rst. Since (nps,mqt) = 1
this equation has at least one solution. The general solution of this equation is
x = (rst)x0 − (mqt)z and y = (rst)y0 + (nps)z, where (nps)x0 + (mqt)y0 = 1.

Proposition 3. If αKxa,yb is a µ-integral graph then it uniquely determines the
parameters k, m, n, p, q, r, s, t, τ and z+.

Proof. Assume that k1, m1, n1, p1, q1, r1, s1, t1, τ1, z+
1 and k2, m2, n2, p2, q2,

r2, s2, t2, τ2, z+
2 determine the same µ-integral graph αKxa,yb.

Since
(

knprs + pq

τ
,
kmqrt + pq

τ

)
= 1 it follows that (a, b) = z+. From this

and according to Remark 1 we have z+
1 = z+

2 . Therefore, without loss of generality
we may suppose (a, b) = 1. Since (µ1 + 1) = θab and (τ, β) = 1 we obtain τ1 = τ2

and β1 = β2, that is p1q1 = p2q2. Keeping in mind that (τa−αβ, τb−αβ) = γ we
get γ1 = γ2. So from τa = γρ + β and τb = γϕ + β we get ρ1 = ρ2 and ϕ1 = ϕ2.
Since (β, ρ) = p it turns out that p1 = p2 and q1 = q2. Further, since ρ = pπ we
get π1 = π2 and since ϕ = qω we get ω1 = ω2. Next, since (α − 1, ω) = m and
α − 1 = νm and ω = mt we easily find that m1 = m2, ν1 = ν2 and t1 = t2. Since
(ν, π) = n, ν = kn and π = ns we get n1 = n2, k1 = k2 and s1 = s2. Finely, since
γ = kr we obtain that r1 = r2.

Remark 3. If (x0, y0) is obtained by using the EUCLID algorithm then a fixed
µ-integral graph αKxa,yb also uniquely determines the parameters x0, y0, z.

Table 1 contains the set of all µ-integral graphs from the class αKxa,yb, whose
order ’o’ does not exceed 50. In this table a µ-integral graph is described 2 by the
parameters α, x, a, y, b and ones presented in the class of integral graphs in Theorem
2. In Table 1 identification numbers 6, 7, 14, 25, 51, 54 and 56 are related to
the integral graphs whose complementary graphs are also integral. Identification
numbers 3, 18, 22, 35, 40 and 50 are related to the µ-integral graphs with the
largest eigenvalue µ1 = (ab− 1). Graphs whose order does not exceed 50 with the
largest eigenvalue µ1 < (ab− 1) have the identification numbers 10, 19, 27, 36, 43,
44, 45, 52 and 55.

2In this work the data given in Table 1 are obtained in two different ways: (i) they are generated
by using relation (8) and (ii) by varying the parameters α, x, a, y, b in all possible ways in equation
(4).
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i x0 y0 z o α x a y b k m n p q r s t τ z+ µ1 µ2

1 0 1 – 1 14 2 1 3 4 1 1 1 1 1 1 2 4 1 3 1 8 1
2 0 1 – 1 14 2 1 4 3 1 1 1 1 2 1 3 3 1 5 1 9 1
3 0 1 – 1 22 2 1 5 2 3 1 1 1 1 1 2 2 1 1 1 14 3
4 0 1 – 1 22 2 1 8 1 3 1 1 1 4 1 5 1 1 3 1 17 3
5 0 1 – 1 24 2 1 5 7 1 1 1 1 1 1 2 7 1 3 1 14 2
6 0 1 – 1 24 2 1 6 6 1 1 1 1 3 1 5 3 1 8 1 15 2
7 0 1 – 1 24 3 1 6 2 1 1 1 2 2 1 5 2 1 7 1 20 1
8 1 – 3 13 26 2 2 3 7 1 1 1 1 1 1 2 7 2 5 1 14 1
9 0 1 – 2 26 2 2 4 5 1 1 1 1 1 1 3 5 1 4 1 15 1

10 0 1 – 1 26 2 1 8 1 5 1 1 1 2 1 3 1 1 1 1 19 5
11 0 1 – 1 28 2 1 4 10 1 1 1 1 1 1 3 5 1 4 1 15 2
12 0 1 – 1 28 2 1 6 4 2 1 1 1 1 1 2 4 1 3 2 17 3
13 0 1 – 1 28 2 1 8 3 2 1 1 1 2 1 3 3 1 5 2 19 3
14 0 1 – 1 28 2 1 9 5 1 1 1 1 3 1 4 5 1 7 1 20 2
15 0 1 – 1 28 4 1 5 2 1 1 1 3 1 1 4 2 1 5 1 24 1
16 0 1 – 2 32 2 2 5 3 2 1 1 1 1 1 3 3 1 2 1 19 2
17 0 1 – 2 32 2 2 6 4 1 1 1 1 2 1 5 4 1 7 1 20 1
18 0 1 – 1 32 2 1 7 3 3 1 1 1 1 1 2 3 1 1 1 20 4
19 0 1 – 1 32 2 1 10 2 3 1 1 1 5 1 7 1 1 4 1 23 4
20 0 1 – 1 33 3 1 5 6 1 1 1 2 1 1 4 3 1 5 1 24 2
21 1 – 7 12 33 3 1 6 5 1 1 2 1 3 1 5 5 1 13 1 25 2
22 0 1 – 1 33 3 1 7 1 4 1 1 2 1 1 3 1 1 1 1 27 4
23 0 1 – 1 33 3 1 9 1 2 1 1 2 3 1 7 1 1 5 1 29 2
24 0 1 – 1 34 2 1 5 6 2 1 1 1 1 1 3 3 1 2 1 19 3
25 0 1 – 1 34 2 1 7 10 1 1 1 1 1 1 2 10 1 3 1 20 3
26 0 1 – 1 34 2 1 8 9 1 1 1 1 4 1 7 3 1 11 1 21 3
27 0 1 – 1 34 2 1 9 2 4 1 1 1 3 1 5 1 1 2 1 23 5
28 0 1 – 1 36 2 1 6 12 1 1 1 1 2 1 5 4 1 7 1 20 3
29 0 1 – 1 36 2 1 10 8 1 1 1 1 2 1 3 8 1 5 1 24 3
30 1 – 3 19 38 2 3 3 10 1 1 1 1 1 1 2 10 3 7 1 20 1
31 2 – 9 41 38 2 3 4 7 1 1 1 1 2 1 3 7 3 11 1 21 1
32 1 – 4 13 39 3 1 4 9 1 1 2 1 1 1 3 9 1 7 1 27 2
33 0 1 – 1 39 3 1 9 4 1 1 1 2 3 1 8 2 1 11 1 32 2
34 0 1 – 3 42 2 3 5 6 1 1 1 1 1 1 4 6 1 5 1 24 1
35 0 1 – 1 42 2 1 9 4 3 1 1 1 1 1 2 4 1 3 3 26 5
36 0 1 – 1 42 2 1 12 3 3 1 1 1 2 1 3 3 1 5 3 29 5
37 0 1 – 2 44 2 2 5 12 1 1 1 1 1 1 4 6 1 5 1 24 2
38 1 – 7 24 44 2 2 6 10 1 1 1 1 3 1 5 5 2 13 1 25 2
39 0 1 – 1 44 2 1 9 13 1 1 1 1 1 1 2 13 1 3 1 26 4
40 0 1 – 2 44 2 2 7 2 4 1 1 1 1 1 3 2 1 1 1 27 4
41 0 1 – 1 44 2 1 10 12 1 1 1 1 5 1 9 3 1 14 1 27 4
42 0 1 – 2 44 2 2 9 2 2 1 1 1 3 1 7 2 1 5 1 29 2

Table 1. (continued)
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i x0 y0 z o α x a y b k m n p q r s t τ z+ µ1 µ2

43 0 1 – 1 44 2 1 10 2 6 1 1 1 1 1 2 2 1 1 2 29 7
44 0 1 – 1 44 2 1 15 1 7 1 1 1 3 1 4 1 1 1 1 34 8
45 0 1 – 1 44 2 1 16 1 6 1 1 1 4 1 5 1 1 3 2 35 7
46 0 1 – 1 45 5 1 7 1 2 1 1 4 1 1 5 1 1 3 1 41 2
47 0 1 – 1 46 2 1 5 18 1 1 1 1 1 1 4 6 1 5 1 24 3
48 0 1 – 2 46 2 2 7 9 1 1 1 1 1 1 3 9 1 4 1 27 2
49 1 – 3 8 46 2 1 8 5 3 1 1 1 2 3 5 5 1 7 1 27 5
50 0 1 – 1 46 2 1 7 4 4 1 1 1 1 1 3 2 1 1 1 27 5
51 0 1 – 1 46 2 1 16 7 1 1 1 1 4 1 5 7 1 9 1 35 3
52 1 – 2 3 46 2 1 15 1 8 1 1 1 5 2 7 1 1 3 1 35 9
53 0 1 – 1 48 2 1 10 7 2 1 1 1 1 1 2 7 1 3 2 29 5
54 0 1 – 1 48 2 1 12 6 2 1 1 1 3 1 5 3 1 8 2 31 5
55 0 1 – 1 48 2 1 14 2 5 1 1 1 2 1 3 2 1 1 1 34 7
56 0 1 – 1 48 3 1 12 2 2 1 1 2 2 1 5 2 1 7 2 41 3
57 1 – 3 25 50 2 4 3 13 1 1 1 1 1 1 2 13 4 9 1 26 1
58 1 – 4 25 50 2 4 4 9 1 1 1 1 1 1 3 9 2 7 1 27 1
59 0 1 – 1 50 2 1 7 18 1 1 1 1 1 1 3 9 1 4 1 27 4
60 0 1 – 1 50 2 1 9 8 2 1 1 1 3 1 7 2 1 5 1 29 5
61 0 1 – 1 50 2 1 15 10 1 1 1 1 5 1 7 5 1 12 1 35 4

Table 1.

Theorem 3. The most general positive integral solution of the Diophantine equa-
tion (4) is in the form:

• α = kmn + 1;

• a =
[

knprs + pq

τ

]
z+ and b =

[
kmqrt + pq

τ

]
z+;

• x =
(
rst

)
x0 −

(
mqt

)
z and y =

(
rst

)
y0 +

(
nps

)
z;

• δ = 2
[�

knrs + q
��

kmrt + p
�

τ

]
z+ − (

a + b
)− kmn(ax + by),

with the same conditions (i), (ii) and (iii) as given in Theorem (2).

Proof. According to Theorem 2 it suffices to derive the last relation of the The-
orem 3. We note first if (α, x, y, a, b, δ) is a solution of the equation (4) then
(α, x, y, az+, bz+, δz+) also represents a solution of (4) for any z+ ∈ N. Conse-
quently, without loss of generality we may assume that (a, b) = 1.

Using (3) we have µ1 + µ2 = (xa + yb) − (x − 1)a − (y − 1)b − 2. Since

(µ1 + 1) = θab we get µ1 = (knrs + q)(kmrt + p)

τ
− 1, which provides the proof

using that δ = µ1 − µ2.
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1. D. Cvetković, M. Doob, H. Sachs: Spectra of graphs – Theory and applications.

3rd revised and enlarged edition, J.A. Barth Verlag, Heidelberg – Leipzig, 1995.

2. G. H. Hardy, E. M. Wright: An introduction to the theory of numbers. 4th edition,

Oxford University Press, 1960.

3. M. Lepović: Some results on graphs with exactly two main eigenvalues. Univ. Beograd.

Publ. Elektrotehn. Fak. Ser. Mat., 12 (2001), 68–84.
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