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ON EXTENSIONS OF TWO MAPPINGS ASSO-
CIATED WITH HERMITE-HADAMARD’S
INEQUALITIES FOR CONVEX FUNCTIONS

Liang-Cheng Wang

In this paper, we introduce two new mappings closely connected with
HERMITE-HADAMARD’s inequalities for convex functions and study their main
properties.

1. INTRODUCTION

Let f be a given continuous function defined on a interval [a,b], a < b. For
any z,y € [a,b] and t € (0,1), we write

(12,2 £(5). ) LT e 2L
Ct;x,y;fs,s:i/ fsds+7/ f(s)ds,
(1—t)(y—l') x t(y—.’l?) te+(1—t)y
where, z # y. When z =y, C’(t;x,x;f(s),s) = f(x).
When f is a continuous convex function on [a, b], the author of this paper
showed in [1] and [2] that the following inequalities hold true:

(1.1) flta+ (1—=1)b) < C(t;a,b; f(s),s) <tf(a)+ (1 —1t)f(b).

We define two mappings H and h by H : (0,1) X [a,b] x [a,b] — R, if

t te+(1—t)y

Hitsa,y) = (y = ) (t() + (1= 0fw) - 1 | f(s)ds

1t f(s)ds

t te+(1—t)y

= (=) (tf@) + Q= Df ) — C(tiw,y: £(5).5))
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and h: (0,1) x [a,b] X [a,b] — R, if
t toe+(1-t)y 1—¢ [Y

h(t;z,y) = —— f(s)ds+ —— f(s)ds
1-t T 3 te+(1—t)y

—(y—2)f(te+ (1 - t)y)
(y — m)(C(t;x,y; f(s),8) = f(te+ (1 - t)y)),

they are differences generated by the inequalities (1.1).
If t = 1/2, then inequalities (1.1), H(t; x,y) and h(t; z,y) reduce to

(12) (“5) < it [ o< 1O

2 b—a 2 ’

(e.) = (- 0) (1) + 1) -2 " f(s) ds

and

_ y
) = | f(s)ds—(y—x)f(x;y),
respectively.

The (1.1) are called HERMITE-HADAMARD’s inequalities (see [3] and [4]).
H(z,y) and h(z,y) are differences generated by the inequalities (1.2).

In [5], S. S. DRAGOMIR and R. P. ACGARWAL gave some properties of H(a, y)
and ﬁ(a, y) with y € [a, b]; in [6], the author of this paper showed some properties
of H(x,b) and h(z,b) with z € [a,b] and obtained some refinements of (1.2).

The aim of this paper is to study the main properties of H(t;z,y) and
h(t;z,y), and then obtain some refinements of (1.1).

2. MAIN RESULTS

The main properties of H(¢;x,y) are given in the following two theorems:
Theorem 2.1. Let f be a continuous convexr function defined on [a,b]. For any
t € (0,1), then we have the following:

(1) H(t;a,y) is nonnegative and monotonically increasing with y on [a,b],
H (t;z,b) is nonnegative and monotonically decreasing with x on [a, b];
(

2) For any x € (a,b), we have the following three refinements of the right
side in (1.1) :

(21)  C(t;a,b; f(s),s)
T (t£(@) + (L= 0)f @) = C a3 £(3),5) ) + C(tia,bi f(5). )
< tf(a)+ (1—1t)f(b),

<
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(2.2)  C(t;a,b; f(s),s)
< 2_ (tf( )+ (1—1t)f(b) — C’(t;:r,b;f(s),s)) + C(t;a,b; f(s), s)
<tf(a)+ (1 —1)f(b)

(23)  C(t;a,b; f(s),9)

<3(F @+ -0+ (ot - 0) @)

Tr—a
7 Cltia,a; f(5),5)

<tf(a)+ (1 —1)f(b).

Theorem 2.2. Let f be a continuous convex function defined on [a,b]. For any
€ (0,1), then we have the following:

(1) When 1/2 < t < 1, H(t;a,y) is convex with y on [a,b] and we have the
following refinement of the right side in (1.1) :
(24)  C(t;a,b; f(s),s)

<tfla)+ (1 —t)f(aa+ (1—a)b) — C(t;a,0a+ (1 — a)b; f(s),s)
+C(t;a,b; f(s),s)
1—-t

<tf(a)+ A—a)b—a C(asa,b; (x — a)f(z), x)

1
_m C’(a;a,b; (x — a)C(t;a,x; f(s),s),x)—F C(t;a,b; f(s),s)
<tf(a)+ (1 —1)f(b);

(2) When 0 <t < 1/2, H(t;x,b) is conver with x on [a,b] and we have the
following refinement of the right side in (1.1) :

(2.5)  C(t;a,b; f(s),s)
<tf(aa+ (1 —a)b) + (1 —1t)f(b) — C(t;aa+ (1 —a)b,b; f(s),s)
+C’(t;a,b;f s),s)

S(l—t)f(b)‘kﬁ
1

alb—a) C’(a; a,b; (b — x)C(t;3,b; f(s), 5),x) + C(t;a,b; f(s), s)
<tf(a)+ (1 —1)f(b).
REMARK 1. The conditions “0 < ¢ < 1/2” and “1/2 <t < 1” do not imply conve-

xity of H(t;a,y) and h(t;x,b) on [a, b], respectively. Indeed, we have the following
simple counterexample:

b—=z

(t;x,b;f(s),s)) + C(t;a,b;f(s),s)

Clasa,b; (b— ) f(z), )
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EXAMPLE. Let &k = 14+ 1 x 107, ¢; = 0.002523 and to = 1 —t;. Then 0 < t; <
1/2, 1/2 < ta < 1, (k+ 1t — 71 —t)*" ' =1+ (1 — 1)) = ((k+ 1)(1 — t2)
—(1—t)!tf -1 4 tQkH) < 0 and f(s) = |s|* is convex on [~100,100]. Hence,

(1-t1)y 1— y
H(t1;0,y) = (y —0) (thk +(1- tl)yk) _ b / sFds — h / s*ds
L=t1Jo t (1—t1)y

1—-1

_ 4200 k=1 Nk k41
= n0FD ((k+ 1)ty —t1(1 — t1) 1+ (1—t)" )y

is concave with y on [0, 100] and

Hita;2,0) = (0 — ) (ta(—2)* + (1 — t2)0%) 1352 / P Cs)Fds — 1;“ /t (—s)* ds

- (1_75;)% (+1)(1—t2) — (1 —t2)*t 7 = L+t (=) !

is concave with  on [—100, 0].
The main properties of h(t;z,y) are embodied in the following theorem:

Theorem 2.3. Let [ be a continuous convex function defined on [a,b]. For any
t € (0,1), we have the following:

(1) h(t;a,y) is nonnegative and monotonically increasing with y on [a,b],
h(t; x,b) is nonnegative and monotonically decreasing with x on [a,b].

(2) We have the inequality:
(2.6) h(t;z,y) < H(t;x,y), a<z<y<b

(3) For any x € (a,b), we have the following three refinements of the left side
in (1.1):

(2.7)  f(ta+ (1 —1t)b)

r—a
<

< (C’(t;a,x;f(s),s) —f(ta+(1—t)1:)) + f(ta+ (1—t)b)

< C(ta,b; f(s),s),

(2.8)  f(ta+ (1 —1t)b)

b—=x
<

S (C(t;x,b;f(s),s) — f(tz+ (1 —t)b)) + f(ta+ (1 —t)b)

< C(t; a,b; f(s), s)

and



12 Liang-Cheng Wang

(2.9)  f(ta+ (1 —1)b)

< ﬁ ((m —a)(C(t;a,x;f(S),s) — f(ta+ (1 —t)g;))

+(b— x)(C(t;x,b;f(s),s) — f(tz+ (1 - t)b))) + f(ta+ (1 —t)b)
§C(t;a,b;f(s),s).

REMARK 2. When we choose t = 1/2, (2.1) and (2.7) reduce to (2) and (10) in [5],
(2.2)-(2.3) and (2.8)-(2.9) reduce to (12)-(13) and (15)-(16) in [6], respectively.

Towards proving these theorems we shall need the following lemma:

Lemma 2.4. Let g be a continuous function defined on [a,b]. Then we have the
following:

(1) Let " and ¢, exist on (a,b). When g" > 0 and g, > 0, g is monotonically
increasing on [a,b]. When g" < 0 and g’ < 0, g is monotonically decreasing on
[a, b] (see [7]).

(2) If ¢/, exist and it is monotonically increasing on (a,b), then g is convex
on [a,b] (see [6-7]).

3. PROOFS OF THEOREMS

Proof of Theorem 2.1. (1) The fact that H(¢; a,y) and H(¢; x, b) are nonnegative
follows from (1.1).

By the continuity of f, H(t; a,y) with y and H(¢; z,b) with z are continuous
on [a,b].

For any z,y € (a,b) and ¢t € (0,1), the right derivative of H(¢;a,y) with y
and H(t;x,b) with x are:

(3.1)  Hi(tay) = tf(al) +A=0)f) + (y—a)(l—1)f(y)
—t

—tf(tat (1= t)y) - —— (f») ~ (1= 0)f(ta+ (1 = t)y))

- % (t(l —t)(y — a) fi(y) + 2 f(a) — (1 —t)2f(y) — (2t — 1) f(ta+ (1 — t)y))
and

(3.2) H (t;z,b) = —(tf(z) + (1 = 0) (b)) + (b— z)t f{ ()

_%—t (tf(t95+ (1-1)b) — f(x)) + (1 =t)f(tz + (1 — t)b)

= (DO )@ (- 07 F0) + 2 f )

1—¢
+ (=20 f(tr+ (1 - t)b)),
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respectively.
Using (3.1) and convexity of f, we get

(3.3)  Hl(t;a,y) = % <t2 (f(a) — f(ta+ (1- t)y))
1= 02(F(ta 1= 00) ~ 1) +10 -0 - )

= % ('52(1 —t)(a—y)fi(ta+ (1 —1)y) +t(1 —t)*(a—y) [ (y)
L= - L)
=t(1-1t)(y —a) (f#(y) — fi(ta+(1— t)y)) > 0.

By the same method as in the proof of (3.3), we can show that the left
derivative of H(t;a,y) with y satisfies

(3.4) H' (t;a,y) >0, y € (a,b).

From (3.3)-(3.4) and (1) in the Lemma 2.4, we get that H(t; a,y) is monotonically
increasing with y on [a, b].
Using (3.2) and the convexity of f, we have
! 1 2
(85) Hi(te,b)= 1— (t (f(x) — fltz+ (1 - t)b))
+(1 - t)2<f(tx +(1—1t)b) — f(b)) +t(1—1t)(b— x)fjr(x))
1

<
—1-t

(t2(1 — (= b)fy () + (1 — )2 (z — b) . (tz + (1 — t)b)
FH1=t)b-2)f ()
= t(1—t)(b—x) (fjr(x) — fi(te+(1— t)b)) <o0.

By the same method as in the proof of (3.5), we can show that the left derivative
of H(t;x,b) with x satisfies

(3.6) H' (t;x,b) <0, x € (a,b).

From (3.5)—(3.6) and (1) in the Lemma 2.4, we get that H(¢;xz,b) is monotonically
decreasing with x on [a, b].

(2) For any z € (a,b), from the monotonically increasing properties of
H(t;a,y) with y on [a, b] and the mapping H (¢;z,y), we have

0=H(t;a,a) < H(t;a,z) = (x fa)<tf(a) +(1-t)f(x)— C’(t;a,x;f(s),s))

< H(ta,b) = (b—a)(tf(a) + (1 =) f(5) = C(t:a,b: £(5),5) ).
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which implies the inequalities (2.1).

From the monotonically decreasing properties of H(¢;x,b) with x on [a,b]
and the same method as in the proof of (2.1), we can prove (2.2). Expression of
(2.1) plus (2.2) and a simple manipulation yields (2.3).

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. (1) For 1/2 <t < 1, the continuity of H(¢;a,y) with y
on [a,b] has been proved in the proof of Theorem 2.1.

For Vy1,y2 € (a,b),y1 < yo, from (3.1), 1/2 < ¢ < 1 and convexity of f, we

obtain

t(H), (t; a,y2) — H' (t; a,11))

=t(1=1)((y2 — ) f1-(y2) = (1 — ) f1 (1)) + (1= ) (f(w1) = F(y2))
(2t — 1)(f(ta + (1= t)y) — flta+(1— t)yg))

> t(1=t)(yr — a) (f1(y2) = f1 (1)) + (1 =) (y2 — y1) [} (y2)
+(L=)2(y1 — y2) fi(y2) + (2t = 1)(1 — ) (1 — yo) £y (ta + (L — t)yo)

= t(1—t)(y1 — a) (£} (2) — 1 ()
(2t = 1)1 =) — 1) (FL () = F1(ta+ (1= t)y2) ) = 0,

which implies that H’, (£; a,y) is monotonically increasing with y on (a,b). By (2)

in the Lemma 2.4, we get that H(t;a,y) is convex with y on [a, b].

For any a € (0,1), using the nonnegativity and convexity properties of
H(t;a,y) and (1.1), we obtain

1
1
< mC(a;a,b;H(t;a,y),y)
1
< m (OéH(t,@, a) + (1 — Oé)H(t, a, b))

From mapping H (t; x,y), we get

1
(3.8) =) H(t;a,aa+ (1 — a)b)
=tf(a)+ (1 —t)f(aa+ (1 —a)b) — C(t;a,ca + (1 — a)b; f(s),s),
(3.9) C’(a; a,b; H(t; a,y), y)

- a)b-a)
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= m (tf(a)C(a; a,b; (y — a),y)
+(L=t)C (s a,b; (y — a) f(y),y) — C(a;a, b; (y — a)C(t;a,y; f(s), S)y))
= tf(a) + m Cla;a,b; (z — a) f(z), 7)
—m C(asa,b (@~ a)C(t0,3: f(5), 5), @)
and
(3.10) Wl(b—a) (aH(ta,a) + (1 — a)H(ta,b))

= L Hta) = 1f(0) + (L= )~ C(ta b £(9).5).

Combining (3.7)—(3.10), a simple manipulation yields (2.4).
(2) For 0 < t < 1/2, the continuity of H(t;x,b) with « on [a,b] has been
proved in the proof of Theorem 2.1.

For Vz1,x9 € (a,b),21 < x2, from (3.2), 0 < ¢t < 1/2 and convexity of f, we
obtain

(1 —t)(H' (t; 32,b) — H' (t;x1,b))
=t(1—t)(b—x2) (fi(m2) — fi(z1)) —t(1 —t) (22 — 1) [ (1)
+1%(f(x2) = f(21))

+(1 = 26)(f bz + (1= ) = f(ter + (1= 1))

> (1 = t)(b— @2) (fi(22) — fi(21)) =t = t)(z2 — 21) f1(21)
+t2 (w2 — 1) fi (1) + (1 = 20)t (w2 — 21) f (tzr + (1 — 1)b)

= t(1 = t)(b—22) (f1 (22) — fi(21))
(1 = 20)t(z — gcl)(f'+ (toy + (1)) — f’+(ac1)> >0,

which implies that H’ (t;x,b) is monotonically increasing with x on (a,b). By (2)
in the Lemma 2.4, we get that H(¢;x,b) is convex with x on [a, b].

Using the nonnegativity and convexity properties of H(t;x,b) and the same
method as in the proof of (2.4), we can prove (2.5).

This completes the proof of Theorem 2.2.
Proof of Theorem 2.3. (1) The fact that h(¢; a,y) and h(t; x,b) are nonnegative
follows from (1.1).

By the continuity of f, h(t;a,y) with y and h(¢; z,b) with x are continuous
on [a,b].
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For any x € (a,b), using convexity of f, the left derivative of h(¢; x,b) with x

holds the following
(3.11) K (t2,b) = %(tf(tm F 1 08) — (@) — (1= O)f (tw+ (1 - 1)D)

+f(tz 4 (1= t)b) — (b— @)t f (tz + (1 — 1)b)
__t (f(tx + (1 —1t)b) — (x)) (b—2)tf. (tz + (1 —t)b)

1-1¢
4
< <7(17t)(sz)f (tz + (1 — )b ) (b—a)tf  (tz + (1 —t)b) = 0.
By the same method as in the proof of (3.11), we can show that the right

derivative of h(t;x,b) with x in (a,b) satisfies
(3.12) Rl (t;2,b) <0, x € (a,b).

From (3.11)—(3.12) and (1) in the Lemma 2.4, we get that h(¢; x, b) is monotonically
decreasing with = on [a, b].
By the same method as in the proof of (3.11), we can prove

(3.13) h' (t;a,y) >0, k' (ta,y) >0, y € (a,b).
+

Using (3.13) and (1) in the Lemma 2.4, we get that h(f;a,y) is monotonically
increasing with y on [a, b].

(2) By (1.2) and z < y, we have

t te+(1—t)y
(3.14) T3 fls)ds
1—
< lt (tr + (1 —t)y )f(mﬂ ;) ) + ()
-y L2 00 10
and
1—t [Y
. — d
(3.15) : /t T
- tr+ (1 -t
< % (y— (t:c+(1—t)y)) fltm 5 )4) + )
(- )y 1) fltz + (1 _;)y) +fy)
Expression of (3.14) plus (3.15) and a simple manipulation we obtain
t te+(1—t)y 1+
2 (H /ac f( ) ds+ T te+(1—t)y f(S) ds)

< (y—a)(tF(@) + (1= Of () + f(te + (1= t)y)),
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which implies the inequality (2.6).

(3) For any = € (a,b), from the monotonically decreasing property of h(t; x, b)
with z on [a,b] and the definition of the mapping h, we have

0= h(t;b,b) < h(t;z,b) = (b— ) (C(t;x, b £(s),8) — f(tz + (1 — t)b))
< h(t;a,b) = (b— a) (C(t;a,b;f(s),s) — flta+ (1 —t)b)),

which implies the inequalities (2.8).

From the monotonically increasing property of h(t; a,y) with y on [a,b] and
the same method as in the proof of (2.8), we can prove (2.7). Expression of (2.7)
plus (2.8) and a simple manipulation yields (2.9).

This completes the proof of Theorem 2.3.
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