ON EXTENSIONS OF TWO MAPPINGS ASSOCIATED WITH HERMITE-HADAMARD'S INEQUALITIES FOR CONVEX FUNCTIONS

Liang-Cheng Wang

In this paper, we introduce two new mappings closely connected with Hermite-Hadamard's inequalities for convex functions and study their main properties.

1. INTRODUCTION

Let f be a given continuous function defined on a interval $[a, b], a<b$. For any $x, y \in[a, b]$ and $t \in(0,1)$, we write

$$
C(t ; x, y ; f(s), s)=\frac{t}{(1-t)(y-x)} \int_{x}^{t x+(1-t) y} f(s) \mathrm{d} s+\frac{1-t}{t(y-x)} \int_{t x+(1-t) y}^{y} f(s) \mathrm{d} s
$$

where, $x \neq y$. When $x=y, C(t ; x, x ; f(s), s)=f(x)$.
When f is a continuous convex function on $[a, b]$, the author of this paper showed in [1] and [2] that the following inequalities hold true:

$$
\begin{equation*}
f(t a+(1-t) b) \leq C(t ; a, b ; f(s), s) \leq t f(a)+(1-t) f(b) \tag{1.1}
\end{equation*}
$$

We define two mappings H and h by $H:(0,1) \times[a, b] \times[a, b] \rightarrow \mathbb{R}$, if

$$
\begin{aligned}
H(t ; x, y)= & (y-x)(t f(x)+(1-t) f(y))-\frac{t}{1-t} \int_{x}^{t x+(1-t) y} f(s) \mathrm{d} s \\
& -\frac{1-t}{t} \int_{t x+(1-t) y}^{y} f(s) \mathrm{d} s \\
= & (y-x)(t f(x)+(1-t) f(y)-C(t ; x, y ; f(s), s))
\end{aligned}
$$

[^0]and $h:(0,1) \times[a, b] \times[a, b] \rightarrow \mathbb{R}$, if
\[

$$
\begin{aligned}
h(t ; x, y)= & \frac{t}{1-t} \int_{x}^{t x+(1-t) y} f(s) \mathrm{d} s+\frac{1-t}{t} \int_{t x+(1-t) y}^{y} f(s) \mathrm{d} s \\
& -(y-x) f(t x+(1-t) y) \\
= & (y-x)(C(t ; x, y ; f(s), s)-f(t x+(1-t) y))
\end{aligned}
$$
\]

they are differences generated by the inequalities (1.1).
If $t=1 / 2$, then inequalities (1.1), $H(t ; x, y)$ and $h(t ; x, y)$ reduce to

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(s) \mathrm{d} s \leq \frac{f(a)+f(b)}{2} \tag{1.2}\\
& \widetilde{H}(x, y)=(y-x)(f(x)+f(y))-2 \int_{x}^{y} f(s) \mathrm{d} s
\end{align*}
$$

and

$$
\widetilde{h}(x, y)=\int_{x}^{y} f(s) \mathrm{d} s-(y-x) f\left(\frac{x+y}{2}\right),
$$

respectively.
The (1.1) are called Hermite-Hadamard's inequalities (see [3] and [4]). $\widetilde{H}(x, y)$ and $\widetilde{h}(x, y)$ are differences generated by the inequalities (1.2).

In [5], S. S. Dragomir and R. P. Agarwal gave some properties of $\widetilde{H}(a, y)$ and $\widetilde{h}(a, y)$ with $y \in[a, b]$; in $[\mathbf{6}]$, the author of this paper showed some properties of $\widetilde{H}(x, b)$ and $\widetilde{h}(x, b)$ with $x \in[a, b]$ and obtained some refinements of (1.2).

The aim of this paper is to study the main properties of $H(t ; x, y)$ and $h(t ; x, y)$, and then obtain some refinements of (1.1).

2. MAIN RESULTS

The main properties of $H(t ; x, y)$ are given in the following two theorems:
Theorem 2.1. Let f be a continuous convex function defined on $[a, b]$. For any $t \in(0,1)$, then we have the following:
(1) $H(t ; a, y)$ is nonnegative and monotonically increasing with y on $[a, b]$, $H(t ; x, b)$ is nonnegative and monotonically decreasing with x on $[a, b]$;
(2) For any $x \in(a, b)$, we have the following three refinements of the right side in (1.1) :

$$
\begin{align*}
& C(t ; a, b ; f(s), s) \tag{2.1}\\
& \quad \leq \frac{x-a}{b-a}(t f(a)+(1-t) f(x)-C(t ; a, x ; f(s), s))+C(t ; a, b ; f(s), s) \\
& \quad \leq t f(a)+(1-t) f(b)
\end{align*}
$$

(2.2)

$$
\begin{aligned}
& C(t; a, b ; f(s), s) \\
& \leq \frac{b-x}{b-a}(t f(x)+(1-t) f(b)-C(t ; x, b ; f(s), s))+C(t ; a, b ; f(s), s) \\
& \quad \leq t f(a)+(1-t) f(b)
\end{aligned}
$$

and

$$
\begin{align*}
& C(t ; a, b ; f(s), s) \tag{2.3}\\
& \leq \frac{1}{2}\left(\frac{x-a}{b-a} t f(a)+\frac{b-x}{b-a}(1-t) f(b)+\left(\frac{b-x}{b-a} t+\frac{x-a}{b-a}(1-t)\right) f(x)\right. \\
& \left.\quad-\frac{x-a}{b-a} C(t ; a, x ; f(s), s)-\frac{b-x}{b-a} C(t ; x, b ; f(s), s)\right)+C(t ; a, b ; f(s), s) \\
& \leq t f(a)+(1-t) f(b) .
\end{align*}
$$

Theorem 2.2. Let f be a continuous convex function defined on $[a, b]$. For any $\alpha \in(0,1)$, then we have the following:
(1) When $1 / 2 \leq t<1, H(t ; a, y)$ is convex with y on $[a, b]$ and we have the following refinement of the right side in (1.1) :

$$
\begin{align*}
& C(t ; a, b ; f(s), s) \tag{2.4}\\
& \leq t f(a)+(1-t) f(\alpha a+(1-\alpha) b)-C(t ; a, \alpha a+(1-\alpha) b ; f(s), s) \\
& \quad+C(t ; a, b ; f(s), s) \\
& \leq t f(a)+\frac{1-t}{(1-\alpha)(b-a)} C(\alpha ; a, b ;(x-a) f(x), x) \\
& \quad-\frac{1}{(1-\alpha)(b-a)} C(\alpha ; a, b ;(x-a) C(t ; a, x ; f(s), s), x)+C(t ; a, b ; f(s), s) \\
& \leq t f(a)+(1-t) f(b) ;
\end{align*}
$$

(2) When $0<t \leq 1 / 2, H(t ; x, b)$ is convex with x on $[a, b]$ and we have the following refinement of the right side in (1.1) :

$$
\begin{align*}
& C(t ; a, b ; f(s), s) \tag{2.5}\\
& \left.\qquad \begin{array}{l}
\leq t f(\alpha a+(1-\alpha) b)+(1-t) f(b)-C(t ; \alpha a+(1-\alpha) b, b ; f(s), s) \\
\quad \quad+C(t ; a, b ; f(s), s) \\
\quad \\
\quad(1-t) f(b)+\frac{t}{\alpha(b-a)} C(\alpha ; a, b ;(b-x) f(x), x) \\
\quad-\frac{1}{\alpha(b-a)} C(\alpha ; a, b ;(b-x) C(t ; x, b ; f(s), s), x)+C(t ; a, b ; f(s), s) \\
\leq
\end{array}\right) t f(a)+(1-t) f(b) .
\end{align*}
$$

REmARK 1. The conditions " $0<t<1 / 2$ " and " $1 / 2<t<1$ " do not imply convexity of $H(t ; a, y)$ and $h(t ; x, b)$ on $[a, b]$, respectively. Indeed, we have the following simple counterexample:

ExAmple. Let $k=1+1 \times 10^{-11}, t_{1}=0.002523$ and $t_{2}=1-t_{1}$. Then $0<t_{1}<$ $1 / 2,1 / 2<t_{2}<1,\left((k+1) t_{1}-t_{1}^{2}\left(1-t_{1}\right)^{k-1}-1+\left(1-t_{1}\right)^{k+1}\right)=\left((k+1)\left(1-t_{2}\right)\right.$ $\left.-\left(1-t_{2}\right)^{2} t_{2}^{k-1}-1+t_{2}^{k+1}\right)<0$ and $f(s)=|s|^{k}$ is convex on $[-100,100]$. Hence,

$$
\begin{aligned}
H\left(t_{1} ; 0, y\right) & =(y-0)\left(t_{1} 0^{k}+\left(1-t_{1}\right) y^{k}\right)-\frac{t_{1}}{1-t_{1}} \int_{0}^{\left(1-t_{1}\right) y} s^{k} \mathrm{~d} s-\frac{1-t_{1}}{t_{1}} \int_{\left(1-t_{1}\right) y}^{y} s^{k} \mathrm{~d} s \\
& =\frac{1-t_{1}}{t_{1}(k+1)}\left((k+1) t_{1}-t_{1}^{2}\left(1-t_{1}\right)^{k-1}-1+\left(1-t_{1}\right)^{k+1}\right) y^{k+1}
\end{aligned}
$$

is concave with y on $[0,100]$ and

$$
\begin{aligned}
H\left(t_{2} ; x, 0\right) & =(0-x)\left(t_{2}(-x)^{k}+\left(1-t_{2}\right) 0^{k}\right)-\frac{t_{2}}{1-t_{2}} \int_{x}^{t_{2} x}(-s)^{k} \mathrm{~d} s-\frac{1-t_{2}}{t_{2}} \int_{t_{2} x}^{0}(-s)^{k} \mathrm{~d} s \\
& =\frac{t_{2}}{\left(1-t_{2}\right)(k+1)}\left((k+1)\left(1-t_{2}\right)-\left(1-t_{2}\right)^{2} t_{2}^{k-1}-1+t_{2}^{k+1}\right)(-x)^{k+1}
\end{aligned}
$$

is concave with x on $[-100,0]$.
The main properties of $h(t ; x, y)$ are embodied in the following theorem:
Theorem 2.3. Let f be a continuous convex function defined on $[a, b]$. For any $t \in(0,1)$, we have the following:
(1) $h(t ; a, y)$ is nonnegative and monotonically increasing with y on $[a, b]$, $h(t ; x, b)$ is nonnegative and monotonically decreasing with x on $[a, b]$.
(2) We have the inequality:

$$
\begin{equation*}
h(t ; x, y) \leq H(t ; x, y), \quad a \leq x<y \leq b \tag{2.6}
\end{equation*}
$$

(3) For any $x \in(a, b)$, we have the following three refinements of the left side in (1.1) :

$$
\begin{align*}
& f(t a+(1-t) b) \tag{2.7}\\
& \quad \leq \frac{x-a}{b-a}(C(t ; a, x ; f(s), s)-f(t a+(1-t) x))+f(t a+(1-t) b) \\
& \quad \leq C(t ; a, b ; f(s), s)
\end{align*}
$$

$$
\begin{align*}
& f(t a+(1-t) b) \tag{2.8}\\
& \quad \leq \frac{b-x}{b-a}(C(t ; x, b ; f(s), s)-f(t x+(1-t) b))+f(t a+(1-t) b) \\
& \quad \leq C(t ; a, b ; f(s), s)
\end{align*}
$$

and
(2.9)

$$
\begin{aligned}
& f(t a+(1-t) b) \\
\leq & \frac{1}{2(b-a)}((x-a)(C(t ; a, x ; f(s), s)-f(t a+(1-t) x)) \\
& \quad+(b-x)(C(t ; x, b ; f(s), s)-f(t x+(1-t) b)))+f(t a+(1-t) b) \\
\leq & C(t ; a, b ; f(s), s)
\end{aligned}
$$

Remark 2. When we choose $t=1 / 2$, (2.1) and (2.7) reduce to (2) and (10) in [5], (2.2)-(2.3) and (2.8)-(2.9) reduce to (12)-(13) and (15)-(16) in [6], respectively.

Towards proving these theorems we shall need the following lemma:
Lemma 2.4. Let g be a continuous function defined on $[a, b]$. Then we have the following:
(1) Let g_{-}^{\prime} and g_{+}^{\prime} exist on (a, b). When $g_{-}^{\prime} \geq 0$ and $g_{+}^{\prime} \geq 0, g$ is monotonically increasing on $[a, b]$. When $g_{-}^{\prime} \leq 0$ and $g_{+}^{\prime} \leq 0, g$ is monotonically decreasing on $[a, b]$ (see $[\mathbf{7}]$).
(2) If g_{+}^{\prime} exist and it is monotonically increasing on (a, b), then g is convex on $[a, b]$ (see $[\mathbf{6 - 7}]$).

3. PROOFS OF THEOREMS

Proof of Theorem 2.1. (1) The fact that $H(t ; a, y)$ and $H(t ; x, b)$ are nonnegative follows from (1.1).

By the continuity of $f, H(t ; a, y)$ with y and $H(t ; x, b)$ with x are continuous on $[a, b]$.

For any $x, y \in(a, b)$ and $t \in(0,1)$, the right derivative of $H(t ; a, y)$ with y and $H(t ; x, b)$ with x are:

$$
\begin{align*}
& \quad H_{+}^{\prime}(t ; a, y)=t f(a)+(1-t) f(y)+(y-a)(1-t) f_{+}^{\prime}(y) \tag{3.1}\\
& -t f(t a+(1-t) y)-\frac{1-t}{t}(f(y)-(1-t) f(t a+(1-t) y)) \\
& =\frac{1}{t}\left(t(1-t)(y-a) f_{+}^{\prime}(y)+t^{2} f(a)-(1-t)^{2} f(y)-(2 t-1) f(t a+(1-t) y)\right)
\end{align*}
$$

and

$$
\begin{align*}
& H_{+}^{\prime}(t ; x, b)=-(t f(x)+(1-t) f(b))+(b-x) t f_{+}^{\prime}(x) \tag{3.2}\\
& \begin{array}{l}
-\frac{t}{1-t}(t f(t x+(1-t) b)-f(x))+(1-t) f(t x+(1-t) b) \\
= \\
\frac{1}{1-t}\left(t(1-t)(b-x) f_{+}^{\prime}(x)-(1-t)^{2} f(b)+t^{2} f(x)\right. \\
\\
\quad+(1-2 t) f(t x+(1-t) b))
\end{array}
\end{align*}
$$

respectively.
Using (3.1) and convexity of f, we get

$$
\begin{align*}
& H_{+}^{\prime}(t ; a, y)=\frac{1}{t}\left(t^{2}(f(a)-f(t a+(1-t) y))\right. \tag{3.3}\\
& \left.\quad+(1-t)^{2}(f(t a+(1-t) y)-f(y))+t(1-t)(y-a) f_{+}^{\prime}(y)\right) \\
& \geq \frac{1}{t}\left(t^{2}(1-t)(a-y) f_{+}^{\prime}(t a+(1-t) y)+t(1-t)^{2}(a-y) f_{+}^{\prime}(y)\right. \\
& \left.\quad+t(1-t)(y-a) f_{+}^{\prime}(y)\right) \\
& \quad=t(1-t)(y-a)\left(f_{+}^{\prime}(y)-f_{+}^{\prime}(t a+(1-t) y)\right) \geq 0
\end{align*}
$$

By the same method as in the proof of (3.3), we can show that the left derivative of $H(t ; a, y)$ with y satisfies

$$
\begin{equation*}
H_{-}^{\prime}(t ; a, y) \geq 0, \quad y \in(a, b) \tag{3.4}
\end{equation*}
$$

From (3.3)-(3.4) and (1) in the Lemma 2.4, we get that $H(t ; a, y)$ is monotonically increasing with y on $[a, b]$.

Using (3.2) and the convexity of f, we have

$$
\begin{align*}
& H_{+}^{\prime}(t ; x, b)=\frac{1}{1-t}\left(t^{2}(f(x)-f(t x+(1-t) b))\right. \tag{3.5}\\
& \left.\quad+(1-t)^{2}(f(t x+(1-t) b)-f(b))+t(1-t)(b-x) f_{+}^{\prime}(x)\right) \\
& \leq \frac{1}{1-t}\left(t^{2}(1-t)(x-b) f_{+}^{\prime}(x)+t(1-t)^{2}(x-b) f_{+}^{\prime}(t x+(1-t) b)\right. \\
& \left.\quad+t(1-t)(b-x) f_{+}^{\prime}(x)\right) \\
& =t(1-t)(b-x)\left(f_{+}^{\prime}(x)-f_{+}^{\prime}(t x+(1-t) b)\right) \leq 0 .
\end{align*}
$$

By the same method as in the proof of (3.5), we can show that the left derivative of $H(t ; x, b)$ with x satisfies

$$
\begin{equation*}
H_{-}^{\prime}(t ; x, b) \leq 0, \quad x \in(a, b) \tag{3.6}
\end{equation*}
$$

From (3.5)-(3.6) and (1) in the Lemma 2.4, we get that $H(t ; x, b)$ is monotonically decreasing with x on $[a, b]$.
(2) For any $x \in(a, b)$, from the monotonically increasing properties of $H(t ; a, y)$ with y on $[a, b]$ and the mapping $H(t ; x, y)$, we have

$$
\begin{aligned}
0=H(t ; a, a) & \leq H(t ; a, x)=(x-a)(t f(a)+(1-t) f(x)-C(t ; a, x ; f(s), s)) \\
& \leq H(t ; a, b)=(b-a)(t f(a)+(1-t) f(b)-C(t ; a, b ; f(s), s)),
\end{aligned}
$$

which implies the inequalities (2.1).
From the monotonically decreasing properties of $H(t ; x, b)$ with x on $[a, b]$ and the same method as in the proof of (2.1), we can prove (2.2). Expression of (2.1) plus (2.2) and a simple manipulation yields (2.3).

This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. (1) For $1 / 2 \leq t<1$, the continuity of $H(t ; a, y)$ with y on $[a, b]$ has been proved in the proof of Theorem 2.1.

For $\forall y_{1}, y_{2} \in(a, b), y_{1}<y_{2}$, from (3.1), $1 / 2 \leq t<1$ and convexity of f, we obtain

$$
\begin{aligned}
t\left(H_{+}^{\prime}\right. & \left.\left(t ; a, y_{2}\right)-H_{+}^{\prime}\left(t ; a, y_{1}\right)\right) \\
= & t(1-t)\left(\left(y_{2}-a\right) f_{+}^{\prime}\left(y_{2}\right)-\left(y_{1}-a\right) f_{+}^{\prime}\left(y_{1}\right)\right)+(1-t)^{2}\left(f\left(y_{1}\right)-f\left(y_{2}\right)\right) \\
& \quad+(2 t-1)\left(f\left(t a+(1-t) y_{1}\right)-f\left(t a+(1-t) y_{2}\right)\right) \\
\geq & t(1-t)\left(y_{1}-a\right)\left(f_{+}^{\prime}\left(y_{2}\right)-f_{+}^{\prime}\left(y_{1}\right)\right)+t(1-t)\left(y_{2}-y_{1}\right) f_{+}^{\prime}\left(y_{2}\right) \\
& +(1-t)^{2}\left(y_{1}-y_{2}\right) f_{+}^{\prime}\left(y_{2}\right)+(2 t-1)(1-t)\left(y_{1}-y_{2}\right) f_{+}^{\prime}\left(t a+(1-t) y_{2}\right) \\
= & t(1-t)\left(y_{1}-a\right)\left(f_{+}^{\prime}\left(y_{2}\right)-f_{+}^{\prime}\left(y_{1}\right)\right) \\
& \quad+(2 t-1)(1-t)\left(y_{2}-y_{1}\right)\left(f_{+}^{\prime}\left(y_{2}\right)-f_{+}^{\prime}\left(t a+(1-t) y_{2}\right)\right) \geq 0
\end{aligned}
$$

which implies that $H_{+}^{\prime}(t ; a, y)$ is monotonically increasing with y on (a, b). By (2) in the Lemma 2.4, we get that $H(t ; a, y)$ is convex with y on $[a, b]$.

For any $\alpha \in(0,1)$, using the nonnegativity and convexity properties of $H(t ; a, y)$ and (1.1), we obtain

$$
\begin{align*}
0 \leq & \frac{1}{(1-\alpha)(b-a)} H(t ; a, \alpha a+(1-\alpha) b) \tag{3.7}\\
& \leq \frac{1}{(1-\alpha)(b-a)} C(\alpha ; a, b ; H(t ; a, y), y) \\
& \leq \frac{1}{(1-\alpha)(b-a)}(\alpha H(t ; a, a)+(1-\alpha) H(t ; a, b))
\end{align*}
$$

From mapping $H(t ; x, y)$, we get

$$
\begin{align*}
& \frac{1}{(1-\alpha)(b-a)} H(t ; a, \alpha a+(1-\alpha) b) \tag{3.8}\\
& \quad=t f(a)+(1-t) f(\alpha a+(1-\alpha) b)-C(t ; a, \alpha a+(1-\alpha) b ; f(s), s)
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{(1-\alpha)(b-a)} C(\alpha ; a, b ; H(t ; a, y), y) \tag{3.9}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{1}{(1-\alpha)(b-a)}(t f(a) C(\alpha ; a, b ;(y-a), y) \\
& +(1-t) C(\alpha ; a, b ;(y-a) f(y), y)-C(\alpha ; a, b ;(y-a) C(t ; a, y ; f(s), s), y)) \\
& =t f(a)+\frac{1-t}{(1-\alpha)(b-a)} C(\alpha ; a, b ;(x-a) f(x), x) \\
& -\frac{1}{(1-\alpha)(b-a)} C(\alpha ; a, b ;(x-a) C(t ; a, x ; f(s), s), x)
\end{aligned}
$$

and

$$
\begin{align*}
& \frac{1}{(1-\alpha)(b-a)}(\alpha H(t ; a, a)+(1-\alpha) H(t ; a, b)) \tag{3.10}\\
& \quad=\frac{1}{b-a} H(t ; a, b)=t f(a)+(1-t) f(b)-C(t ; a, b ; f(s), s)
\end{align*}
$$

Combining (3.7)-(3.10), a simple manipulation yields (2.4).
(2) For $0<t \leq 1 / 2$, the continuity of $H(t ; x, b)$ with x on $[a, b]$ has been proved in the proof of Theorem 2.1.

For $\forall x_{1}, x_{2} \in(a, b), x_{1}<x_{2}$, from (3.2), $0<t \leq 1 / 2$ and convexity of f, we obtain

$$
\begin{aligned}
& (1-t)\left(H_{+}^{\prime}\left(t ; x_{2}, b\right)-H_{+}^{\prime}\left(t ; x_{1}, b\right)\right) \\
& =t(1-t)\left(b-x_{2}\right)\left(f_{+}^{\prime}\left(x_{2}\right)-f_{+}^{\prime}\left(x_{1}\right)\right)-t(1-t)\left(x_{2}-x_{1}\right) f_{+}^{\prime}\left(x_{1}\right) \\
& \quad+t^{2}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) \\
& \quad+(1-2 t)\left(f\left(t x_{2}+(1-t) b\right)-f\left(t x_{1}+(1-t) b\right)\right) \\
& \geq t(1-t)\left(b-x_{2}\right)\left(f_{+}^{\prime}\left(x_{2}\right)-f_{+}^{\prime}\left(x_{1}\right)\right)-t(1-t)\left(x_{2}-x_{1}\right) f_{+}^{\prime}\left(x_{1}\right) \\
& \quad+t^{2}\left(x_{2}-x_{1}\right) f_{+}^{\prime}\left(x_{1}\right)+(1-2 t) t\left(x_{2}-x_{1}\right) f_{+}^{\prime}\left(t x_{1}+(1-t) b\right) \\
& =t(1-t)\left(b-x_{2}\right)\left(f_{+}^{\prime}\left(x_{2}\right)-f_{+}^{\prime}\left(x_{1}\right)\right) \\
& \quad+(1-2 t) t\left(x_{2}-x_{1}\right)\left(f_{+}^{\prime}\left(t x_{1}+(1-t) b\right)-f_{+}^{\prime}\left(x_{1}\right)\right) \geq 0
\end{aligned}
$$

which implies that $H_{+}^{\prime}(t ; x, b)$ is monotonically increasing with x on (a, b). By (2) in the Lemma 2.4, we get that $H(t ; x, b)$ is convex with x on $[a, b]$.

Using the nonnegativity and convexity properties of $H(t ; x, b)$ and the same method as in the proof of (2.4), we can prove (2.5).

This completes the proof of Theorem 2.2.
Proof of Theorem 2.3. (1) The fact that $h(t ; a, y)$ and $h(t ; x, b)$ are nonnegative follows from (1.1).

By the continuity of $f, h(t ; a, y)$ with y and $h(t ; x, b)$ with x are continuous on $[a, b]$.

For any $x \in(a, b)$, using convexity of f, the left derivative of $h(t ; x, b)$ with x holds the following

$$
\begin{align*}
& h_{-}^{\prime}(t ; x, b)=\frac{t}{1-t}(t f(t x+(1-t) b)-f(x))-(1-t) f(t x+(1-t) b) \tag{3.11}\\
& +f(t x+(1-t) b)-(b-x) t f_{-}^{\prime}(t x+(1-t) b) \\
& =\frac{t}{1-t}(f(t x+(1-t) b)-f(x))-(b-x) t f_{-}^{\prime}(t x+(1-t) b) \\
& \leq \frac{t}{1-t}\left(-(1-t)(x-b) f_{-}^{\prime}(t x+(1-t) b)\right)-(b-x) t f_{-}^{\prime}(t x+(1-t) b)=0 .
\end{align*}
$$

By the same method as in the proof of (3.11), we can show that the right derivative of $h(t ; x, b)$ with x in (a, b) satisfies

$$
\begin{equation*}
h_{+}^{\prime}(t ; x, b) \leq 0, \quad x \in(a, b) \tag{3.12}
\end{equation*}
$$

From (3.11)-(3.12) and (1) in the Lemma 2.4, we get that $h(t ; x, b)$ is monotonically decreasing with x on $[a, b]$.

By the same method as in the proof of (3.11), we can prove

$$
\begin{equation*}
h_{+}^{\prime}(t ; a, y) \geq 0, \quad h_{-}^{\prime}(t ; a, y) \geq 0, \quad y \in(a, b) \tag{3.13}
\end{equation*}
$$

Using (3.13) and (1) in the Lemma 2.4, we get that $h(t ; a, y)$ is monotonically increasing with y on $[a, b]$.
(2) By (1.2) and $x<y$, we have

$$
\begin{align*}
& \frac{t}{1-t} \int_{x}^{t x+(1-t) y} f(s) \mathrm{d} s \tag{3.14}\\
& \quad \leq \frac{t}{1-t}(t x+(1-t) y-x) \frac{f(t x+(1-t) y)+f(x)}{2} \\
& \quad=t(y-x) \frac{f(t x+(1-t) y)+f(x)}{2}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1-t}{t} \int_{t x+(1-t) y}^{y} f(s) \mathrm{d} s \tag{3.15}\\
& \quad \leq \frac{1-t}{t}(y-(t x+(1-t) y)) \frac{f(t x+(1-t) y)+f(y)}{2} \\
& \quad=(1-t)(y-x) \frac{f(t x+(1-t) y)+f(y)}{2}
\end{align*}
$$

Expression of (3.14) plus (3.15) and a simple manipulation we obtain

$$
\begin{aligned}
& 2\left(\frac{t}{1-t} \int_{x}^{t x+(1-t) y} f(s) \mathrm{d} s+\frac{1-t}{t} \int_{t x+(1-t) y}^{y} f(s) \mathrm{d} s\right) \\
& \quad \leq(y-x)(t f(x)+(1-t) f(y)+f(t x+(1-t) y))
\end{aligned}
$$

which implies the inequality (2.6).
(3) For any $x \in(a, b)$, from the monotonically decreasing property of $h(t ; x, b)$ with x on $[a, b]$ and the definition of the mapping h, we have

$$
\begin{aligned}
0=h(t ; b, b) & \leq h(t ; x, b)=(b-x)(C(t ; x, b ; f(s), s)-f(t x+(1-t) b)) \\
& \leq h(t ; a, b)=(b-a)(C(t ; a, b ; f(s), s)-f(t a+(1-t) b))
\end{aligned}
$$

which implies the inequalities (2.8).
From the monotonically increasing property of $h(t ; a, y)$ with y on $[a, b]$ and the same method as in the proof of (2.8), we can prove (2.7). Expression of (2.7) plus (2.8) and a simple manipulation yields (2.9).

This completes the proof of Theorem 2.3.

REFERENCES

1. L.-C. Wang: On Extensions and refinements of Hermite-Hadamard inequalities for convex functions. Math. Inequal. Appl., 6 (2003), 659-666.
2. L.-C. WANG: On some extensions of Hadamard inequalities for convex functions. Math. In Practice and Theory, 32 (2002), 1027-1030. (In Chinese).
3. D. S. Mitrinović, I. B. Lacković: Hermite and convexity. Aequat. Math., 28 (1985), 225-232.
4. J. Hadamard: Etude sur les propriétées des fonctions entiéres et en particulier d'une fonction considérée par Riemann. J. Math. Pure Appl., 58 (1883), 171-215.
5. S. S. Dragomir, R. P. Agarwal: Two new mappings associated with Hadamard's inequalities for convex functions. Appl. Math. Lett., 11 (3) (1998), 33-38.
6. L.-C. WANG: Some refinements of Hermite-Hadamard inequalities for convex functions. Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat., 15 (3) (2004), 39-44.
7. L.-C. Wang: Convex functions and their inequalities. Sichuan University Press, Chengdu, China, 2001. (In Chinese).

School of Mathematical Science,
Chongqing Institute of Technology,
Xingsheng Lu 4, Yangjiaping 400050,
Chongqing City;
and
Department of Mathematics,
Daxian Teacher's College,
Dazhou 635000, Sichuan Province,
China.
E-mail: wangliangcheng@163.com

[^0]: 2000 Mathematics Subject Classification: Primary 26D15; Secondary 26B25.
 Keywords and Phrases: Convex function, Hermite-Hadamard's inequalities, monotonicity, refinement.
 This author is partially supported by the Key Research Foundation of the Chongqing Institute of Technology under Grant 2004ZD94.

