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OSCILLATIONS OF WEAKLY NONLINEAR

SYSTEMS WITH NO FREQUENCIES DUE TO

NONLINEARITY

Alexandr K. Demenchuk

We consider a nonlinear differential system of the form ẋ = Ax + f(t) +

µF (t, x), where f and F are almost periodic in t and µ is a small parame-

ter. Suppose that the frequency moduli Mod (f) and Mod (F ) have a zero

intersection. Our aim is to give the existence conditions and the construction

procedure for the solution x of this system such that Mod (x)∩Mod (F ) = {0}.

1. INTRODUCTION AND PRELIMINARIES

Let Rn×m be the space of real n×m-matrices with the norm | · |, Rn×1 = Rn,
and D be a compact subset of Rn. Following A. Fink [7] we denote the space of
Borh almost periodic functions h : R → Rn×m by AP (Rn×m). By AP (D,Rn×m)
we denote the space of functions H : R × D → Rn×m such that each H ∈
AP (D,Rn×m) is continuous on R ×D and almost periodic in t ∈ R uniformly for
x ∈ D. The space AP (Rn×m) endowed with the norm ‖h‖ = sup {|h(t)| : t ∈ R}
becomes a Banach space. For H ∈ AP (D,Rn×m) we put

lim
T→+∞

1
T

∫ T

0

H(s, x) ds = Ĥ(x), H(t, x)− Ĥ(x) = H∗(t, x).

Definition 1. The frequency module Mod (h1, . . . , hk, H1, . . . , Hl) of hi ∈ AP (Rn)
(i = 1, k) and Hj ∈ AP (D,Rn) (j = 1, l; k + l ≥ 1) is the smallest additive group
of real numbers that contains all Fourier exponents of this functions.

Almost periodic solutions of the general system

(1) ẋ = g(t, x), t ∈ R,
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with g ∈ AP (D,Rn) were studied in a number of papers, see e.g. [3], [7], [9],
[14] and the bibliography therein. However, a little inquiry into the matter shows
that the most of this investigations are implemented under presupposition that
Mod (x) ⊆ Mod (g), where x(t) is the required solution.

The analogous presupposition is frequently used in studying of periodic differ-
ential systems and their periodic solutions, though H. Massera [13], J. Kurzweil
and O. Veivoda [11], N. Erugin [6], E. Grudo [8] and others have shown that
some ω-periodic differential systems possess Ω-periodic solutions x such that ω and
Ω are incommensurable, i.e. Mod (x) ∩Mod (g) = {0}.

It should be noted that these solutions should not treated as some pathologi-
cal object. On the contrary, one can easily discover that such oscillations are very
natural for the mechanical system of two pendulums connected by a resilient cou-
pling with periodically varying stiffness. These oscillations can be also discovered
in electrical systems, for example in the system consisting of two oscillatory circuits
connected by the condense with periodically varying capacity.

In [4], [5], we give the following definitions.

Definition 2. An almost periodic solution x(t) of system (1) is called irregular if
Mod (x) ∩Mod (g) = {0}.
Definition 3. Let Mod (g) is splitted into direct sum of two submoduli L1, L2, i.e.
Mod (g) = L1 ⊕ L2.

a) An almost periodic solution x(t) of the system (1) is called irregular with
respect to L1 (or partially irregular) if (Mod (x) + L2) ∩ L1 = {0}.

b) An irregular with respect to submodule L1 almost periodic solution x(t) of
the system (1) is called weakly L1-irregular (or weakly irregular) if Mod (x) ⊆ L2.

In the present paper we consider a weakly nonlinear system

(2) ẋ = Ax + f(t) + µF (t, x), t ∈ R, x ∈ D ⊂ Rn,

where A ∈ Rn×n, f ∈ AP (Rn), F ∈ AP (D,Rn), and µ is a small real parameter.
Regular solutions of (2) were studied in [1], [2], [3], [7], [9], [15].

Let us suppose that

(3) Mod (f) ∩Mod (F ) = {0}.
The aim of this paper is to obtain the existence conditions and some con-

struction procedure for irregular with respect to Mod (F ) almost periodic solu-
tions of system (2) under condition (3). By Definition 3 we have (Mod (x) +
Mod (f)) ∩ Mod (F ) = {0} for any such solution. Now it follows from (3) that
Mod (x)∩Mod (F ) = {0}. This means that the frequencies of nonlinear part of the
system do not influence Mod (x).

2. THE CASE F̂ (x) ≡ 0

Let λ1(A), . . . , λn(A) be the eigenvalues of A. Denote Green’s function of
the system ẋ = Ax by GA(t).
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Theorem 1. Suppose that system (2) satisfies condition (3) and
i) Re λj(A) 6= 0 (j = 1, n), ii) F̂ (x) ≡ 0.

Then the following assertions are true.
1) If system (2) has an irregular with respect to Mod (F ) almost periodic

solutions x(t), then x(t) is weakly irregular and

(4) x(t) ≡ x(0)(t), x(0)(t) =
∫ +∞

−∞
GA(t− s)f(s) ds.

2) System (2) has solution (4) iff

(5) F (t, x(0)(t)) ≡ 0.

Proof. Let (3), i), ii) hold and let x(t) be a partially irregular almost periodic
solution of system (2). It follows from [4] that x(t) satisfies the system

(6) ẋ = Ax + f(t) + µF̂ (x).

Then by i), ii), and [9, p. 157], system (6) has a unique almost periodic solution
x(0)(t). Therefore, we have (4). It follows from [7, p. 91] that Mod (x) = Mod (f).
Since Mod (f)∩Mod (F ) = {0} and Mod (x) = Mod (f), we see that x(t) is weakly
irregular.

By [4] x(t) satisfies

(7) F∗(t, x) = 0

as well. From ii), (4), and (7) we can deduce (5).
Conversely, assume that the conditions of Theorem 1 hold. Putting F̂ (x) = 0

in (6), we obtain

(8) ẋ = Ax + f(t).

By i) system (8) has a unique almost periodic solution (4) and Mod (x) = Mod (f).
Since x(t) ≡ x(0)(t) satisfies (5) and (8), we see that x(t) is a solution to (2). It
follows from Mod (x) = Mod (f) and (3) that this solution is weakly irregular.

It should be noted that Theorem 1 is not valid in critical case when some
of Re λj(A) are zero. However, some critical cases can be treated similarly. Let
M {a1, . . . , ap} be a module formed by some real numbers a1, . . . , ap.

Suppose that

Re λj(A) = 0 (j = 1, p), Re λs(A) 6= 0, (s = p + 1, n),

Im λk(A) 6= Imλm(A) for all k 6= m, k, m = {1, . . . , p}

(9) (M {Im λ1(A), . . . , Imλp(A)}+ Mod (f)) ∩Mod (F ) = {0}.
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Then the system

(10) ẏ = −ATy

has p linearly independent quasiperiodic solutions

(11) y(1), . . . , y(p).

Theorem 2. Suppose that (3), ii), and (9) hold. System (2) has a partially irregular
almost periodic solution iff

(12)
∥∥∥∥

∫ t

t0

n∑

k=1

y
(j)
k (s)fk(s) ds

∥∥∥∥ < +∞ (j = 1, p)

and

(13) F
(
t, x(t)

) ≡ 0

hold, where x(t) is an almost periodic solution of linear approximation system for
(2).

Proof. Let x(t) be a partially irregular almost periodic solution of system (2).
Then by [4] and ii) x(t) satisfies (8). It follows from [12] that estimate (12) holds.
Note that x(t) satisfies (7) as well. Then, since F̂

(
x(t)

) ≡ 0, we obtain (13).
Let us show that the opposite assertion also holds. Since A has eigenvalues

(9), we see that (11) satisfies (10). By [12], (9), and (12), the linear approximation
system for (2) has an almost periodic solution x(t) and

(
Mod (x) + Mod (f)

) ∩
Mod (F ) = 0, i.e. x(t) is irregular with respect to Mod (F ). It follows from (13)
that x(t) satisfies (2). Hence, system (2) has a partially irregular almost periodic
solution x(t).

3. THE CASE F̂ (x) 6≡ 0

Consider the system

(14) ẋ = Ax + f(t) + µF̂ (x), Re λj(A) 6= 0, (j = 1, n), F̂ (x) 6≡ 0.

By [9, p. 157] for µ = 0 system (14) has a unique almost periodic solution

x(0)(t) =
∫ +∞

−∞
GA(t− s)f(s) ds,

∫ +∞

−∞
‖GA(s)‖ds ≤ c, ‖x(0)‖ ≤ M0.

Assume that F̂ (x) satisfies the Lipscitz condition

(15) |F̂ (x′)− F̂ (x′′)| ≤ L|x′′ − x′|, x′, x′′ ∈ Dρ = {x ∈ Rn : |x| ≤ ρ, ρ > 2M0},
By [15, p. 281] (14) is equivalent to integral equation

(16) x(t) = Px(t), Px(t) = x(0)(t) + µ

∫ +∞

−∞
GA(t− s)F̂

(
x(s)

)
ds.
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We take APρ (Rn) = {h ∈ AP (Rn), ‖x‖ ≤ ρ}. It follows from [3, p. 426], i), and
(15) that there is a µ∗ > 0 such that for |µ| < µ∗ and x ∈ APρ (Rn) we have
Px ⊂ APρ (Rn), moreover P is a contraction operator on APρ (Rn). Then by [10,
p. 75] there is a unique fixed point of P. Consequently, (16) has a unique almost
periodic solution x(t, µ) ∈ APρ (Rn).

Let us show that Mod (x) ⊆ Mod (f). From [7, p. 27] we have F̂ (t, x(t, µ)) ∈
AP (Rn). Let T(f, ε) be an ε-translation set of f and let τ ∈ T(f, ε). Then

‖x(t + τ, µ)− x(t, µ)‖ ≤ ‖x(0)(t + τ, µ)− x(0)(t, µ)‖

+|µ| ‖F̂ (x(t + τ, µ))− F̂ (x(t, µ))‖
∫ +∞

−∞
‖GA(t− s)‖ds

≤ cε + |µ|cL‖x(t + τ, µ)− x(t, µ)‖.

It follows that

‖x(t + τ, µ)− x(t, µ)‖ < ε1, ε1 = ε(1− |µ|cL)−1, |µ| < (cL)−1.

Since ε1 is sufficiently small, we see that τ is an ε1-almost period of x(t, µ). There-
fore, for every ε > 0 there is an ε1 > 0 such that T(f, ε) ⊆ T(x, ε1). Then by [7, p.
61] we have Mod (x) ⊆ Mod (f).

Consequently, for |µ| ≤ µ∗∗ = min {µ∗, (cL)−1}, we obtain

(17) ẋ(t, µ) ≡ Ax(t, µ) + f(t) + µF̂
(
x(t, µ)

)
, Mod (x) ⊆ Mod (f).

It follows from [9, p. 159] that x(t, µ) can be evaluated via successive approxima-
tions method

x(t, µ) = lim
m→+∞

x(m)(t, µ),

(18) x(m+1)(t, µ) = x(0)(t)+µ

∫ +∞

−∞
GA(t−s)F̂

(
x(m)(s, µ)

)
ds (m = 0, 1, 2, . . .).

Suppose that

(19) F∗
(
t, x(t, µ)

) ≡ 0.

It follows from (17) and (19) that x(t, µ) satisfies (2). Since Mod (x) ⊆ Mod (f)
and Mod (f) ∩Mod (F ) = {0}, we see that x(t, µ) is weakly irregular.

Thus, we have proved

Theorem 3. Suppose that system (2) satisfies conditions (3), i), (15), and (19).
Then there exists a µ∗∗ such that for |µ| ≤ µ∗∗ system (2) has a unique in Dρ

weakly irregular almost periodic solution (18).
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4. EXAMPLES

Example 1. Let A ∈ R2×2 (a11 > 0, a21 6= 0, Re λj(A) 6= 0, j = 1, 2), f1 ∈
AP (R), Fj ∈ AP (D,R) (j = 1, 2). Suppose that

F̂j(x, y) ≡ 0, Fj(t, x, 0) ≡ 0 (j = 1, 2), Mod (f1) ∩Mod (F1, F2) = {0}.
Consider the system

ẋ = a11x + a12y + f1(t) + µF1(t, x, y), ẏ = a21x + a22y + f2(t) + µF2(t, x, y),

where f2(t) = a21

∫ +∞
t

exp
(
a11(t − s)

)
f1(s) ds, µ is a small parameter. By The-

orem 1 this system has a unique irregular with respect to Mod (F1, F2) almost
periodic solution x(t) = −(a21)−1f2(t), y(t) = 0.

Example 2. Let a, b ∈ R, p, q ∈ AP (R), and Z ∩Mod (p, q) = {0}. Consider the
system

(20) ẋ = x + ay + cost− sint + µ
(
x2 + p(t)h1(x, y)

)
, ẏ = by + µq(t)h2(x, y),

where hj(x, y) is continuous on R2 and hj(x, 0) ≡ 0 (j = 1, 2).
For (20) the linear approximation system is 2π−periodic and F∗(t, x, y) =

col [p∗(t)h1(x, y), q∗(t)h2(x, y)]. Note that y(t) ≡ 0 satisfies F∗(t, x, y) ≡ 0. Putting
y = 0 in (20), we obtain ẋ = x + cost − sint + µx2, y = 0. For |µ| < 1/4 this
system has a unique in a neighbourhood of the origin 2π−periodic solution

x(t, µ) = lim
m→+∞

x(m)(t, µ), y = 0,

x(m+1)(t, µ) = sint + µ

∫ +∞

t

exp (t− s)
(
x(m)(s, µ)

)2 ds (m = 0, 1, 2, . . .).

It can easily see that x = x(t, µ), y = 0 is 2π-periodic and, therefore it is a weakly
Mod (p, q)−irregular almost periodic solution of system (20).

Some iterations for x(t, µ) are given by

x(0)(t, µ) = sin t,

x(1)(t, µ) = sin t−
(

1
2

+
1
5

sin t− 1
10

cos 2t

)
µ,

x(2)(t, µ) = sin t +
(
−1

2
+

1
10

cos 2t− 1
5

sin 2t

)
µ

+
(

9
20

sin t +
13
20

cos t +
1
20

sin 3t− 1
20

cos 3t

)
µ2

+
(
−11

40
− 3

50
cos 2t− 2

25
sin 2t +

19
3400

cos 4t− 1
425

sin 4t

)
µ3.

Here ‖x(t, µ)− x(2)(t, µ)‖ ≤ 0.064 by [15, p. 285].
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