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SOME INEQUALITIES FOR ALTERNATING
KUREPA’S FUNCTION

Branko J. Malešević

In this paper we consider alternating Kurepa’s function A(z). We give some
recurrent relations for alternating Kurepa’s function via appropriate se-
quences of rational functions and gamma function. Also we give some in-
equalities for the real part of alternating Kurepa’s function A(x) for values
of argument x>−2. The obtained results are analogous to results from the
author’s paper [5].

1. ALTERNATING KUREPA’S FUNCTION A(z)

R. Guy considered, in the book [3] (p. 100.), the function of alternating left
factorial as an alternating sum of factorials

(1) A(n) =
n∑

i=1

(−1)n−i i! .

Sum (1) corresponds to the sequence A005165 in [6]. An analytical extension of
the function (1) over the set of complex numbers is determined by the integral

(2) A(z) =

∞∫
0

e−t tz+1 − (−1)zt

t + 1
dt,

which converges for Re z > 0 [4]. For function A(z) we use the term alternating
Kurepa’s function. It is easily verified that alternating Kurepa’s function is a
solution of the functional equation:

(3) A(z) + A(z − 1) = Γ(z + 1).
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Let us observe that since A(z − 1) = Γ(z + 1)− A(z), it is possible to make
the analytical continuation of alternating Kurepa’s function A(z) for Re z ≤ 0. In
that way, the alternating Kurepa’s function A(z) is a meromorphic function with
simple poles at z = −n (n≥2) [4].

Let us emphasize that in the following consideration, in the sections 2. and
3., it is sufficient to use only fact that function A(z) is a solution of the functional
equation (3). In section 4. we give some inequalities for the real part of alternating
Kurepa’s function A(x) for values of argument x>−2.

2. REPRESENTATION OF THE ALTERNATING KUREPA’S
FUNCTION VIA SEQUENCES OF POLYNOMIALS

AND GAMMA FUNCTION

Let us introduce a sequences of polynomials:

(4) p
n
(z) = (z − n + 1)p

n−1
(z) + (−1)n,

with p
0
(z) = 1. Analogously to results from [2], the following statements are true:

Lemma 2.1. For each n∈N and z∈C we have explicitly :

(5) p
n
(z)=(−1)n

(
1 +

n−1∑
j=0

j∏
i=0

(−1)j−1(z − n + i + 1)
)

.

Theorem 2.2. For each n∈N and z∈C\
(
Z− ∪ {0, 1, 2, . . . , n−2}

)
is valid

(6) A(z) = (−1)nA(z − n) + p
n−1

(z) · Γ(z−n+2).

3. REPRESENTATION OF THE ALTERNATING KUREPA’S
FUNCTION VIA SEQUENCES OF RATIONAL FUNCTIONS

AND GAMMA FUNCTION

Let us observe that on the basis of a functional equation for the gamma
function Γ(z + 1) = zΓ(z), it follows that the alternating Kurepa’s function is
solution of the following functional equation:

(7) A(z + 1)− zA(z)− (z + 1)A(z − 1) = 0.

For z∈C\{−1}, based on (7), we have

(8) A(z − 1) = − z

z+1
A(z) +

1
z+1

A(z + 1) =
(
− 1−r1(z)

)
A(z)−r1(z)A(z + 1),

Letters p, r, g are printed in the funny italic TEX font.



72 Branko J. Malešević

for rational function r1(z) =− 1

z+1
over C\{−1}. Next, for z ∈ C\{−1, 0}, based

on (7), we obtain

(9)

A(z−2) =
1
z
A(z)− z−1

z
A(z − 1)

=
(8)

1
z
A(z)− z−1

z

(
− z

z+1
A(z)+

1
z+1

A(z + 1)
)

= z2+1

z(z+1)
A(z)− z−1

z(z+1)
A(z + 1)=

(
1− r2(z)

)
A(z)−r2(z)A(z + 1),

for rational function r2(z)= z−1

z(z+1)
over C\{−1, 0}. Thus, for values z ∈ C\{−1, 0,

1, . . . , n−2}, based on (7), by mathematical induction it is true

(10) A(z − n) =
(
(−1)n − rn(z)

)
A(z)− rn(z)A(z + 1),

for rational function rn(z) over C\{−1, 0, 1, . . . , n−2} which fulfill the recurrent
relation

(11) rn(z) = −z − n + 1
z − n + 2

rn−1(z) +
1

z − n + 2
rn−2(z),

with different initial functions r1,2(z).

Based on the previous consideration we can conclude:

Lemma 3.1. For each n∈N and z∈C\{−1, 0, 1, . . . , n−2} let the rational function
rn(z) be determined by the recurrent relation (11) with initial functions r1(z) =
− 1

z + 1
and r2(z)= z − 1

z(z + 1)
. Thus the sequences rn(z) has an explicit form

(12) rn(z) = (−1)n−1

( n∑
j=1

j∏
i=1

(−1)j

z + 2− i

)
.

Theorem 3.2. For each n∈N and z∈C\{−1, 0, 1, . . . , n−2} we have

(13) A(z) = (−1)n
(
A(z − n) + rn(z) · Γ(z + 2)

)
.

4. SOME INEQUALITIES FOR THE REAL PART OF
ALTERNATING KUREPA’S FUNCTION

In this section we consider alternating Kurepa’s function A(x), given by an
integral representation (2), for values of argument x>−2. The real and imaginary
parts of the function A(x) are represented by

(14) Re A(x) =

∞∫
0

e−t tx+1 − cos(πx) t

t + 1
dt
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and

(15) Im A(x) = −
∞∫
0

e−t sin(πx) t

t + 1
dt.

In this section we give some inequalities for the real part of alternating Kurepa’s
function A(x) for values of argument x>−2. The following statements are true:

Lemma 4.1. The function

(16) β(x) =

∞∫
0

e−t tx+1

t + 1
dt,

over set (−2,∞) is positive, convex and fulfill an inequality

(17) β(x)≥β(x0) = 0.401 855 . . . ,

with equality in the point x0 = −0.108 057 . . . .

Proof. For positive function β(x) ∈ C2(−2,∞), on the basis of (16), the con-
dition of convexity β

′′
(x) > 0 is true. Next, based on (16), we can conclude

lim
ε→0+

β(−2 + ε) = +∞ and lim
x→+∞

β(x) = +∞. Therefore, we can conclude that

exists exactly one minimum x0∈ (−2,+∞). Using standard numerical methods it
is easily determined x0 = −0.108 057 . . . and β(x0) = 0.401 855 . . . .

Lemma 4.2. The function

(18) γ(x) =

∞∫
0

e−t cos(πx) t

t + 1
dt,

over set (−2,∞), is determined with

(19) γ(x) =
(
1 + eEi(−1)

)
· cos(πx) = 0.403 652 . . . · cos(πx).

where Ei(t) =

t∫
−∞

eu

u
du (t < 0) is function of exponential integral ([1], 8.211-1).

Lemma 4.3. The function Re A(x), over set (−2,∞), is determined as difference

(20) Re A(x) = β(x)− γ(x)

and has two roots x1 = −0.015401 . . . and x2 = 0. The function ReA(x) is positive
over set

(21) D1 = (−2, x1) ∪ (0,∞)

and negative over set

(22) D2 = (x1, 0).
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Proof. Let β(x) be function from lemma 4.1 and let γ(x) be function from lemma
4.2. For value x2 = 0 it is true β(x2) = γ(x2) = 0.403 652 . . ., ie. value x2 = 0
is a root of function Re A(x). Let us prove that function Re A(x) has exactly one
root x1 ∈ (x0, x2), where x0 = −0.108 057 . . . is value from lema 4.1. It is true
β(x0) = 0.401 855 . . . > 0.380 061 . . . = γ(x0). Let us notice that β(x) is convex
and increasing function over set (x0, x2) and let us notice that γ(x) is concave
and increasing function over same set (x0, x2). Therefore, we can conclude that
function Re A(x) has exactly one root x1 ∈ (x0, x2). Using numerical methods we
can determined x1 = −0.015 401 . . . . On the basis of the graphs of the functions
β(x) and γ(x) we can conclude that function ReA(x) has exactly two roots x1 and
x2 over set (−2,∞). Hence, the sets D1 and D2 are correctly determined.

Lema 4.4. For x∈(−1, 1 + x1] ∪ [1,∞) it is true

(23) Γ(x + 1) ≥ Re A(x),

while the equality is true for x=1+x1 or x=1.

Proof. For x>−1 it is true

(24) Γ(x + 1) ≥ Re A(x) = Γ(x + 1)− Re A(x− 1) ⇐⇒ Re A(x− 1) ≥ 0.

Right side of the previous equivalence is true for x− 1 ∈ (−2, x1] ∪ [0,∞), ie.
x∈(−1, 1 + x1] ∪ [1,∞).

In the following considerations let us denote Ea = (a, a+2+x1] ∪ [a+2,∞)
for fixed a ≥−1.

Corollary 4.5. For fixed k∈N and values x ∈ Ek following inequality is true:

(25)
Re A(x−k−1)

Γ(x−k)
≤ 1,

while the equality is true for x = k+2+x1 or x = k+2.
In the next two proofs of theorems which follows we use the auxiliary se-

quences of functions

(26) g
k
(x) =

k−1∑
i=0

(−1)k+iΓ(x + 1− i) (k ∈ N),

for values x>k−2. Let us notice that for x>k−2 it is true

(27) g
k
(x)=Γ(x + 2) · rk(x).

Therefore (−1)k · rk(x) are positive functions for x ≥ k + 1. Then, the following
statements are true:

Theorem 4.6 For fixed odd number k = 2n+1∈N and values x≥k+1 the following
double inequality is true:

(28)
p

k
(x)

p
k
(x) + 1

·
(
− rk(x)

)
≤ Re A(x)

Γ(x + 2)
<

(
− rk(x)

)
,

while the equality is true for x = k+1.
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Proof. Based on lemma 4.3, using theorem 3.2, the following inequality is true:

(29) Re A(x) ≤ − g
2n+1

(x),

for values x∈Ek−2. On the other hand, based on (25), for values x∈Ek−1 we can
conclude

(30)

Re A(x)
g
2n+1

(x)
= −1+

Re A(x−2n−1)
g
2n+1

(x)
= −1+

Re A(x−2n−1)
Γ(x−2n)(p

2n+1
(x)+1)

= −1+
Re A(x−2n−1)/Γ(x−2n)

p
2n+1

(x) + 1
≤ −

p
2n+1

(x)
p

2n+1
(x) + 1

.

From (29) and (30), using (27), the double inequality (28) follows for values
x≥k+1.

Theorem 4.7. For fixed even number k = 2n∈N and values x≥k+1 the following
double inequality is true:

(31) rk(x) <
Re A(x)
Γ(x + 2)

≤
p

k
(x)

p
k
(x)− 1

· rk(x),

while the equality is true for x = k+1.

Proof. Based on lemma 4.3, using theorem 3.2, the following inequality is true:

(32) Re A(x) ≥ g
2n

(x),

for values x∈Ek−2. On the other hand, based on (25), for values x∈Ek−1 we can
conclude

(33)

Re A(x)
g
2n

(x)
= 1+

Re A(x−2n)
g
2n

(x)
= 1+

Re A(x−2n)
Γ(x−2n+1)(p

2n
(x)−1)

= 1+
Re A(x−2n)/Γ(x−2n+1)

p
2n

(x)−1
≤

p
2n

(x)
p

2n
(x)− 1

.

From (32) and (33), using (27), the double inequality (31) follows for values
x≥k+1.

Corollary 4.8. For fixed number k ∈N and values x≥ k+1 the following double
inequality is true:

(34) rk(x) < (−1)k Re A(x)
Γ(x + 2)

≤
p

k
(x)

p
k
(x)− (−1)k

· rk(x),

while the equality is true for x = k+1.
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Corollary 4.8. On the basis of theorems 4.6 and 4.7 we can conclude

(35) lim
x→∞

Re A(x)
Γ(x + 2)

= 0 and lim
x→∞

Re A(x)
Γ(x + 1)

= 1.
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