SOME INEQUALITIES FOR ALTERNATING KUREPA'S FUNCTION

Branko J. Malešević

In this paper we consider alternating Kurepa's function $A(z)$. We give some recurrent relations for alternating KUREPA's function via appropriate sequences of rational functions and gamma function. Also we give some inequalities for the real part of alternating KUREPA's function $A(x)$ for values of argument $x>-2$. The obtained results are analogous to results from the author's paper [5].

1. ALTERNATING KUREPA'S FUNCTION $A(z)$

R. Guy considered, in the book [3] (p. 100.), the function of alternating left factorial as an alternating sum of factorials

$$
\begin{equation*}
A(n)=\sum_{i=1}^{n}(-1)^{n-i} i! \tag{1}
\end{equation*}
$$

Sum (1) corresponds to the sequence $A 005165$ in [6]. An analytical extension of the function (1) over the set of complex numbers is determined by the integral

$$
\begin{equation*}
A(z)=\int_{0}^{\infty} e^{-t} \frac{t^{z+1}-(-1)^{z} t}{t+1} \mathrm{~d} t \tag{2}
\end{equation*}
$$

which converges for $\operatorname{Re} z>0[4]$. For function $A(z)$ we use the term alternating Kurepa's function. It is easily verified that alternating Kurepa's function is a solution of the functional equation:

$$
\begin{equation*}
A(z)+A(z-1)=\Gamma(z+1) \tag{3}
\end{equation*}
$$

Let us observe that since $A(z-1)=\Gamma(z+1)-A(z)$, it is possible to make the analytical continuation of alternating Kurepa's function $A(z)$ for $\operatorname{Re} z \leq 0$. In that way, the alternating Kurepa's function $A(z)$ is a meromorphic function with simple poles at $z=-n(n \geq 2)[4]$.

Let us emphasize that in the following consideration, in the sections 2. and 3., it is sufficient to use only fact that function $A(z)$ is a solution of the functional equation (3). In section 4. we give some inequalities for the real part of alternating KUREPA's function $A(x)$ for values of argument $x>-2$.

2. REPRESENTATION OF THE ALTERNATING KUREPA'S FUNCTION VIA SEQUENCES OF POLYNOMIALS AND GAMMA FUNCTION

Let us introduce a sequences of polynomials:

$$
\begin{equation*}
p_{n}(z)=(z-n+1) p_{n-1}(z)+(-1)^{n} \tag{4}
\end{equation*}
$$

with $p_{0}(z)=1$. Analogously to results from [2], the following statements are true:
Lemma 2.1. For each $n \in \mathbb{N}$ and $z \in \mathbb{C}$ we have explicitly :

$$
\begin{equation*}
p_{n}(z)=(-1)^{n}\left(1+\sum_{j=0}^{n-1} \prod_{i=0}^{j}(-1)^{j-1}(z-n+i+1)\right) . \tag{5}
\end{equation*}
$$

Theorem 2.2. For each $n \in \mathbb{N}$ and $z \in \mathbb{C} \backslash\left(\mathbb{Z}^{-} \cup\{0,1,2, \ldots, n-2\}\right)$ is valid

$$
\begin{equation*}
A(z)=(-1)^{n} A(z-n)+p_{n-1}(z) \cdot \Gamma(z-n+2) \tag{6}
\end{equation*}
$$

3. REPRESENTATION OF THE ALTERNATING KUREPA'S FUNCTION VIA SEQUENCES OF RATIONAL FUNCTIONS AND GAMMA FUNCTION

Let us observe that on the basis of a functional equation for the gamma function $\Gamma(z+1)=z \Gamma(z)$, it follows that the alternating Kurepa's function is solution of the following functional equation:

$$
\begin{equation*}
A(z+1)-z A(z)-(z+1) A(z-1)=0 \tag{7}
\end{equation*}
$$

For $z \in \mathbb{C} \backslash\{-1\}$, based on (7), we have
(8) $A(z-1)=-\frac{z}{z+1} A(z)+\frac{1}{z+1} A(z+1)=\left(-1-r_{1}(z)\right) A(z)-r_{1}(z) A(z+1)$,
for rational function $r_{1}(z)=-\frac{1}{z+1}$ over $\mathbb{C} \backslash\{-1\}$. Next, for $z \in \mathbb{C} \backslash\{-1,0\}$, based on (7), we obtain

$$
\begin{align*}
A(z-2) & =\frac{1}{z} A(z)-\frac{z-1}{z} A(z-1) \\
& =\frac{1}{(8)} A(z)-\frac{z-1}{z}\left(-\frac{z}{z+1} A(z)+\frac{1}{z+1} A(z+1)\right) \tag{9}\\
& =\frac{z^{2}+1}{z(z+1)} A(z)-\frac{z-1}{z(z+1)} A(z+1)=\left(1-\Upsilon_{2}(z)\right) A(z)-\Upsilon_{2}(z) A(z+1)
\end{align*}
$$

for rational function $r_{2}(z)=\frac{z-1}{z(z+1)}$ over $\mathbb{C} \backslash\{-1,0\}$. Thus, for values $z \in \mathbb{C} \backslash\{-1,0$, $1, \ldots, n-2\}$, based on (7), by mathematical induction it is true

$$
\begin{equation*}
A(z-n)=\left((-1)^{n}-r_{n}(z)\right) A(z)-r_{n}(z) A(z+1) \tag{10}
\end{equation*}
$$

for rational function $r_{n}(z)$ over $\mathbb{C} \backslash\{-1,0,1, \ldots, n-2\}$ which fulfill the recurrent relation

$$
\begin{equation*}
r_{n}(z)=-\frac{z-n+1}{z-n+2} r_{n-1}(z)+\frac{1}{z-n+2} r_{n-2}(z) \tag{11}
\end{equation*}
$$

with different initial functions $r_{1,2}(z)$.
Based on the previous consideration we can conclude:
Lemma 3.1. For each $n \in \mathbb{N}$ and $z \in \mathbb{C} \backslash\{-1,0,1, \ldots, n-2\}$ let the rational function $r_{n}(z)$ be determined by the recurrent relation (11) with initial functions $r_{1}(z)=$ $-\frac{1}{z+1}$ and $r_{2}(z)=\frac{z-1}{z(z+1)}$. Thus the sequences $r_{n}(z)$ has an explicit form

$$
\begin{equation*}
r_{n}(z)=(-1)^{n-1}\left(\sum_{j=1}^{n} \prod_{i=1}^{j} \frac{(-1)^{j}}{z+2-i}\right) \tag{12}
\end{equation*}
$$

Theorem 3.2. For each $n \in \mathbb{N}$ and $z \in \mathbb{C} \backslash\{-1,0,1, \ldots, n-2\}$ we have

$$
\begin{equation*}
A(z)=(-1)^{n}\left(A(z-n)+r_{n}(z) \cdot \Gamma(z+2)\right) \tag{13}
\end{equation*}
$$

4. SOME INEQUALITIES FOR THE REAL PART OF ALTERNATING KUREPA'S FUNCTION

In this section we consider alternating Kurepa's function $A(x)$, given by an integral representation (2), for values of argument $x>-2$. The real and imaginary parts of the function $A(x)$ are represented by

$$
\begin{equation*}
\operatorname{Re} A(x)=\int_{0}^{\infty} e^{-t} \frac{t^{x+1}-\cos (\pi x) t}{t+1} \mathrm{~d} t \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} A(x)=-\int_{0}^{\infty} e^{-t} \frac{\sin (\pi x) t}{t+1} \mathrm{~d} t \tag{15}
\end{equation*}
$$

In this section we give some inequalities for the real part of alternating Kurepa's function $A(x)$ for values of argument $x>-2$. The following statements are true:
Lemma 4.1. The function

$$
\begin{equation*}
\beta(x)=\int_{0}^{\infty} e^{-t} \frac{t^{x+1}}{t+1} \mathrm{~d} t \tag{16}
\end{equation*}
$$

over set $(-2, \infty)$ is positive, convex and fulfill an inequality

$$
\begin{equation*}
\beta(x) \geq \beta\left(x_{0}\right)=0.401855 \ldots, \tag{17}
\end{equation*}
$$

with equality in the point $x_{0}=-0.108057 \ldots$.
Proof. For positive function $\beta(x) \in C^{2}(-2, \infty)$, on the basis of (16), the condition of convexity $\beta^{\prime \prime}(x)>0$ is true. Next, based on (16), we can conclude $\lim _{\varepsilon \rightarrow 0+} \beta(-2+\varepsilon)=+\infty$ and $\lim _{x \rightarrow+\infty} \beta(x)=+\infty$. Therefore, we can conclude that exists exactly one minimum $x_{0} \in(-2,+\infty)$. Using standard numerical methods it is easily determined $x_{0}=-0.108057 \ldots$ and $\beta\left(x_{0}\right)=0.401855 \ldots$.

Lemma 4.2. The function

$$
\begin{equation*}
\gamma(x)=\int_{0}^{\infty} e^{-t} \frac{\cos (\pi x) t}{t+1} \mathrm{~d} t \tag{18}
\end{equation*}
$$

over set $(-2, \infty)$, is determined with

$$
\begin{equation*}
\gamma(x)=(1+e \operatorname{Ei}(-1)) \cdot \cos (\pi x)=0.403652 \ldots \cdot \cos (\pi x) . \tag{19}
\end{equation*}
$$

where $\operatorname{Ei}(t)=\int_{-\infty}^{t} \frac{e^{u}}{u} \mathrm{~d} u(t<0)$ is function of exponential integral ([1], 8.211-1).
Lemma 4.3. The function $\operatorname{Re} A(x)$, over set $(-2, \infty)$, is determined as difference

$$
\begin{equation*}
\operatorname{Re} A(x)=\beta(x)-\gamma(x) \tag{20}
\end{equation*}
$$

and has two roots $x_{1}=-0.015401 \ldots$ and $x_{2}=0$. The function $\operatorname{Re} A(x)$ is positive over set

$$
\begin{equation*}
D_{1}=\left(-2, x_{1}\right) \cup(0, \infty) \tag{21}
\end{equation*}
$$

and negative over set

$$
\begin{equation*}
D_{2}=\left(x_{1}, 0\right) . \tag{22}
\end{equation*}
$$

Proof. Let $\beta(x)$ be function from lemma 4.1 and let $\gamma(x)$ be function from lemma 4.2. For value $x_{2}=0$ it is true $\beta\left(x_{2}\right)=\gamma\left(x_{2}\right)=0.403652 \ldots$. ie. value $x_{2}=0$ is a root of function $\operatorname{Re} A(x)$. Let us prove that function $\operatorname{Re} A(x)$ has exactly one root $x_{1} \in\left(x_{0}, x_{2}\right)$, where $x_{0}=-0.108057 \ldots$ is value from lema 4.1. It is true $\beta\left(x_{0}\right)=0.401855 \ldots>0.380061 \ldots=\gamma\left(x_{0}\right)$. Let us notice that $\beta(x)$ is convex and increasing function over set $\left(x_{0}, x_{2}\right)$ and let us notice that $\gamma(x)$ is concave and increasing function over same set $\left(x_{0}, x_{2}\right)$. Therefore, we can conclude that function $\operatorname{Re} A(x)$ has exactly one root $x_{1} \in\left(x_{0}, x_{2}\right)$. Using numerical methods we can determined $x_{1}=-0.015401 \ldots$. On the basis of the graphs of the functions $\beta(x)$ and $\gamma(x)$ we can conclude that function $\operatorname{Re} A(x)$ has exactly two roots x_{1} and x_{2} over set $(-2, \infty)$. Hence, the sets D_{1} and D_{2} are correctly determined.

Lema 4.4. For $x \in\left(-1,1+x_{1}\right] \cup[1, \infty)$ it is true

$$
\begin{equation*}
\Gamma(x+1) \geq \operatorname{Re} A(x) \tag{23}
\end{equation*}
$$

while the equality is true for $x=1+x_{1}$ or $x=1$.
Proof. For $x>-1$ it is true

$$
\begin{equation*}
\Gamma(x+1) \geq \operatorname{Re} A(x)=\Gamma(x+1)-\operatorname{Re} A(x-1) \Longleftrightarrow \operatorname{Re} A(x-1) \geq 0 \tag{24}
\end{equation*}
$$

Right side of the previous equivalence is true for $x-1 \in\left(-2, x_{1}\right] \cup[0, \infty)$, ie. $x \in\left(-1,1+x_{1}\right] \cup[1, \infty)$.

In the following considerations let us denote $\mathbf{E}_{a}=\left(a, a+2+x_{1}\right] \cup[a+2, \infty)$ for fixed $a \geq-1$.
Corollary 4.5. For fixed $k \in \mathbb{N}$ and values $x \in \mathbf{E}_{k}$ following inequality is true:

$$
\begin{equation*}
\frac{\operatorname{Re} A(x-k-1)}{\Gamma(x-k)} \leq 1, \tag{25}
\end{equation*}
$$

while the equality is true for $x=k+2+x_{1}$ or $x=k+2$.
In the next two proofs of theorems which follows we use the auxiliary sequences of functions

$$
\begin{equation*}
g_{k}(x)=\sum_{i=0}^{k-1}(-1)^{k+i} \Gamma(x+1-i) \quad(k \in \mathbb{N}) \tag{26}
\end{equation*}
$$

for values $x>k-2$. Let us notice that for $x>k-2$ it is true

$$
\begin{equation*}
g_{k}(x)=\Gamma(x+2) \cdot r_{k}(x) \tag{27}
\end{equation*}
$$

Therefore $(-1)^{k} \cdot r_{k}(x)$ are positive functions for $x \geq k+1$. Then, the following statements are true:
Theorem 4.6 For fixed odd number $k=2 n+1 \in \mathbb{N}$ and values $x \geq k+1$ the following double inequality is true:

$$
\begin{equation*}
\frac{p_{k}(x)}{p_{k}(x)+1} \cdot\left(-r_{k}(x)\right) \leq \frac{\operatorname{Re} A(x)}{\Gamma(x+2)}<\left(-r_{k}(x)\right) \tag{28}
\end{equation*}
$$

while the equality is true for $x=k+1$.

Proof. Based on lemma 4.3, using theorem 3.2, the following inequality is true:

$$
\begin{equation*}
\operatorname{Re} A(x) \leq-g_{2 n+1}(x) \tag{29}
\end{equation*}
$$

for values $x \in \mathbf{E}_{k-2}$. On the other hand, based on (25), for values $x \in \mathbf{E}_{k-1}$ we can conclude

$$
\begin{align*}
\frac{\operatorname{Re} A(x)}{g_{2 n+1}(x)} & =-1+\frac{\operatorname{Re} A(x-2 n-1)}{g_{2 n+1}(x)}=-1+\frac{\operatorname{Re} A(x-2 n-1)}{\Gamma(x-2 n)\left(p_{2 n+1}(x)+1\right)} \tag{30}\\
& =-1+\frac{\operatorname{Re} A(x-2 n-1) / \Gamma(x-2 n)}{p_{2 n+1}(x)+1} \leq-\frac{p_{2 n+1}(x)}{p_{2 n+1}(x)+1}
\end{align*}
$$

From (29) and (30), using (27), the double inequality (28) follows for values $x \geq k+1$.

Theorem 4.7. For fixed even number $k=2 n \in \mathbb{N}$ and values $x \geq k+1$ the following double inequality is true:

$$
\begin{equation*}
r_{k}(x)<\frac{\operatorname{Re} A(x)}{\Gamma(x+2)} \leq \frac{p_{k}(x)}{p_{k}(x)-1} \cdot r_{k}(x) \tag{31}
\end{equation*}
$$

while the equality is true for $x=k+1$.
Proof. Based on lemma 4.3, using theorem 3.2, the following inequality is true:

$$
\begin{equation*}
\operatorname{Re} A(x) \geq g_{2 n}(x) \tag{32}
\end{equation*}
$$

for values $x \in \mathbf{E}_{k-2}$. On the other hand, based on (25), for values $x \in \mathbf{E}_{k-1}$ we can conclude

$$
\begin{align*}
\frac{\operatorname{Re} A(x)}{g_{2 n}(x)} & =1+\frac{\operatorname{Re} A(x-2 n)}{g_{2 n}(x)}=1+\frac{\operatorname{Re} A(x-2 n)}{\Gamma(x-2 n+1)\left(p_{2 n}(x)-1\right)} \tag{33}\\
& =1+\frac{\operatorname{Re} A(x-2 n) / \Gamma(x-2 n+1)}{p_{2 n}(x)-1} \leq \frac{p_{2 n}(x)}{p_{2 n}(x)-1}
\end{align*}
$$

From (32) and (33), using (27), the double inequality (31) follows for values $x \geq k+1$.

Corollary 4.8. For fixed number $k \in \mathbb{N}$ and values $x \geq k+1$ the following double inequality is true:

$$
\begin{equation*}
r_{k}(x)<(-1)^{k} \frac{\operatorname{Re} A(x)}{\Gamma(x+2)} \leq \frac{p_{k}(x)}{p_{k}(x)-(-1)^{k}} \cdot r_{k}(x) \tag{34}
\end{equation*}
$$

while the equality is true for $x=k+1$.

Corollary 4.8. On the basis of theorems 4.6 and 4.7 we can conclude

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\operatorname{Re} A(x)}{\Gamma(x+2)}=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\operatorname{Re} A(x)}{\Gamma(x+1)}=1 \tag{35}
\end{equation*}
$$

REFERENCES

1. И. С. Градштейн, И. М. РыЖИк: Таблицы интегралов, сумм, рядов и произведений, Москва 1971.
2. Đ. Kurepa: Left factorial in complex domain. Mathematica Balkanica, 3 (1973), 297-307.
3. R. K. GuY: Unsolved problems in number theory. Springer-Verlag, second edition 1994. (first edition 1981.)
4. A. Petojević: The function ${ }_{v} M_{m}(s ; a, z)$ and some well-known sequences. Journal of Integer Sequences, Vol. 5 (2002), Article 02.16.
(http://www.math.uwaterloo.ca/JIS/)
5. B. J. Malešević: Some inequalities for Kurepa's function. Journal of Inequalities in Pure and Applied Mathematics, Volume 5, Issue 4, Article 84, 2004. (http://jipam.vu.edu.au/)
6. N. J. A. Sloane: The-On-Line Encyclopedia of Integer Sequences. (http://www.research.att.com/~njas/sequences/)

University of Belgrade,
(Received October 20, 2004)
Faculty of Electrical Engineering,
P.O.Box 35-54, 11120 Belgrade,

Serbia \& Montenegro
Email: malesevic@etf.bg.ac.yu

