GENERALIZED MOMENTS FOR THE SEQUENTIAL LAW

Slavko Simic

We investigate asymptotic behavior of the generalized moments $E\left(X_{n}^{\mu} \ell\left(X_{n}\right)\right)$ for the sequential law under assumption that $\lim _{n} \frac{1}{n} E\left(X_{n}\right)$ exists, where ℓ is a slowly varying function and $\mu \in \mathbb{R}^{+}$.

1. INTRODUCTION

Let a set of random variables $\left(X_{n}\right)$ be defined by

$$
\begin{equation*}
P\left\{X_{n}=k\right\}=p_{n k}>0,1 \leq k \leq n ; \quad \sum_{k \leq n} p_{n k}=1 \tag{1}
\end{equation*}
$$

Accordingly, the expectation is $E\left(X_{n}\right):=\sum_{k \leq n} k p_{n k}$ and moments of the m-th order are $E\left(X_{n}^{m}\right):=\sum_{k \leq n} k^{m} p_{n k}$.

In [3] we introduced a concept of the generalised moments $E\left(K_{\rho}\left(X_{n}\right)\right)$, where $K_{\rho}(x):=x^{\rho} \ell(x), x>0 ; K_{\rho}(0):=0$, is a regularly varying function of index $\rho \in \mathbb{R}$.

Thus

$$
E\left(K_{\rho}\left(X_{n}\right)\right):=\sum_{k \leq n} k^{\rho} \ell(k) p_{n k}, \quad \rho \in \mathbb{R}^{+} .
$$

In [3] and [4] we posed the following problem:
If $E\left(X_{n}\right) \rightarrow \infty$, give a characterization of probability laws with the property

$$
\begin{equation*}
E\left(K_{\rho}\left(X_{n}\right)\right) \sim c_{\rho} K_{\rho}\left(E\left(X_{n}\right)\right), \quad a<\rho<b, \quad(n \rightarrow \infty) \tag{2}
\end{equation*}
$$

where c_{ρ} is a constant independent of n.
2000 Mathematics Subject Classification: 60E10, 26A12
Keywords and Phrases: Sequential Law, generalized moments, regular variation.

That asymptotic behavior of ρ-th moment could depend only on the first moment is not so strange as it seems. For example, an elementary inequality shows that $E\left(X_{n}^{\rho}\right) \geq\left(E\left(X_{n}\right)\right)^{\rho}$ for each $\rho \geq 1$ and $E\left(X_{n}^{\rho}\right) \leq\left(E\left(X_{n}\right)\right)^{\rho}$ for $0<\rho<1$.

In cited papers we proved that the relation (2) actually takes place with $c_{\rho}=1$, for generalised Binomial and Poisson laws.

1. PRELIMINARIES

Thoroughout the paper we have to deal with the Karamata's class K_{ρ} of regularly varying functions or sequences.

It is well known that $f \in K_{\rho}$ if it could be expressed in the form $f(x):=$ $x^{\rho} \ell(x), \rho \in \mathbb{R}$, where ρ is the index of regular variation and $\ell(x) \in K_{0}$ is so-called slowly varying function i.e. positive, continuous and satisfying

$$
\forall t>0, \quad \ell(t x) \sim \ell(x) \quad(x \rightarrow \infty)
$$

Some examples of slowly varying functions are:

$$
1, \quad \log ^{a} x, \quad \log ^{b}(\log x), \quad \exp \left(\frac{\log x}{\log \log x}\right), \quad \exp \left(\log ^{c} x\right) ; \quad a, b \in \mathbb{R}, 0<c<1
$$

The theory of regular variation is presented in [1] and [2]. We quote here some facts from [1]:
Lemma 1. If $a(x) \sim b(x) \rightarrow \infty(x \rightarrow \infty)$, then $K_{\rho}(a(x)) \sim K_{\rho}(b(x)) \quad(x \rightarrow \infty)$.
Lemma 2. For $\mu>0$ we have $\sup _{x \leq y} x^{\mu} \ell(x) \sim y^{\mu} \ell(y) \quad(y \rightarrow \infty)$.
Lemma 3. (KARAMATA's Theorem) Let f be positive and locally bounded in $[a, \infty)$ and $\sigma>-\rho$. Then the following are equivalent

$$
\text { (i) } f \in K_{\rho} ; \quad \text { (ii) } \quad \frac{x^{\sigma} f(x)}{\int_{a}^{x} \frac{t^{\sigma} f(t)}{t} \mathrm{~d} t} \rightarrow \sigma+\rho \quad(x \rightarrow \infty) \text {. }
$$

Lemma 4. (Vuilleumier [5]) If $\sum_{k \leq n} q_{n k} \rightarrow 1 \quad(n \rightarrow \infty)$ and there exists $\varepsilon>0$ such that $\sum_{k \leq n} k^{-\varepsilon}\left|q_{n k}\right|=O\left(n^{-\varepsilon}\right)$ then $\sum_{k \leq n} \ell(k) q_{n k} \sim \ell(n) \quad(n \rightarrow \infty)$, for each $\ell \in K_{0}$.

Now, we define the Sequential Law by the following: Let $\left\{p_{k}\right\}_{k=1}^{\infty}$ be a sequence of positive real numbers and put in (1) $P\left\{X_{n}=k\right\}=p_{n k}$, where

$$
p_{n k}:=\frac{p_{k}}{\sum_{m \leq n} p_{m}}, \quad k=1,2, \ldots, n .
$$

We study the asymptotic behavior of $E\left(K_{\rho}\left(X_{n}\right)\right)$ with respect to $E\left(X_{n}\right)$ and show that (2) holds with $c_{\rho} \neq 1$.

3. THE RESULTS

Throughout the rest of the paper we suppose that $\lim _{n} \frac{1}{n} E\left(X_{n}\right)$ exists. Hence, if $\lim _{n} \frac{1}{n} E\left(X_{n}\right)=c$ it is evident that $c \in[0,1]$, and we have to deal with three cases: $0<c<1, c=0, c=1$.

Proposition 1. For $0<c<1$ and $\mu>-\frac{c}{1-c}$ the following are equivalent
(i) $\frac{E\left(X_{n}\right)}{n} \rightarrow c$;
(ii) $\frac{E\left(X_{n}^{\mu}\right)}{n^{\mu}} \rightarrow \frac{c}{\mu+c(1-\mu)} \quad(n \rightarrow \infty)$.

Proof. Denote $C(y):=\sum_{k \leq y} p_{k}$. Then Abel's partial summation gives

$$
\begin{equation*}
\sum_{k \leq y} k^{\sigma} p_{k}=y^{\sigma} C(y)-\sigma \int_{1}^{y} t^{\sigma-1} C(t) \mathrm{d} t, \quad \sigma \in \mathbb{R} \tag{4}
\end{equation*}
$$

Putting $n=[y]$ in $\lim _{n} \frac{1}{n} E\left(X_{n}\right)=c$ and $\sigma=1$ in (4), we obtain:

$$
\int_{1}^{y} C(t) \mathrm{d} t /(y C(y)) \rightarrow 1-c \quad(y \rightarrow \infty)
$$

Therefore, Lemma 3 gives $C(y) \in K_{c /(1-c)}$.
Applying again this lemma with $\rho=\frac{c}{1-c}, \sigma=\mu$, from (4) we get that

$$
\frac{\sum_{k \leq y} k^{\mu} p_{k}}{y^{\mu} C(y)}=1-\mu \frac{\int_{1}^{y} t^{\mu-1} C(t) \mathrm{d} t}{y^{\mu} C(y)} \rightarrow 1-\mu \frac{1}{\mu+\frac{c}{1-c}}=\frac{c}{\mu+c(1-\mu)} \quad(y \rightarrow \infty),
$$

which gives the right-hand side of (3) with $y=n$.
Conversely, supposing the validity of

$$
\frac{1}{n^{\mu}} E\left(X_{n}^{\mu}\right) \rightarrow \frac{c}{\mu+c(1-\mu)} \quad(n \rightarrow \infty)
$$

with $n=[y]$, then (4) gives

$$
y^{\mu} C(y) / \int_{1}^{y} t^{\mu-1} C(t) \mathrm{d} t \rightarrow \mu+\frac{c}{1-c} \quad(y \rightarrow \infty)
$$

i.e. by Lemma 3, $C(y) \in K_{c /(1-c)}$. Using again Lemma 3. with $\sigma=1, f:=C$ we obtain the left-hand side of (3).

The case $c=1$ needs a different approach.

Proposition 2. For each $\mu \in \mathbb{R}$, the following are equivalent
(i) $E\left(X_{n}\right) \sim n$;
(ii) $E\left(X_{n}^{\mu}\right) \sim n^{\mu} \quad(n \rightarrow \infty)$.

Proof. The condition $\frac{1}{n} E\left(X_{n}\right) \rightarrow 1 \quad(n \rightarrow \infty)$ implies

$$
\begin{equation*}
\int_{1}^{y} C(t) \mathrm{d} t /(y C(y)) \rightarrow 0 \quad(y \rightarrow \infty) \tag{5}
\end{equation*}
$$

Denote by A the class of functions $C(y)$ satisfying (5). We have
Proposition 2.1. The following are equivalent
(i) $C(y) \in A$;
(ii) $y^{\sigma} C(y) \in A$,
for each $\sigma \in \mathbb{R}$.
For the proof we need two lemmas below.
Lemma 2.1. If $C(y) \in A$ then $y^{\sigma} C(y) \rightarrow \infty, \quad(y \rightarrow \infty)$ for any fixed $\sigma \in \mathbb{R}$.
Proof. Since $y C(y) / \int_{1}^{y} C(t) \mathrm{d} t \rightarrow \infty \quad(y \rightarrow \infty)$, we can find $y_{0}>1$ such that

$$
\begin{equation*}
y C(y) / \int_{1}^{y} C(t) \mathrm{d} t>|\sigma|+2, \quad y>y_{0} \tag{6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
D\left(\log \int_{1}^{y} C(t) \mathrm{d} t\right)>\frac{|\sigma|+2}{y}, \quad y>y_{0} \tag{7}
\end{equation*}
$$

Integrating (7) over $\left[y_{0}, y\right]$, we obtain

$$
\int_{1}^{y} C(t) \mathrm{d} t>c\left(y_{0},|\sigma|\right) y^{|\sigma|+2}, \quad y>y_{0}
$$

i.e. taking in account (6),

$$
y^{\sigma} C(y)>c^{\prime}\left(y_{0},|\sigma|\right) y^{\sigma+|\sigma|+1}, y>y_{0}
$$

and the assertion follows.
Lemma 2.2. If $C(y) \in A$, then $\int_{1}^{y} t^{\sigma} C(t) \mathrm{d} t \sim y^{\sigma} \int_{1}^{y} C(t) \mathrm{d} t(y \rightarrow \infty)$ for any fixed $\sigma \in \mathbb{R}$.
Proof. According to Lemma 2.1 and (5), we have

$$
\frac{\int_{1}^{y} t^{\sigma} C(t) \mathrm{d} t}{y^{\sigma} \int_{1}^{y} C(t) \mathrm{d} t} \rightarrow \frac{\mathrm{D}\left(\int_{1}^{y} t^{\sigma} C(t) \mathrm{d} t\right)}{\mathrm{D}\left(y^{\sigma} \int_{1}^{y} C(t) \mathrm{d} t\right)}=\frac{1}{1+\sigma \frac{\int_{1}^{y} C(t) \mathrm{d} t}{y C(y)}} \rightarrow 1 \quad(y \rightarrow \infty)
$$

where D denotes $\mathrm{d} / \mathrm{d} y$.

Proof of Proposition 2.1.

If $C(y) \in A$ then, according to Lemma 2.2,

$$
\frac{\int_{y^{\sigma}}^{y} t^{\sigma} C(t) \mathrm{d} t}{y^{\sigma+1} C(y)}=\frac{\int_{1}^{y} C(t) \mathrm{d} t}{y C(y)} \frac{\int_{1}^{y} t^{\sigma} C(t) \mathrm{d} t}{y^{\sigma} \int_{1}^{y} C(t) \mathrm{d} t} \rightarrow 0 \quad(y \rightarrow \infty),
$$

i.e. $y^{\sigma} C(y) \in A, \forall \sigma \in \mathbb{R}$.

Conversely, if for some $\sigma \in \mathbb{R}, y^{\sigma} C(y) \in A$ then

$$
\frac{\int_{1}^{y} C(t) \mathrm{d} t}{y C(y)}=\frac{\int_{1}^{y} t^{-\sigma}\left(t^{\sigma} C(t) \mathrm{d} t\right)}{y C(y)} \sim \frac{y^{-\sigma} \int_{1}^{y} t^{\sigma} C(t) \mathrm{d} t}{y C(y)}=\frac{\int_{1}^{y} t^{\sigma} C(t) \mathrm{d} t}{y^{\sigma+1} C(y)} \rightarrow 0 \quad(y \rightarrow \infty),
$$

i.e. $C(y) \in A$.

Using Proposition 2.1 and the fact

$$
\frac{\sum_{k \leq y} k^{\sigma} p_{k}}{y^{\sigma} C(y)}=1-\sigma \frac{\int_{1}^{y} t^{\sigma-1} C(t) \mathrm{d} t}{y^{\sigma} C(y)}
$$

with $\sigma=1$ and $\sigma=\mu$, the proof of the Proposition 2 readily follows.
Propositions 1 and 2 are basic for the estimation of $E\left(K_{\mu}\left(X_{n}\right)\right)$. Namely, putting in Lemma 4,

$$
q_{n k}:=\frac{\mu+c(1-\mu)}{c C(n)}\left(\frac{k}{n}\right)^{\mu} p_{k}, 0<c<1, \delta>0, \mu>\delta-\frac{c}{1-c},
$$

Proposition 1 gives $\sum_{k \leq n} q_{n k} \rightarrow 1 \quad(n \rightarrow \infty)$, and the condition from Lemma 4 is satisfied with $\varepsilon=\delta / 2$. Thus we have
Proposition 3. For $0<c<1, \delta>0, \mu>\delta-\frac{c}{1-c}, E\left(X_{n}\right) \sim c n \quad(n \rightarrow \infty)$, implies

$$
E\left(X_{n}^{\mu} \ell\left(X_{n}\right)\right) \sim \frac{c}{\mu+c(1-\mu)} n^{\mu} \ell(n) \quad(n \rightarrow \infty)
$$

In the same way, using the Proposition 2, we get
Proposition 4. If $E\left(X_{n}\right) \sim n(n \rightarrow \infty)$, then

$$
E\left(X_{n}^{\mu} \ell\left(X_{n}\right)\right) \sim n^{\mu} \ell(n) \quad(n \rightarrow \infty)
$$

for any $\mu \in \mathbb{R}$.

In the case $c=0$, Lemma 3 gives $C(y) \in K_{0}$ and we have

$$
\begin{equation*}
\forall \mu>0: E\left(X_{n}^{\mu}\right)=o\left(n^{\mu}\right) \quad(n \rightarrow \infty) \tag{8}
\end{equation*}
$$

Hence,
Proposition 5. If $\frac{1}{n} E\left(X_{n}\right) \rightarrow 0 \quad(n \rightarrow \infty)$, then

$$
E\left(X_{n}^{\mu} \ell\left(X_{n}\right)\right)=o\left(n^{\mu} \ell(n)\right) \quad(n \rightarrow \infty)
$$

for any $\mu \in \mathbb{R}^{+}, \ell \in K_{0}$.
Proof. Applying Lemma 2 and (8), we get

$$
\begin{aligned}
\frac{E\left(X_{n}^{\mu} \ell\left(X_{n}\right)\right)}{n^{\mu} \ell(n)} & =O\left(\sup _{k \leq n}\left(k^{\mu / 2} \ell(k)\right)\right) \frac{E\left(X_{n}^{\mu / 2}\right)}{n^{\mu} \ell(n)} \\
& =O\left(n^{\mu / 2} \ell(n)\right) \frac{o\left(n^{\mu / 2}\right)}{n^{\mu} \ell(n)}=o(1) \quad(n \rightarrow \infty)
\end{aligned}
$$

It is evident that, summarising results from Propositions 3, 4 and 5, for the generalised moments of positive order we can formulate the following
Proposition 6. If $\frac{1}{n} E\left(X_{n}\right) \rightarrow c, \quad(n \rightarrow \infty), c>0$, then

$$
E\left(X_{n}^{\mu} \ell\left(X_{n}\right)\right) \sim \frac{c^{1-\mu}}{\mu+c(1-\mu)}\left(E\left(X_{n}\right)\right)^{\mu} \ell\left(E\left(X_{n}\right)\right), \mu \in \mathbb{R}^{+}, \ell \in K_{0} \quad(n \rightarrow \infty)
$$

therefore giving an answer to the question posed in (2) in the case of the sequential law.

REFERENCES

1. N. H. Bingham, et al.: Regular variation. Cambridge Univ. Press (1989).
2. E. Seneta: Regularly varying functions. Springer N.Y. (1976).
3. S. Simic: Generalised binomial law and regularly varying moments. Matematicki Vesnik, 55 (2003), 31-36.
4. S. Simic: Generalised moments for the Poisson law. Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat., 12 (2001), 35-37.
5. M. Vuilleumier: Sur le comportement asymptoyique des transformations lineaires des suites. Math. Zeitschrift, 98 (1967).

Mathematical Institute SANU,
(Received October 15, 2004)
Belgrade,
Serbia and Montenegro
E-mail: ssimic@turing.mi.sanu.ac.yu

