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GENERALIZED MOMENTS
FOR THE SEQUENTIAL LAW

Slavko Simic

We investigate asymptotic behavior of the generalized moments E
(
Xµ

n`(Xn)
)

for the sequential law under assumption that lim
n

1

n
E(Xn) exists, where ` is

a slowly varying function and µ ∈ R+.

1. INTRODUCTION

Let a set of random variables (Xn) be defined by

(1) P{Xn = k} = pnk > 0, 1 ≤ k ≤ n;
∑

k≤n

pnk = 1.

Accordingly, the expectation is E(Xn) :=
∑

k≤n

kpnk and moments of the m-th order

are E(Xm
n ) :=

∑
k≤n

kmpnk.

In [3] we introduced a concept of the generalised moments E(Kρ(Xn)), where
Kρ(x) := xρ`(x), x > 0; Kρ(0) := 0, is a regularly varying function of index ρ ∈ R.

Thus
E

(
Kρ(Xn)

)
:=

∑
k≤n

kρ`(k)pnk, ρ ∈ R+.

In [3] and [4] we posed the following problem:
If E(Xn) →∞, give a characterization of probability laws with the property

(2) E
(
Kρ(Xn)

)
∼ cρKρ

(
E(Xn)

)
, a < ρ < b, (n →∞)

where cρ is a constant independent of n.
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That asymptotic behavior of ρ-th moment could depend only on the first
moment is not so strange as it seems. For example, an elementary inequality shows
that E(Xρ

n) ≥
(
E(Xn)

)ρ for each ρ ≥ 1 and E(Xρ
n) ≤

(
E(Xn)

)ρ for 0 < ρ < 1.

In cited papers we proved that the relation (2) actually takes place with
cρ = 1, for generalised Binomial and Poisson laws.

1. PRELIMINARIES

Thoroughout the paper we have to deal with the Karamata’s class Kρ of
regularly varying functions or sequences.

It is well known that f ∈ Kρ if it could be expressed in the form f(x) :=
xρ`(x), ρ ∈ R, where ρ is the index of regular variation and `(x) ∈ K0 is so-called
slowly varying function i.e. positive, continuous and satisfying

∀t > 0, `(tx) ∼ `(x) (x →∞).

Some examples of slowly varying functions are:

1, logax, logb(log x), exp
(

log x

log log x

)
, exp(logcx); a, b ∈ R, 0 < c < 1.

The theory of regular variation is presented in [1] and [2]. We quote here some
facts from [1]:

Lemma 1. If a(x) ∼ b(x) →∞ (x →∞), then Kρ

(
a(x)

)
∼ Kρ

(
b(x)

)
(x →∞).

Lemma 2. For µ > 0 we have supx≤y xµ`(x) ∼ yµ`(y) (y →∞).

Lemma 3. (Karamata’s Theorem) Let f be positive and locally bounded in [a,∞)
and σ > −ρ. Then the following are equivalent

(i) f ∈ Kρ; (ii)
xσf(x)

x∫
a

tσf(t)
t

dt

→ σ + ρ (x →∞).

Lemma 4. (Vuilleumier [5]) If
∑

k≤n

qnk → 1 (n → ∞) and there exists ε > 0

such that
∑

k≤n

k−ε|qnk| = O(n−ε) then
∑

k≤n

`(k)qnk ∼ `(n) (n → ∞), for each

` ∈ K0.

Now, we define the Sequential Law by the following: Let {pk}∞k=1 be a
sequence of positive real numbers and put in (1) P{Xn = k} = pnk, where

pnk :=
pk∑

m≤n

pm
, k = 1, 2, . . . , n.

We study the asymptotic behavior of E
(
Kρ(Xn)

)
with respect to E(Xn) and show

that (2) holds with cρ 6= 1.
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3. THE RESULTS

Throughout the rest of the paper we suppose that lim
n

1
n

E(Xn) exists. Hence,

if lim
n

1
n

E(Xn) = c it is evident that c ∈ [0, 1], and we have to deal with three cases:

0 < c < 1, c = 0, c = 1.

Proposition 1. For 0 < c < 1 and µ > − c

1− c
the following are equivalent

(3) (i)
E(Xn)

n
→ c; (ii)

E(Xµ
n )

nµ
→ c

µ + c(1− µ)
(n →∞).

Proof. Denote C(y) :=
∑
k≤y

pk. Then Abel’s partial summation gives

(4)
∑
k≤y

kσpk = yσC(y)− σ
y∫
1

tσ−1C(t) dt, σ ∈ R.

Putting n = [y] in lim
n

1
n

E(Xn) = c and σ = 1 in (4), we obtain:

y∫
1

C(t) dt
/(

yC(y)
)
→ 1− c (y →∞).

Therefore, Lemma 3 gives C(y) ∈ Kc/(1−c).

Applying again this lemma with ρ =
c

1− c
, σ = µ, from (4) we get that

∑
k≤y

kµpk

yµC(y)
= 1− µ

y∫
1

tµ−1C(t) dt

yµC(y)
→ 1− µ

1

µ +
c

1− c

=
c

µ + c(1− µ)
(y →∞),

which gives the right-hand side of (3) with y = n.

Conversely, supposing the validity of

1
nµ

E(Xµ
n ) → c

µ + c(1− µ)
(n →∞)

with n = [y], then (4) gives

yµC(y)
/ y∫

1

tµ−1C(t) dt → µ +
c

1− c
(y →∞)

i.e. by Lemma 3, C(y) ∈ Kc/(1−c). Using again Lemma 3. with σ = 1, f := C we
obtain the left-hand side of (3).

The case c = 1 needs a different approach.
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Proposition 2. For each µ ∈ R, the following are equivalent

(i) E(Xn) ∼ n; (ii) E(Xµ
n ) ∼ nµ (n →∞).

Proof. The condition
1
n

E(Xn) → 1 (n →∞) implies

(5)
y∫
1

C(t) dt
/(

yC(y)
)
→ 0 (y →∞).

Denote by A the class of functions C(y) satisfying (5). We have

Proposition 2.1. The following are equivalent

(i) C(y) ∈ A; (ii) yσC(y) ∈ A,

for each σ ∈ R.

For the proof we need two lemmas below.

Lemma 2.1. If C(y) ∈ A then yσC(y) →∞, (y →∞) for any fixed σ ∈ R.

Proof. Since yC(y)
/ y∫

1

C(t) dt →∞ (y →∞), we can find y0 > 1 such that

(6) yC(y)
/ y∫

1

C(t) dt > |σ|+ 2, y > y0,

i.e.

(7) D

(
log

y∫
1

C(t) dt

)
>
|σ|+ 2

y
, y > y0.

Integrating (7) over [y0, y], we obtain
y∫
1

C(t) dt > c
(
y0, |σ|

)
y|σ|+2, y > y0

i.e. taking in account (6),

yσC(y) > c′
(
y0, |σ|

)
yσ+|σ|+1, y > y0,

and the assertion follows.

Lemma 2.2. If C(y) ∈ A, then
y∫
1

tσC(t) dt ∼ yσ
y∫
1

C(t) dt (y →∞) for any fixed

σ ∈ R.

Proof. According to Lemma 2.1 and (5), we have
y∫
1

tσC(t) dt

yσ
y∫
1

C(t) dt

→
D

(
y∫
1

tσC(t) dt

)
D

(
yσ

y∫
1

C(t) dt

) =
1

1 + σ

y∫
1

C(t) dt

yC(y)

→ 1 (y →∞),
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where D denotes d/dy.

Proof of Proposition 2.1.
If C(y) ∈ A then, according to Lemma 2.2,

y∫
1

tσC(t) dt

yσ+1C(y)
=

y∫
1

C(t) dt

yC(y)

y∫
1

tσC(t) dt

yσ
y∫
1

C(t) dt

→ 0 (y →∞),

i.e. yσC(y) ∈ A, ∀σ ∈ R.
Conversely, if for some σ ∈ R, yσC(y) ∈ A then

y∫
1

C(t) dt

yC(y)
=

y∫
1

t−σ
(
tσC(t) dt

)
yC(y)

∼
y−σ

y∫
1

tσC(t) dt

yC(y)
=

y∫
1

tσC(t) dt

yσ+1C(y)
→ 0 (y →∞),

i.e. C(y) ∈ A.

Using Proposition 2.1 and the fact

∑
k≤y

kσpk

yσC(y)
= 1− σ

y∫
1

tσ−1C(t) dt

yσC(y)

with σ = 1 and σ = µ, the proof of the Proposition 2 readily follows.
Propositions 1 and 2 are basic for the estimation of E

(
Kµ(Xn)

)
. Namely,

putting in Lemma 4,

qnk :=
µ + c(1− µ)

cC(n)

(k

n

)µ

pk, 0 < c < 1, δ > 0, µ > δ − c

1− c
,

Proposition 1 gives
∑

k≤n

qnk → 1 (n → ∞), and the condition from Lemma 4 is

satisfied with ε = δ/2. Thus we have

Proposition 3. For 0 < c < 1, δ > 0, µ > δ − c

1− c
, E(Xn) ∼ cn (n → ∞),

implies
E

(
Xµ

n`(Xn)
)
∼ c

µ + c(1− µ)
nµ`(n) (n →∞).

In the same way, using the Proposition 2, we get

Proposition 4. If E(Xn) ∼ n (n →∞), then

E
(
Xµ

n`(Xn)
)
∼ nµ`(n) (n →∞),

for any µ ∈ R.
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In the case c = 0, Lemma 3 gives C(y) ∈ K0 and we have

(8) ∀µ > 0 : E(Xµ
n ) = o(nµ) (n →∞).

Hence,

Proposition 5. If
1
n

E(Xn) → 0 (n →∞), then

E
(
Xµ

n`(Xn)
)

= o
(
nµ`(n)

)
(n →∞),

for any µ ∈ R+, ` ∈ K0.

Proof. Applying Lemma 2 and (8), we get

E
(
Xµ

n`(Xn)
)

nµ`(n)
= O

(
sup
k≤n

(
kµ/2`(k)

)) E(Xµ/2
n )

nµ`(n)

= O
(
nµ/2`(n)

) o(nµ/2)
nµ`(n)

= o(1) (n →∞).

It is evident that, summarising results from Propositions 3, 4 and 5, for the
generalised moments of positive order we can formulate the following

Proposition 6. If
1
n

E(Xn) → c, (n →∞), c > 0, then

E
(
Xµ

n`(Xn)
)
∼ c1−µ

µ + c(1− µ)
(
E(Xn)

)µ
`
(
E(Xn)

)
, µ ∈ R+, ` ∈ K0 (n →∞);

therefore giving an answer to the question posed in (2) in the case of the sequential
law.
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