COMPLETE MONOTONICITY PROPERTIES FOR A RATIO OF GAMMA FUNCTIONS

Chao-Ping Chen

Define for $x>0$

$$
F(x)=\frac{\Gamma(2 x)}{x \Gamma^{2}(x)} \text { and } G(x)=\frac{\Gamma(2 x)}{\Gamma^{2}(x)} .
$$

In this paper, we consider the logarithmically complete monotonicity properties for the functions F and $1 / G$.

The gamma function is defined for $\operatorname{Re} z>0$ by

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t \tag{1}
\end{equation*}
$$

The psi or digamma function, the logarithmic derivative of the gamma function, can be expressed as

$$
\begin{equation*}
\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-\gamma+\int_{0}^{\infty} \frac{e^{-t}-e^{-z t}}{1-e^{-t}} \mathrm{~d} t \tag{2}
\end{equation*}
$$

where $\gamma=0.57721566490153286 \ldots$ is the EULER-MASCHERONI constant.
In 1997, Merkle [1] showed that the function $F(x)=\frac{\Gamma(2 x)}{x \Gamma^{2}(x)}$ is strictly log-convex and the function $G(x)=\frac{\Gamma(2 x)}{\Gamma^{2}(x)}$ is strictly log-concave on $(0, \infty)$. In this paper, we extend the results given by Merkle; we consider the logarithmically complete monotonicity properties for the functions F and $1 / G$. Recall that a function f is said to be completely monotonic on an interval I, if f has derivatives of all orders on I and satisfies

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0 \quad(x \in I ; n=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

If the inequality (3) is strict, then f is said to be strictly completely monotonic on I.

Definition. A positive function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\ln f$ satisfies

$$
\begin{equation*}
(-1)^{n}(\ln f(x))^{(n)} \geq 0 \quad(x \in I ; n=1,2, \ldots) \tag{4}
\end{equation*}
$$

If inequality (4) is strict for all $x \in I$ and for all $n \geq 1$, then f is said to be strictly logarithmically completely monotonic.

This definition was introduced in [2] by F. Qi and B.-N. Guo. Moreover, the authors showed that a (strictly) logarithmically completely monotonic function must be (strictly) completely monotonic.

The purpose of this paper is to establish the following result.
Theorem. Let $I=(0,+\infty)$ and let $F(x)=\frac{\Gamma(2 x)}{x \Gamma^{2}(x)}, \quad G(x)=\frac{\Gamma(2 x)}{\Gamma^{2}(x)}, \quad x \in I$.
Then we have
(A) $(\ln F(x))^{\prime}>0, x \in I$,
(B) $(-1)^{n}(\ln F(x))^{(n)}>0$ for $x \in I$ and $n=2,3, \ldots$,
(C) The function $1 / G$ is strictly logarithmically completely monotonic on I.

Proof. Using the duplication formula and the translation formula for the gamma function

$$
\begin{equation*}
\Gamma(2 x)=\frac{2^{2 x-1}}{\sqrt{\pi}} \Gamma(x) \Gamma(x+1 / 2) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma(x+1)=x \Gamma(x), \tag{6}
\end{equation*}
$$

we conclude that

$$
F(x)=\frac{2^{2 x-1} \Gamma(x+1 / 2)}{\sqrt{\pi} \Gamma(x+1)}
$$

Taking logarithm and differentiation yields

$$
\begin{aligned}
(\ln F(x))^{\prime} & =2 \ln 2+\psi(x+1 / 2)-\psi(x+1) \\
& =2 \ln 2+\int_{0}^{\infty} \frac{e^{-(x+1) t}-e^{-(x+1 / 2) t}}{1-e^{-t}} \mathrm{~d} t \\
& =2 \ln 2-\int_{0}^{\infty} \frac{e^{-x t}}{1+e^{t / 2}} \mathrm{~d} t
\end{aligned}
$$

and therefore

$$
(-1)^{n}(\ln F(x))^{(n)}=\int_{0}^{\infty} \frac{t^{n-1}}{1+e^{t / 2}} e^{-x t} \mathrm{~d} t>0 \quad(x>0 ; n=2,3, \ldots)
$$

Clearly, $(\ln F(x))^{\prime \prime}>0$, and then the function $x \mapsto(\ln F(x))^{\prime}$ is strictly increasing
on $(0, \infty)$, which implies for $x>0$

$$
\begin{aligned}
(\ln F(x))^{\prime}>(\ln F(x))_{x=0}^{\prime} & =2 \ln 2-\int_{0}^{\infty} \frac{1}{1+e^{t / 2}} \mathrm{~d} t \\
& =2 \ln 2+2 \int_{0}^{\infty} \frac{1}{1+e^{-t / 2}} \mathrm{~d}\left(1+e^{-t / 2}\right)=0
\end{aligned}
$$

Using (5) and (6) we conclude that

$$
G(x)=\frac{2^{2 x-1} \Gamma(x+1 / 2)}{\sqrt{\pi} \Gamma(x)} .
$$

Taking logarithm and differentiation yields

$$
\begin{aligned}
(\ln (1 / G(x)))^{\prime} & =-2 \ln 2-\psi(x+1 / 2)+\psi(x) \\
& =-2 \ln 2-\int_{0}^{\infty} \frac{e^{-x t}-e^{-(x+1 / 2) t}}{1-e^{-t}} \mathrm{~d} t \\
& =-2 \ln 2-\int_{0}^{\infty} \frac{e^{-x t}}{1+e^{-t / 2}} \mathrm{~d} t<0
\end{aligned}
$$

and therefore

$$
(-1)^{n}(\ln (1 / G(x)))^{(n)}=\int_{0}^{\infty} \frac{t^{n-1}}{1+e^{-t / 2}} e^{-x t} \mathrm{~d} t>0 \quad(x>0 ; n=2,3, \ldots)
$$

The proof is complete.

REFERENCES

1. M. Merkle: On log-convexity of a ratio of gamma functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 8 (1997), 114-119.
2. Feng Qi, Bai-Ni Guo: Complete Monotonicities of Functions Involving the Gamma and Digamma Functions. RGMIA Res. Rep. Coll., 7 (2004), no. 1, Art. 8. Available online at http://rgmia.vu.edu.au/v7n1.html.
