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AN OSTROWSKI TYPE INEQUALITY
FOR CONVEX FUNCTIONS

S. S. Dragomir

An Ostrowski type integral inequality for convex functions and applications
for quadrature rules and integral means are given. A refinement and a coun-
terpart result for Hermite–Hadamard inequalities are obtained and some
inequalities for pdf’s and (HH)−divergence measure are also mentioned.

1. INTRODUCTION

The following result is known in the literature as Ostrowski’s inequality [1].

Theorem 1. Let f : [a, b] → R be a differentiable mapping on (a, b) with the
property that |f ′(t)| ≤ M for all t ∈ (a, b). Then

(1.1)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
1

4
+

(
x− a + b

2

)2

(b− a)2

 (b− a) M

for all x ∈ [a, b].
The constant 1/4 is the best possible in the sense that it cannot be replaced

by a smaller constant.
A simple proof of this fact can be done by using the identity:

(1.2) f(x) =
1

b− a

∫ b

a

f(t) dt +
1

b− a

∫ b

a

p(x, t)f ′(t) dt, x ∈ [a, b],

where

p(x, t) :=

{
t− a if a ≤ t ≤ x

t− b if x < t ≤ b
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which holds for absolutely continuous functions f : [a, b] → R.

The following Ostrowski type result holds (see [2], [3] and [4]).

Theorem 2. Let f : [a, b] → R be absolutely continuous on [a, b]. Then, for all
x ∈ [a, b], we have:

(1.3)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣∣

≤



1
4

+

x− a + b

2
b− a

2 (b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p + 1)1/p

((
x− a

b− a

)p+1

+
(

b− x

b− a

)p+1
)1/p

(b− a)1/p ‖f ′‖q

if f ′ ∈ Lq [a, b] ,
1
p

+
1
q

= 1, p > 1;1
2

+

∣∣∣∣∣∣
x− a + b

2
b− a

∣∣∣∣∣∣
 ‖f ′‖1 ;

where ‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b], i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)|

and

‖g‖r :=
(∫ b

a

|g (t)|r dt

)1/r

, r ∈ [1,∞).

The constants 1/4, 1/(p+1)1/p and 1/2 respectively are sharp in the sense presented
in Theorem 1.

The above inequalities can also be obtained from Fink’s result in [5] on
choosing n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is
Hölder continuous, then one may state the result (see [6]):

Theorem 3. Let f : [a, b] → R be of r −H−Hölder type, i.e.,

(1.4) |f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] ,

where r ∈ (0, 1] and H > 0 are fixed. Then for all x ∈ [a, b] we have the inequality :

(1.5)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ H

r + 1

((
b− x

b− a

)r+1

+
(

x− a

b− a

)r+1
)

(b− a)r
.
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The constant 1/(r + 1) is also sharp in the above sense.
Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following

version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)
(see [7])

(1.6)

∣∣∣∣∣f (x)− 1
b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤
1

4
+

x− a + b

2
b− a

2 (b− a) L.

Here the constant 1/4 is also best.
Moreover, if one drops the continuity condition of the function, and assumes

that it is of bounded variation, then the following result may be stated (see [8]).

Theorem 4. Assume that f : [a, b] → R is of bounded variation and denote by
b∨
a

(f) its total variation. Then

(1.7)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
1

2
+

∣∣∣∣∣∣
x− a + b

2
b− a

∣∣∣∣∣∣
 b∨

a

(f)

for all x ∈ [a, b].
The constant 1/2 is the best possible.
If we assume more about f , i.e., f is monotonically increasing, then the

inequality (1.7) may be improved in the following manner [9] (see also [10]).

Theorem 5. Let f : [a, b] → R be monotonic nondecreasing. Then for all x ∈ [a, b],
we have the inequality:

(1.8)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt

∣∣∣∣∣
≤ 1

b− a

((
2x− (a + b)

)
f(x) +

∫ b

a

sgn(t− x)f(t) dt

)

≤ 1
b− a

(
(x− a)

(
f(x)− f(a)

)
+ (b− x)

(
f(b)− f(x)

))
≤

1
2

+

∣∣∣∣∣∣
x− a + b

2
b− a

∣∣∣∣∣∣
(f(b)− f(a)

)
.

All the inequalities in (1.8) are sharp and the constant 1/2 is the best possible.
For recent generalisations of Ostrowski inequality in various directions and

for n-time differentiable functions, see [14] and the research monograph [13] where
further references are provided.

In this paper we establish an Ostrowski type inequality for convex functions.
Applications for quadrature rules, for integral means, for probability distribution
functions, and for HH−divergences in Information Theory are also considered.
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2. THE RESULTS

The following theorem providing a lower bound for the Ostrowski difference∫ b

a
f(t) dt− (b− a)f(x) holds.

Theorem 6. Let f : [a, b] → R be a convex function on [a, b]. Then for any
x ∈ (a, b) we have the inequality:

(2.1)
1
2
(
(b− x)2f ′+(x)− (x− a)2f ′−(x)

)
≤
∫ b

a

f(t) dt− (b− a)f(x).

The constant 1/2 in the left hand side of (2.1) is sharp in the sense that it cannot
be replaced by a larger constant.

Proof. It is easy to see that for any locally absolutely continuous function f :
(a, b) → R, we have the identity

(2.2)
∫ x

a

(t− a)f ′(t) dt +
∫ b

x

(t− b)f ′(t) dt = f(x)−
∫ b

a

f(t) dt,

for any x ∈ (a, b) where f ′ is the derivative of f which exists a.e. on (a, b).
Since f is convex, then it is locally Lipschitzian and thus (2.2) holds. More-

over, for any x ∈ (a, b), we have the inequalities

(2.3) f ′(t) ≤ f ′−(x) for a.e. t ∈ [a, x]

and

(2.4) f ′(t) ≥ f ′+(x) for a.e. t ∈ [x, b].

If we multiply (2.3) by t− a ≥ 0, t ∈ [a, x], and integrate on [a, x], we get

(2.5)
∫ x

a

(t− a)f ′(t) dt ≤ 1
2

(x− a)2f ′−(x)

and if we multiply (2.4) by b− t ≥ 0, t ∈ [x, b], and integrate on [x, b], we also have

(2.6)
∫ b

x

(b− t)f ′(t) dt ≥ 1
2

(b− x)2f ′+(x).

Finally, if we subtract (2.6) from (2.5) and use the representation (2.2) we deduce
the desired inequality (2.1).

Now, assume that (2.1) holds with a constant C > 0 instead of 1/2, i.e.,

(2.7) C
(
(b− x)2f ′+(x)− (x− a)2f ′−(x)

)
≤
∫ b

a

f(t) dt− (b− a)f(x).

Consider the convex function f0(t) := k
∣∣∣t− a + b

2

∣∣∣, k > 0, t ∈ [a, b]. Then

f ′0+

(
a + b

2

)
= k, f ′0−

(
a + b

2

)
= −k, f0

(
a + b

2

)
= 0
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and ∫ b

a

f0(t) dt =
1
4

k(b− a)2.

If in (2.7) we choose f0 as above and x = (a + b)/2, then we get

C

(
1
4

(b− a)2k +
1
4

(b− a)2k
)
≤ 1

4
k(b− a)2,

which gives C ≤ 1/2, and the sharpness of the constant is proved.

Now, recall that the following inequality, which is well known in the literature
as the Hermite–Hadamard inequality for convex functions, holds:

(HH) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(t) dt ≤ f(a) + f(b)
2

.

The following corollary which improves the first Hermite–Hadamard in-
equality (HH) holds.

Corollary 1. Let f : [a, b] → R be a convex function on [a, b]. Then

(2.8) 0 ≤ 1
8

(
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

))
(b− a)

≤ 1
b− a

∫ b

a

f(t) dt− f

(
a + b

2

)
.

The constant 1/8 is sharp.
The proof is obvious by the above theorem. The sharpness of the constant is

obtained for f0(t) := k
∣∣∣t− a + b

2

∣∣∣ , t ∈ [a, b], k > 0.

When x is a point of differentiability, we may state the following corollary as
well.

Corollary 2. Let f be as in Theorem 6. If x ∈ (a, b) is a point of differentiability
for f, then

(2.9)
(

a + b

2
− x

)
f ′ (x) ≤ 1

b− a

∫ b

a

f(t) dt− f(x).

Remark 1. If f : I ⊆ R → R is convex on I and if we choose x ∈
a

I (
◦
I is the

interior of I), b = x + h

2
, a = x − h

2
, h > 0 is such that a, b ∈ I, then from (2.1)

we may write

(2.10) 0 ≤ 1
8

h2
(
f ′+(x)− f ′−(x)

)
≤
∫ x+ h

2

x−h
2

f(t) dt− hf(x),

and the constant 1/8 is sharp in (2.10).
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The following result providing an upper bound for the Ostrowski difference∫ b

a
f(t) dt− (b− a)f(x) also holds.

Theorem 7. Let f : [a, b] → R be a convex function on [a, b]. Then for any
x ∈ [a, b] , we have the inequality :

(2.11)
∫ b

a

f(t) dt− (b− a)f(x) ≤ 1
2
(
(b− x)2f ′−(b)− (x− a)2f ′+(a)

)
.

The constant 1/2 is sharp in the sense that it cannot be replaced by a smaller
constant.

Proof. If either f ′+(a) = −∞ or f ′− (b) = +∞, then the inequality (2.11) evidently
holds true.

Assume that f ′+(a) and f ′−(b) are finite.
Since f is convex on [a, b] , we have

(2.12) f ′(t) ≥ f ′+(a) for a.e. t ∈ [a, x]

and

(2.13) f ′(t) ≤ f ′−(b) for a.e. t ∈ [x, b].

If we multiply (2.12) by t−a ≥ 0, t ∈ [a, x], and integrate on [a, x], then we deduce

(2.14)
∫ x

a

(t− a)f ′(t) dt ≥ 1
2

(x− a)2f ′+(a)

and if we multiply (2.13) by b − t ≥ 0, t ∈ [x, b], and integrate on [x, b], then we
also have

(2.15)
∫ b

x

(b− t)f ′(t) dt ≤ 1
2

(b− x)2f ′−(b).

Finally, if we subtract (2.14) from (2.15) and use the representation (2.2), we
deduce the desired inequality (2.11).

Now, assume that (2.11) holds with a constant D > 0 instead of 1/2, i.e.,

(2.16)
∫ b

a

f(t) dt− (b− a)f(x) ≤ D
(
(b− x)2f ′−(b)− (x− a)2f ′+(a)

)
.

If we consider the convex function f0 : [a, b] → R, f0 (t) = k
∣∣∣t− a + b

2

∣∣∣ , then we

have f ′−(b) = k, f ′+(a) = −k and by (2.16) we deduce for x = a + b

2
that

1
4

k (b− a)2 ≤ D

(
1
4

k (b− a)2 +
1
4

k (b− a)2
)

,

giving D ≥ 1/2, and the sharpness of the constant is proved.
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The following corollary related to the Hermite–Hadamard inequality is
interesting as well.

Corollary 3. Let f : [a, b] → R be convex on [a, b]. Then

(2.17) 0 ≤ 1
b− a

∫ b

a

f(t) dt− f

(
a + b

2

)
≤ 1

8
(
f ′−(b)− f ′+(a)

)
(b− a)

and the constant 1/8 is sharp.

Remark 2. Denote B := f ′−(b), A := f ′+(a) and assume that B 6= A, i.e., f is not
constant on (a, b). Then

(b− x)2B − (x− a)2A = (B −A)
(

x−
(

bB − aA

B −A

))2

− AB

B −A
(b− a)2

and by (2.11) we get

(2.18)
∫ b

a

f(t) dt− (b− a)f(x)

≤ 1
2

(B −A)

((
x−

(
bB − aA

B −A

))2

− AB

(B −A)2
(b− a)2

)
for any x ∈ [a, b].

If A ≥ 0 then x0 = bB − aA

B −A
∈ [a, b] and by (2.18) we get, choosing x =

bB − aA

B −A
, that

(2.19) 0 ≤ 1
2

AB

B −A
(b− a) ≤ f

(
bB − aA

B −A

)
− 1

b− a

∫ b

a

f(t) dt,

which is an interesting inequality in itself.

Remark 3. If f : I ⊆ R → R is convex on I and if we choose x ∈
◦
I, b = x + h

2
,

a = x− h

2
, h > 0 is such that a, b ∈ I, then from (2.11) we deduce:

(2.20) 0 ≤
∫ x+ h

2

x−h
2

f(t) dt− hf(x) ≤ 1
8

h2

(
f ′−

(
x +

h

2

)
− f ′+

(
x− h

2

))
,

and the constant 1/8 is sharp.

3. THE COMPOSITE CASE

Consider the division In : a = x0 < x1 < · · · < xn−1 < xn = b and denote
hi := xi+1−xi, i = 0, n− 1. If ξi ∈ [xi, xi+1] (i = 0, n− 1 ) are intermediate points,
then we will denote by

(3.1) Rn (f ; In, ξ) :=
n−1∑
i=0

hif(ξi)

the Riemann sum associated to f, In and ξ.
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The following theorem providing upper and lower bounds for the remainder
in approximating the integral

∫ b

a
f(t) dt of a convex function f in terms of a general

Riemann sum holds.

Theorem 8. Let f : [a, b] → R be a convex function and In and ξ be as above.
Then we have:

(3.2)
∫ b

a

f (t) dt = Rn (f ; In, ξ) + Wn (f ; In, ξ) ,

where Rn (f ; In, ξ) is the Riemann sum defined by (3.1) and the remainder
Wn (f ; In, ξ) satisfies the estimate:

(3.3)
1
2

( n−1∑
i=0

(xi+1 − ξi)
2
f ′+(ξi)−

n−1∑
i=0

(ξi − xi)
2
f ′−(ξi)

)
≤ Wn(f ; In, ξ)

≤ 1
2

(
(b− ξn−1)

2
f ′−(b) +

n−1∑
i=1

(
(xi − ξi−1)2f ′−(xi)

−(ξi − xi)2f ′+(xi)
)
− (ξ0 − a)2f ′+(a)

)
.

Proof. If we write the inequalities (2.1) and (2.11) on the interval [xi, xi+1] and
for the intermediate points ξi ∈ [xi, xi+1], then we have

1
2

(
(xi+1 − ξi)2f ′+(ξi)− (ξi − xi)2f ′−(ξi)

)
≤
∫ xi+1

xi

f(t) dt− hif(ξi)

≤ 1
2

(
(xi+1 − ξi)2f ′−(xi+1)− (ξi − xi)2f ′+(xi)

)
.

Summing the above inequalities over i from 0 to n− 1, we deduce

(3.4)
1
2

n−1∑
i=0

(
(xi+1 − ξi)2f ′+(ξi)− (ξi − xi)2f ′−(ξi)

)
≤
∫ b

a

f(t) dt−Rn(f ; In, ξ)

≤ 1
2

(
n−1∑
i=0

(xi+1 − ξi)2f ′−(xi+1)−
n−1∑
i=0

(ξi − xi)2f ′+(xi)

)
.

However,
n−1∑
i=0

(xi+1 − ξi)2f ′−(xi+1) = (b− ξn−1)2f ′−(b) +
n−2∑
i=0

(
(xi+1 − ξi)2f ′−(xi+1)

)
= (b− ξn−1)2f ′−(b) +

n−1∑
i=1

(
(xi − ξi−1)2f ′−(xi)

)
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and
n−1∑
i=0

(ξi − xi)2f ′+(xi) =
n−1∑
i=1

(ξi − xi)2f ′+(xi) + (ξ0 − a)2f ′+(a)

and then, by (3.4), we deduce the desired estimate (3.3).
The following corollary may be useful in practical applications.

Corollary 4. Let f : [a, b] → R be a differentiable convex function on (a, b).
Then we have the representation (3.1) and the remainder Wn(f ; In, ξ) satisfies the
estimate:

(3.5)
n−1∑
i=0

(
xi + xi+1

2
− ξi

)
hif

′(ξi) ≤ Wn(f ; In, ξi)

≤ 1
2

(
(b− ξn−1)2f ′−(b)− (ξ0 − a)2f ′+(a)

)
+

n−1∑
i=1

(
xi −

ξi + ξi−1

2

)
(ξi − ξi−1)f ′(xi).

We may also consider the mid-point quadrature rule:

(3.6) Mn(f, In) :=
n−1∑
i=0

hif

(
xi + xi+1

2

)
.

Using Corollaries 1 and 2, we may state the following result as well.

Corollary 5. Assume that f : [a, b] → R is a convex function on [a, b] and In is a
division as above. Then we have the representation:

(3.7)
∫ b

a

f(x) dx = Mn(f, In) + Sn(f, In),

where Mn (f, In) is the mid-point quadrature rule given in (3.6) and the remainder
Sn(f, In) satisfies the estimates:

(3.8) 0 ≤ 1
8

n−1∑
i=0

(
f ′+

(
xi + xi+1

2

)
− f ′−

(
xi + xi+1

2

))
h 2

i

≤ Sn(f, In) ≤ 1
8

n−1∑
i=0

(
f ′−(xi+1)− f ′+(xi)

)
h 2

i .

The constant 1/8 is sharp in both inequalities.
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4. INEQUALITIES FOR INTEGRAL MEANS

We may prove the following result in comparing two integral means.

Theorem 9. Let f : [a, b] → R be a convex function and c, d ∈ [a, b] with c < d.
Then we have the inequalities

(4.1)
a + b

2
· f(d)− f(c)

d− c
− df(d)− cf(c)

d− c
+

1
d− c

∫ d

c

f(x) dx

≤ 1
b− a

∫ b

a

f(t) dt− 1
d− c

∫ d

c

f(x) dx

≤
f ′−(b)

(
(b− d)2 + (b− d)(b− c) + (b− c)2

)
6 (b− a)

−
f ′+(a)

(
(d− a)2 + (d− a)(c− a) + (c− a)2

)
6 (b− a)

.

Proof. Since f is convex, then for a.e. x ∈ [a, b], we have (by (2.9)) that

(4.2)
(

a + b

2
− x

)
f ′(x) ≤ 1

b− a

∫ b

a

f(t) dt− f(x).

Integrating (4.2) on [c, d] we deduce

(4.3)
1

d− c

∫ d

c

(
a + b

2
− x

)
f ′(x) dx ≤ 1

b− a

∫ b

a

f(t) dt− 1
d− c

∫ d

c

f(x) dx.

Since

1
d− c

∫ d

c

(
a + b

2
− x

)
f ′(x) dx

=
1

d− c

((
a + b

2
− d

)
f(d)−

(
a + b

2
− c

)
f(c) +

∫ d

c

f(x) dx

)

then by (4.3) we deduce the first part of (4.1).
Using (2.11), we may write for any x ∈ [a, b] that

(4.4)
1

b− a

∫ b

a

f(t) dt− f(x) ≤ 1
2 (b− a)

(
(b− x)2f ′−(b)− (x− a)2f ′+(a)

)
.

Integrating (4.4) on [c, d], we deduce
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(4.5)
1

b− a

∫ b

a

f(t) dt− 1
d− c

∫ d

c

f(x) dx

≤ 1
2 (b− a)

(
f ′−(b)

1
d− c

∫ d

c

(b− x)2 dx− f ′+(a)
1

d− c

∫ d

c

(x− a)2 dx

)
.

Since
1

d− c

∫ d

c

(b− x)2 dx =
(b− d)2 + (b− d)(b− c) + (b− c)2

3
and

1
d− c

∫ d

c

(x− a)2 dx =
(d− a)2 + (d− a)(c− a) + (c− a)2

3
,

then by (4.5) we deduce the second part of (4.1).

Remark 4. If we choose f(x) = xp, p ∈ (−∞, 0) ∪ [1,∞)\ {−1} or f (x) = 1/x
or even f(x) = − lnx, x ∈ [a, b] ⊂ (0,∞), in the above inequalities, then a great
number of interesting results for p−logarithmic, logarithmic and identric means
may be obtained. We leave this as an exercise to the interested reader.

5. APPLICATIONS FOR P.D.F.S

Let X be a random variable with the probability density function f : [a, b] ⊂
R → R+ and with cumulative distribution function F (x) = Pr (X ≤ x).

The following theorem holds.

Theorem 10. If f : [a, b] ⊂ R → R+ is monotonically increasing on [a, b], then we
have the inequality :

(5.1)
1
2
(
(b− x)2f+(x)− (x− a)2f−(x)

)
≤ b− E(X)− (b− a)F (x)

≤ 1
2
(
(b− x)2f−(b)− (x− a)2f+(a)

)
for any x ∈ (a, b), where f−(α) means the left limit in α while f+(α) means the
right limit in α and E(X) is the expectation of X.

The constant 1/2 is sharp in both inequalities.
The second inequality also holds for x = a or x = b.

Proof. Follows by Theorem 6 and 7 applied for the convex cdf function F (x) =∫ x

a
f(t) dt, x ∈ [a, b] and taking into account that∫ b

a

F (x) dx = b− E(X).

Finally, we may state the following corollary in estimating the probability
Pr
(
X ≤ a + b

2

)
.
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Corollary 6. With the above assumptions, we have

(5.2) b− E (X)− 1
8

(b− a)2
(
f−(b)− f+(a)

)
≤ Pr

(
X ≤ a + b

2

)
≤ b− E(X)− 1

8
(b− a)2

(
f+

(
a + b

2

)
− f−

(
a + b

2

))
.

6. APPLICATIONS FOR HH−DIVERGENCE

Assume that a set χ and the σ−finite measure µ are given. Consider the set
of all probability densities on µ to be

(6.1) Ω :=
{

p|p : Ω → R, p(x) ≥ 0,

∫
χ

p(x) dµ(x) = 1
}

.

Csiszár’s f−divergence is defined as follows [11]

(6.2) Df (p, q) :=
∫

χ

p(x)f
(

q(x)
p(x)

)
dµ(x), p, q ∈ Ω,

where f is convex on (0,∞). It is assumed that f(u) is zero and strictly convex
at u = 1. By appropriately defining this convex function, various divergences are
derived.

In [12], Shioya and Da-te introduced the generalised Lin-Wong f−diver-
gence Df

(
p,

1

2
p + 1

2
q
)

and the Hermite-Hadamard (HH) divergence

(6.3) Df
HH(p, q) :=

∫
χ

p2(x)
q(x)− p(x)

(∫ q(x)/p(x)

1

f(t) dt

)
dµ(x), p, q ∈ Ω,

and, by the use of the Hermite-Hadamard inequality for convex functions, proved
the following basic inequality

(6.4) Df

(
p,

1
2

p +
1
2

q

)
≤ Df

HH(p, q) ≤ 1
2

Df (p, q),

provided that f is convex and normalised, i.e., f(1) = 0.

The following result in estimating the difference

Df
HH(p, q)−Df

(
p,

1
2

p +
1
2

q

)
holds.
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Theorem 11. Let f : [0,∞) → R be a convex function and p, q ∈ Ω. Then we have
the inequality:

(6.5) 0 ≤ 1
8

(
Df ′+·| ·+1

2 |(p, q)−Df ′−·| ·+1
2 |(p, q)

)
≤ Df

HH(p, q)−Df

(
p,

1
2

p +
1
2

q

)
≤ 1

8
Df ′−·(·−1)(p, q).

Proof. Using the double inequality

0 ≤ 1
8

(
f ′+

(
a + b

2

)
− f ′−

(
a + b

2

))
|b− a|

≤ 1
b− a

∫ b

a

f(t) dt− f

(
a + b

2

)
≤ 1

8
(
f−(b)− f ′+(a)

)
(b− a)

for the choices a = 1, b = q(x)

p(x)
, x ∈ χ, multiplying with p(x) ≥ 0 and integrating

over x on χ we get

0 ≤ 1
8

∫
χ

(
f ′+

(
p(x) + q(x)

2p(x)

)
− f ′−

(
p(x) + q(x)

2p(x)

))
|q(x)− p(x)|dµ(x)

≤ Df
HH(p, q)−Df

(
p,

1
2

p +
1
2

q

)
≤ 1

8

∫
χ

(
f ′−

(
q(x)
p(x)

)
− f ′+(1)

)(
q(x)− p(x)

)
dµ(x),

which is clearly equivalent to (6.5).

Corollary 7. With the above assumptions and if f is differentiable on (0,∞), then

(6.6) 0 ≤ Df
HH(p, q)−Df

(
p,

1
2

p +
1
2

q

)
≤ 1

8
Df ′·(·−1)(p, q).
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