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INEQUALITIES OF SOME TRIGONOMETRIC
FUNCTIONS

Chao-Ping Chen, Feng Qi

By using two identities and two inequalities relating to Bernoulli’s and
Euler’s numbers and power series expansions of cotangent function, secant
function, cosecant function and logarithms of functions involving sine func-
tion, cosine function and tangent function, six inequalities involving tangent
function, cotangent function, sine function, secant function and cosecant func-
tion are established.

1. INTRODUCTION

The Bernoulli’s numbers Bn and Euler’s numbers En for nonnegative
integers n are repectively defined in [1, 6] and [25, p. 1 and p. 6] by
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The following power series expansions are well known and can be found in
[1] and [6, pp. 227–229]:

(3) cotx =
1
x
−
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k=1

22kBk

(2k)!
x2k−1, 0 < |x| < π,
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The following inequalities relating to Bernoulli’s numbers and Euler’s
numbers are given in [1, p. 805] and [11]:
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It is also well known [6, p. 231] that
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1
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The Becker-Stark’s inequality ([2], [16, p. 156] and [11] states that for
0 < x < 1,
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For x ∈ (0, π/6), Djokvie’s inequality states [11] that

(13) x +
1
3

x3 < tanx < x +
4
9

x3.

In [3], the following inequalities are proved: For x ∈ (0, π/2) and n ∈ N,
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If taking n = 1 in (14), for 0 < x < 3
π

√
5(π2 − 8)/38, the left hand side

inequality in (14) is better than the left hand side inequality in (12). If taking
n = 2 in (14), we obtain
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)
.

The constants 2/15 and (2/π)4 in (16) are the best possible. Since
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,

the inequalities in (16) are better than those in (13).
In recent years, there is a amounts of literature on inequalities involving

trigonometric functions [4, 5, 7, 8, 10, 18, 19, 22], estimates of remainders of
elementary functions [15, 17] and related questions [20, 23].

The purpose of this paper is to prove the following six inequalities of some
trigonometric functions.

Theorem 1. For 0 < x < 1,
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The constants 2/π and π/3 in (17), π2/8 and 4/π in (18), π/6 and 2/π in (19) are
the best possible.

For 0 < |x| < 1, we have
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)
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12
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.

The constants π2/6, π2/8 and π2/12 are the best possible.

Remark 1. Notice that there are a large number of particular inequalities relating
to trigonometric functions in [11, 16].
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2. PROOF OF THEOREM 1

The proof of inequality (17). The following inequalities are deduced from (9):
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Similarly, by using (24), we have for 0 < x < 1,
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From L’Hospital rule, it follows that
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Thus, the constants 2/π and π/3 in (17) are the best possible.

Proof of inequality (18). The following inequalities follow from (10):
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and, by using (30), we have for 0 < |x| < 1,
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Further, since

(33) lim
x→0+

1− x2

x2

(
sec

πx

2
− 1

)
=

π2

8
, (34) lim

x→1−

1− x2

x2

(
sec

πx

2
− 1

)
=

4
π

,

the constants π2/8 and 4/π in (18) are the best possible.

Proof of inequality (19). The following inequalities can be deduced from (9):
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and, employing (36) yields that for 0 < x < 1,

(38)

cosec (πx)− 1
πx

=
∞∑

n=1

2(22n−1 − 1)π2n−1Bn

(2n)!
x2n−1

=
π

6
x +

∞∑
n=2

2(22n−1 − 1)π2n−1Bn

(2n)!
x2n−1

>
π

6
x +

π

6

∞∑
n=2

x2n−1 =
π

6

∞∑
n=1

x2n−1 =
π

6
· x

1− x2
.

It is easy to see that
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Therefore, the constants π/6 and 2/π in (19) are the best possible.

The proof of inequality (20). It follows from (9) that
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Replacing x by πx in (6) and using (41), we obtain for 0 < |x| < 1,,
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The proof of inequality (21). It follows from (9) that
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Thus, the constant π2/8 in (21) is the best possible.

The proof of inequality (22). The following inequality is deduced from (9):
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Direct computing yields

(49) lim
x→0+

1− x2

x2
ln

(
tan(πx/2
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=

π2
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.

Thus, the constant π2/12 in (22) is the best possible.

Remark 2. Motivated by ideas in [24], Bernoulli’s numbers and polynomials
and Euler’s numbers and polynomials are generalized or extended and basic pro-
perties and recurrence formulas of them are established in [9, 12, 13, 14, 21] step
by step.

REFERENCES

1. M. Abramowitz, I. A. Stegun (Eds): Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied

Mathematics Series 55, 4th printing, Washington, 1965, 1972.

2. M. Becker, E. L. Stark: On a hierachy of quolynomial inequalities for tan x, Univ.

Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 602–633 (1978), 133–138.

3. Ch.-P. Chen, F. Qi: A double inequality for remainder of power series of tangent

function. Tamkang J. Math., 34, No. 3 (2003), 351–355. RGMIA Res. Rep. Coll., 5

(2002), suppl., Art. 2. Available online at http://rgmia.vu.edu.au/v5(E).html.

4. Ch.-P. Chen, F. Qi: On two new proofs of Wilker’s inequality. Studies in College
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