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ON THE RELATION BETWEEN THE DIGITAL

SUM AND PRODUCT OF A NATURAL

NUMBER

Laurenţiu Panaitopol

For an integer n ≥ 1 one denotes by sb(n) the sum of its digits and by pb(n)

the product of its digits with respect to the basis b. In the present paper,

one compares sb(n) and pb(n) in the general case, as well as in several special

cases, e.g., when n has a given number of digits or when n is the square of a

natural number.

1. INTRODUCTION

For an integer n ≥ 1 one denotes by sb(n) the sum of its digits and by pb(n)
the product of its digits with respect to the basis b. When b = 10, we use the
notation s(n) and p(n), respectively.

Several problems have been raised in connection with the digits of a number.
Some of them have already been solved, but there are still open problems in this
field. In this connection, we recall the conjecture

(1) s(2n) < 2n for all n > 3,

which is cited in [1].
A nice problem due to A. Cohn is reproduced by Pólya and Szegö in [2].

Cohn proved the following:

If a prime p is expressed in the decimal system as

(2) p =
n∑

k=0

ak10k (0 ≤ ak ≤ 9),
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then the polynomial
n∑

k=0

akXk is irreducible in Z[X].

This example shows once again that the interest in this field is not without
importance.

The problems we are going to approach in the present paper concern the
simultaneous taking into account of the numbers s(a) and p(a), and the pointing
out of a relationship between them in an appropriate framework.

2. ON rb(n) = pb(n)/sb(n) AND db(n) = pb(n) − sb(n)

For b ≥ 2, we denote rb(n) = pb(n)/sb(n) and db(n) = pb(n)− sb(n). We first
study the sequence

(
rb(n)

)
n≥1

.

For b = 2, the sequence
(
r2(n)

)
n≥1

contains a subsequence consisting of 0
and the subsequence (1/k)k≥1. Thus lim

n→∞
r2(n) = 0.

For b ≥ 3 the sequence
(
rb(n)

)
n≥1

has no limit. More precisely we have:

Property 1. For b ≥ 3, the set of limit points of the sequence
(
rb(n)

)
n≥1

is [0,∞].

Proof. Consider the number with k digits xk = 11 . . . 1. We have rb(xk) = 1/k

hence lim
k→∞

rb(xk) = 0.

For the number with k digits yk = 22 . . . 2 we have rb(yk) = 2k/(2k), whence
lim

k→∞
rb(yk) = ∞.

Now let 0 < α < ∞ and k such that 2k > 2αk. Consider zk = 11 . . . 122 . . . 2,
where the digit 2 occurs k times, while the digit 1 occurs h times, where h =
[2k/α− 2k]. It follows that rb(zk) = 2k/(h + 2k). Since 2k/α− 1 < h + 2k < 2k/α,
we have α < rb(z) < α/(1− α/2k), whence lim

k→∞
rb(zk) = α.

For n ≥ 1 and b ≥ 2 we denote db(n) = pb(n)−sb(n). If b = 2 then db(n) ≤ 0.

For b ≥ 3, it is easy to see that we have db(n) > 0 for infinitely many values of n,
and db(n) < 0 also for infinitely many values of n. In connection with this remark,
we will determine the extrema of db(n) as a function of the number of digits of n.

Property 2. If b ≥ 3 and the number n ≥ 1 has m digits, then

(3) 0 ≥ d2(n) ≥ 1−m for m ≥ 1

and

(4) (b− 1)m −m(b− 1) ≥ db(n) ≥ (1−m)(b− 1) for m ≥ 3.

Proof. If b = 2 and m = 1, then n = 1 and d2(n) = 1− 1 = 0, hence (3) holds in
this case. If b = 2 and m ≥ 2 then there can arise one of the following cases:
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(i) n = 11 . . . 1, whence d2(n) = 1−m.

(ii) n has k digits 0 (1 ≤ k ≤ m− 1). In this case d2(n) = −s2(n) = k −m.

In both cases, the relation (3) holds.
Next let b ≥ 3 and m ≥ 3. If pb(n) = 0, then db(n) = −sb(n) < 0 ≤

(b− 1)m −m(b− 1).
If pb(n) > 0, then sb(n) ≥ m and db(n) ≤ pb(n)−m.
If not all of the digits of n are b− 1, then db(n) ≤ (b− 1)m−1(b− 2)−m. In

this case we have (b− 1)m−1(b− 2)−m ≤ (b− 1)m −m(b− 1), which is equivalent
to m(b − 2) ≤ (b − 1)m−1. The latter relation holds because for m ≥ 4 we have
b−1 > b−2 and (b−1)m−2 ≥ 2m−2 ≥ m, while for m = 3 we have (b−1)2 ≥ 3(b−2),
which reduces to b2 − 5b + 7 > 0.

If each digit of n equals b− 1, then db(n) = (b− 1)m−m(b− 1), and thus the
inequality db(n) ≤ (b− 1)m −m(b− 1) is completely proved.

If pb(n) = 0, then db(n) = −sb(n) ≥ −(m− 1)(b− 1).
Now let pb(n) > 0 and x, y digits of b. It follows that sb(n) ≤ (m − 2)(b −

1) + x + y, where x, y ∈ 1, b− 1. We have db(n) ≥ xy − (m − 2)(b − 1) − x − y

= (x− 1)(y − 1)− (m− 2)(b− 1)− 1 ≥ −(m− 2)(b− 1)− 1 > (1−m)(b− 1).

3. ON THE EQUALITY sb(n) = pb(n)

We are going to approach the case rb(n) = 1, that is, db(n) = 0. If b = 2,
n ≥ 2 and n has m digits, then for n = 11 . . . 1 we have sb(n) = m > 1 = pb(n). On
the other hand, if n has k digits equal to 0 (1 ≤ k ≤ m − 1), then sb(n) = m − k

> 0 = pb(n), hence the equality sb(n) = pb(n) holds only in the case n = 1.
In the case b ≥ 3 we have:

Property 3. If b ≥ 3, then for infinitely many values of m there exist natural
numbers n with m digits such that sb(n) = pb(n), and also for infinitely many
values of m we have sb(n) 6= pb(n) for each natural number n with m digits.

Proof. For m = 2k − k, we consider the number

n = 22 . . . 2︸ ︷︷ ︸
k

11 . . . 1︸ ︷︷ ︸
2k−2k

and then sb(n) = 2k + 2k − 2k = 2k = pb(n).
For the other part of the proof we will suppose that that for every m there

exists n such that sb(n) = pb(n). It is obvious that such a number n has no
digit equal to 0. Denote by xk the number of digits of n which are equal to k

(1 ≤ k ≤ b− 1). We then have

(5) x1 + x2 + · · ·+ xb−1 = m.
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The equality pb(n) = sb(n) can be written under the form

(6) pb(n) =
b−1∏
i=2

ixi = m +
b−1∑
i=2

(i− 1)xi.

We choose m =
(
(b − 1)!

)k and then (6) implies that
b−1∏
i=2

ixi > m =
b−1∏
i=2

ik. Hence

there exists j ∈ 2, b− 1 such that xj > k. It follows that jk divides pb(n), hence
b−1∑
i=2

(i− 1)xi

...jk, which implies that

b−1∑
i=2

(i− 1)xi ≥ jk ≥ 2k.

Consequently
b−1∑
i=2

(i− 1)xi ≤ (b− 2)
b−1∑
i=2

xi, and thus

(7) (b− 2)
b−1∑
i=2

xi ≥ 2k.

Furthermore we have the inequalities sb(n) ≤ m(b− 1) and

pb(n) ≥
b−1∏
i=2

ixi ≥ 2
b−1∑
i=2

xi

and since sb(n) = pb(n), we get 2
b−1∑
i=2

xi

≤ m(b− 1).

Taking into account (7), it follows that 22k/(b−2) ≤ (b− 1)
(
(b− 1)!

)k, that is,

(8)
2k

b− 2
log 2 ≤ log(b− 1) + k log(b− 1)!.

Since lim
k→∞

2k/k = ∞, it follows that the inequality (8) is false for k big enough.

Consequently, for m =
(
(b− 1)!

)k and k big enough we have sb(n) 6= pb(n).

4. SPECIAL CASES

We will consider two special sequences (xn)n≥1 of natural numbers, for which
we will study properties of sb(xn) and pb(xn).

Property 4. Let b ≥ 2. If (yn)n≥1 is an arithmetic progression of positive numbers
and xn = [yn], then there exist infinitely many indices n1, n2, . . . , nk, . . . for which
the sequences

(
sb(xnk

)
)
k≥1

and
(
pb(xnk

)
)
k≥1

are constant.
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Proof. Let ym = αm + β. For α = 0 we have xm = [β], and the conclusion is
obvious.

For α > 0, we choose mh = [(bh + α− β)/α]. Then

α

(
bh + α− β

α
− 1

)
+ β < ymk

≤ α

(
bh + α− β

α

)
+ β

that is, bh < ymk
≤ bh + α, which implies bh ≤ xmh

≤ bh + [α]. Consequently for
xmh

= bh + i, where 0 ≤ i ≤ [α] and bh−1 > i, we deduce that xmh
has at least one

digit equal to 0, whence pb(xmh
) = 0 for h ≥ M . In these conditions, we also have

s(xmh
) = s(bh + i) = 1 + s(i). Since i takes only finitely many values, there exists

a subsequence
n1, n2 . . . , nk, . . .

of (mh)h≥M such that sb(xnk
) has the same value for all k ≥ 1; moreover, as we

have already seen pb(xnk
) = 0.

We now consider the case when xn = n2, but we take the basis to be 10.

Proposition 5. For every m ≥ 2 there exist natural numbers n1 and n2 such that
both n1 and n2 have m digits and

(9) p(n 2
1 ) < s(n 2

1 )

and

(10) p(n 2
2 ) > s(n 2

2 ).

Proof. If m = 2k + 1, k ≥ 2, we choose n1 = 10k and then n 2
1 = 102k has 2k + 1

digits and p(n 2
1 ) = 0, while s(n 2

1 ) = 1.
If m = 2k, k ≥ 2, we choose n1 = 5 · 10k−1 + 1, and then n 2

1 = 25 · 102k−2

+10k + 1 has 2k digits and p(n 2
1 ) = 0, while s(n 2

1 ) = 9.
For m = 2, we can choose n1 = 4 and then s(n 2

1 ) = 7 > 6 = p (n 2
1 ). If

m = 3, we can take n1 = 10, and then s(n 2
1 ) = 1 > 0 = p (n 2

1 ).
To prove the inequality (10) let us consider m = 2k k ≥ 3, and n2 = (10k

+2)/3. We have
n2

2 = 11 . . . 1︸ ︷︷ ︸
k

55 . . . 5︸ ︷︷ ︸
k−1

6

and p(n 2
2 ) = 6 · 5k−1 and s(n 2

2 ) = k + 5(k − 1) + 6 = 6k + 1. It follows that
p(n 2

2 ) > s(n 2
2 ).

For m = 2k + 1, k ≥ 3, we choose n2 = (4 · 10k + 8)/3 and then

n 2
2 = 1 77 . . . 7︸ ︷︷ ︸

k−2

84 88 . . . 8︸ ︷︷ ︸
k−2

96
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and we have p(n 2
2 ) = 7k−2 · 8k−1 · 4 · 6 · 9 and

s(n 2
2 ) = 1 + 7(k − 2) + 8 + 4 + 8(k − 2) + 9 + 6 = 15k − 2,

hence p(n 2
2 ) > s(n 2

2 ). Finally for m = 2 we can take n2 = 5, for m = 3 we can
take n2 = 12, for m = 4 we can take n2 = 34 and for m = 5 we can take n2 = 111.

Open problem. For every b ≥ 3 and every m ≥ 2 there exist natural numbers
n1, n2, n3 such that each of the numbers n 2

1 , n 2
2 , n 2

3 has m digits and

pb(n 2
1 ) < sb(n 2

1 ), pb(n 2
2 ) > sb(n 2

2 ), pb(n 2
3 ) = sb(n 2

3 ).
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