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APPROXIMATION PROPERTIES OF CERTAIN
LINEAR POSITIVE OPERATORS IN POLYNO-
MIAL WEIGHTED SPACES OF FUNCTIONS
OF ONE AND TWO VARIABLES

Zbigniew Walczak

We consider certain linear positive operators in polynomial weighted spaces
of functions of one and two variables and study approximation properties of
these operators, including theorems on the degree of approximation.

1. APPROXIMATION OF FUNCTION OF ONE VARIABLE

1.1. Introduction. Approximation properties of the SZASZ-MIRAKYAN operators

o0 k
(1) Sn(f;x) :=e™ ™" Z (nz) f(%) (z € Rg = [0,+0), n € N),

k!
k=0

in polynomial weighted spaces C,, were examined in [1]. The space Cp, p € Ny :=
{0,1,2,...}, considered in [1] is associated with the weight function

(2) wo(z) =1, wy(z):=(1+2P)", if p>1,

and consists of all real-valued functions f, continuous on Ry and such that w,f
is uniformly continuous and bounded on Ry. The norm on C), is defined by the
formula

(3) 1l =1 C) llp == sup wy(2) | f ()]

zE€Rg

These operators are very interesting approximation processes and have many
nice properties.
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In this note we introduce in the space C}, p € Ny a new modification of the
SzASzZ-MIRAKYAN operators.

Let C, be the space given above and let for fixed m € N
o= {fe C,: f®ec, k= 1,2,...,m}.

For f € C, we define the modulus of continuity ws (f;-) as usual ([2]) by

(4) wi(f;Cpit) := sup [Anf(C)ll,  (t €Rp),
0<h<t

where Ay, f(x) :== f(z + h) — f(z) for z,h € Rg. From the above it follows that
(5) Jm w1 (f; Cpst) =0,

for every f € C)p.

We introduce the following class of operators in C), p € N.

Definition 1. Fiz r € N and p € Ny. We define the class of operators A, by the
formula

oo

oy L (nx)* ket
(6) An(firiz) '_g(m:;r)];)(qur)!f( - ) (x € Ry, n € N),
where
(7) g(t;r) == 1;) [CE]] (t € Ro).
Observe that
1 1/, St .
g(oa""):ﬁa g(t,T)Ztr(e —]:0]‘> Zf t>0

The operator A,, is linear and positive. In Section 2 we shall prove that A,
is an operator from the space C), into C, for every fixed p € Ny.

1.2. Auxiliary results. In this section we shall give some properties of above
operators, which we shall apply to the proofs of the main theorems.
From (6)—(7) we derive the following:
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Lemma 1. For each n,r € N and x € Ry we have

1

Ap(Lirz) =1, Ap(tr;a) =
n( ,T‘,.f) ) n(tyr,x) T+ (T*l)' (nx;r)’

1 r
An t?. . — 2 g 1
(iria) =a*+ 5 (14 oy ) 4 T
2
1

An(l;r30) = o + (3+(T_1)(mr)) + <1+(7”—1T)!_|_g(2nx;r)>

2
+n3(7’ — D'g(nx;r)’

3 1 2 r+5
FIRCIne I PR S, B U -
(t%rw) =" + n (6+ (r—l)!g(nm;r)) +n2 <7+(T—1)!9(n$§r)>

r?+3r+3 3
+ 1+ .
n3 (r—Dlg(nxz;r) n(r — 1) g(nx;r)

(8)

Applying Lemma 1 it is easy to prove the following two lemmas.

Lemma 2. Let r € N be a fized number. Then for all z € Ry and n € N we have

1
n(r — ) g(nz;r)’

Anlle =) = (1 Gy )
An((t—w)ggr;x):( _x>2n7"—1)1 nmr ;( * nm T))
(=2 = (5 -2) g+ 3 (0

(
1
5: 3r+3 e T))
B (1+ (r— 1)!g(mc;r)> ’

Lemma 3. Fiz s € Ny and r € N. Then there exist coefficients o, j, depending
only on j, s and B, ;(r), depending only onr, j and s, 0 < j < s such that

At —xyrx) =

ne; 7")

s 3=

3

S

(9) An(t*; 7 2) = ; n% <a57j + gﬂ(«:;;(;))) ’

for alln € N and x € Rg. Moreover ago =1, Boo(r) =0 and a0 = Os,5(r) = 0,
ass =1, Bso(r)=r""1/(r —1)! for s € N.
Proof. We shall use mathematical induction for s.The formula (9) for s =0,1,2,3

is given above. Let (9) hold for f(z) = 27, 0 < j < s, with fixed s € N. We shall
prove (9) for f(x) = 2°*1. From (6) and (7) it follows that
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s s k ]C + 71)5
An tS"rl. . — r
( 75 ) nsti(r — Dg(nz;r)  g(nwz;r) kZ:l k+r—1)! nstt
B rs L i (nz)* (k+r+1)°
st — Dlg(na;r)  glna;r) = (k+m)! ns
s 0 k s
r x (nz)* 1 (s)
= - k ®
nst(r — 1) g(na;r) * g(nz;r) kZ:o (k+7)! ns ;;) 1% (k+)
rs 1

:n5+1(7“—1) (nx;r) xZ()nS“ (t%73.2).

By our assumption we get

s id s J .

An(t" i) = nsti(r frl)! (nx;T) Z ( ) Z nf J (04,” ﬁiiﬁ(i’)))
_ re L o s B, (r)
~ nst(r — D)l g(na;r) Z ns— J (#) (aﬂj - g(l;l$§r))

s s+1

r pI—1 5 s
= e i) T Zw(_z () o

1 ® S
" gz 2 (u) ﬁ“”](r)>
p=j—1
AL Boy1,5(r)

and as11,0 = Bs+1,5+1(1) =0, @sy1,541 = L, Bsy1,0(r) = r®/(r — 1)!, which proves
(10) for f(x) = x°*1. Hence the proof of (10) is completed.

Next we shall prove

Lemma 4. Let p € Ny and r € N be fized numbers. Then there exists a positive
constant My = Ms(p,r), depending only on the parameters p and r such that

(10) [An(L/wp(t);rs-)llp < Mz (n €N).
Moreover for every f € Cp we have

(11) [An(f57)llp < Mol fll, (n €N).

Formula (6) and inequality (11) show that A,, n € N, is a positive linear
operator from the space C), into C,, for every p € Ny.

Proof. The inequality (10) is obvious for p = 0 by (2), (3) and (8). Let p € N.
From (7) we get

(12)

1
<r! for t e Ry.
g(t;r)
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From (12) and by (2) and (6)—(9) we have

wy () A (1/wy(t);my2) = wp (@) (1 + Ap(tP; ;7))
b @ (o B()
L +j§ nP=I (1 +a?) < v g(nw;r)>

,
x-]
ST+ T (s T 118 () < Ma(po),
7=0

for z € Ry, n € N and r € N, where Ms(p, ) is a positive constant depending only
p and r. From this follows (10).

The formulas (6)—(7) and (2) imply

AR (F@®);75 )l < I fIpllAn(/wp(®);irs )l (n €N, 7 EN),

for every f € C,. Applying (10), we obtain (11).

Lemma 5. Let p € Ny and r € N be fivred numbers. Then for all x € Ry there
exists a positive constant Ms = Ms(p,r) such that

71'2 T
(13) wplo)n (Coine) <3 2

for all n e N.
Proof. The formulas given in Lemma 2 and (2) imply (13) for p = 0. By (2) and
(8) we have
A ((t =) Jwp(t);r;2) = A ((t — )% 2) + An (1P (8 — 2)%5 15 2),
for p,n,r € N. If p =1 then by the equality we get
A ((t—2)?/wi(t)irsa) = A ((t— 2)*sm2) + (L4 2) A ((t — )% 2),

which by (2) and Lemma 2 yields (13) for p = 1. Let p > 2. Applying Lemma 3
and (2), we get

wy () Ay (P (t — 2)% 15 2)
= wp(x) (An(tp+2; T T) — 2$An(tp+1; ryz) + szn(tP; r; x))

P < |
= wp(x) <Z Wj-i;—j (aerQ’j 4 M)

= g(nx;r)
p—1 ] p—2
a/t! ﬁ +1 zIt? Bp,i(r)
-2 E | 4 P J 4 N oy, s R
= npi=j ( Pl (na;r) per U P g(na;r)

aPt Bp+2,pr1(r 5 +1(7)
+— (<@p+2,p+1+ e ) 2(0<p+ 1p T p P >

g(nxz;r) g(nz;r)
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)

<L Z ' +ﬂp+z,J LS | Brrny(r)
~ n? T gv \PH2 g(na;r) — 1+ 2P L

Jj= Jj=

2

g(nx;r)

+
p— .
alt? Bp,;(r) ¥ Bp+2,p+1(r)
* — 1+ P (ap’J + g(nxz;r) + 1+aP n Ap+2.p+1 7+ g(nxz;r)

J

which by (12) implies

rz+1

)

wp(x) Ay (tp(t — x)2; T3 x) < My(p,r)
for x € Ry, n,r € N. Thus the proof is completed.

1.3. Theorems. In this part we shall some estimates of the rate of convergence
of A,,. We shall use the classical modulus of continuity defined by (4).

We shall apply the method used in [1].
Theorem 1. Let p € Ny and r € N be fixed numbers. Then there exists a positive
constant Ms = Ms(p,r) such that for every f € C’; we have

(14 wp @) An(f732) = (@) < M| £ [

for all z € Ry and n € N.
Proof. Fix x € Ry. Then for f € C; we have

f0) = f(2) = [; f'(w)du (£ € Ro).
From this and by (6), (7) and (8) we get
An(ft);msz) — (f I (u) du; s x) (n € N).
But by (2) and (3) we have

[ rwad <191 (g + o

) [t — x| (t € Ry),

which implies

(15)  wp(@)|An(firiz) = f@)] < f Il (An ([t = xfir;x) + wp(x)An <m;r;m) )

wp(t)
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for n € N. By the HOLDER inequality and by (8) and Lemmas 2, 4, 5 it follows that

A (1t = alsria) < (A, (= 2)%rsa) A, (1;7“;3:))1/2 < MSW
1/2
wp () An (I;;(tx)l;r;x> < (“’p(x)An (%;r;x) ) x

X (wp(x)An (w:(t)”"””) )1/2 < My(p,r) ) Z 1

for n € N. From this and by (15) we immediately obtain (14).

Theorem 2. Fiz p € Ny and r € N. Then there exists My; = My7(p,r) such that
for every f € C, and n € N we have

(16) wy(@)|An(f37;2) — f(2)] < Myw, (f; Cy: W)

for all x € Ry.

Proof. We use STEKLOV function f;, of f € C,

(17) Fule) = % [Ep@+t)dt  (z€Ro, h>0).

From (17) we get

ful@) = f@) = 1 8 Duf(@)dt, fil@) 1 Anf(z) (2 € Ro, B> 0),
which imply
(18) 1= Fllp < w1 (£ Cyi ),

(19) I£allp < b= w (f3 Cpi b)),

for h > 0. From this we deduce that f, € C’; if f € Cp and h > 0. Hence we can
write

wp(2)|An(f;2) = f(2)] < wp() (| An(f = fns @)
+1An(fuix) = fu(@)| + | fu(@) = F(@)]) : Ki(z) + Ka(z) + Ks(),
forn € N, h > 0 and € Ry. From (11) and (18) we get
Ki(z) < Ma|lf = fullp < Mawi(f; Cpih),  Kz(x) < wi(f;Cpih).

By Theorem 1 and (19) it follows that

z+1 1 jz+1
Ko(w) < Ms|| fillp \| == < Msh™"\[ == wi(f: Cpi ).
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Consequently

wy(@)[An(firi2) = f(2)] < (1 + M + % W) wi(f; Cysi h).

Setting h = +/(x + 1)/n we obtain the assertion of Theorem 2.
From Theorem 1 and Theorem 2 and by (5) we obtain

Corollary 1. For every fized r € N and f € C,, p € Ny, we have
(20) lim (A, (f;r;2) — f(z)) =0 (z € Ry).

Moreover (20) holds uniformly on every interval [x1,xs], x2 > x1 > 0.

Now, we shall give the VORONOVSKAYA type theorem for A,,.
Theorem 3. Suppose that p € Ny, 7 € N are fized numbers and f € C’g. Then
. T
(21) Jim n(An(f;r52) = f(2)) = 5 ["(x)

for every x > 0.
Proof. Let > 0 be a fixed point. Then by the TAYLOR formula we have

78 = F@) + F/ @)t~ 2)+ 5 @)~ 2 + () - 2)?

for t € Ro, where (t) = €(t; z) is a function belonging to C), and ¢(z) = 0. Hence
by (6) and (8) we get

An(firie) = f(2) + f'(2) An(t — 2573 2)

(22) 1 " 2 2
5 F @A = 1)) + A () - )% 7)  (EN),

which by Lemma 2 yields
(23) nllrgon(An(f;r;x) — flz)) = gf”(:r) + lim nA, ((t)(t — z)%r;2).
By the HOLDER inequality we have
| A (e(t)(t — z)% 7 3) | < (An((EQ(t); m)) i (An((t — )4 :z:)) i
The properties of € and Corollary 1 imply that
nan;O A, (E2(t);mz) =%(z) = 0.
From this and by Lemma 2 we deduce that
lim nA, (s(t)(t — z)% 7 z) =0

n—oo

and from (23) follows (21).
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2. APPROXIMATION OF FUNCTIONS OF TWO VARIABLES

2.1. Preliminaries. Let p,q € Ny and let

(24) wpq(2,y) = wy(x)wy(y)  ((z,y) € RS =Ry x Ry),

where w,(-) is defined by (2). Denote by C, 4 the weighted space of all real-valued
functions f continuous on R for which w, , f is uniformly continuous and bounded
on R{. The norm on C, , is defined by

(25) I fllpg = Nf(¢52) llpg = sup pr,q(x,y) |f(z,y)l.

(m,y)ERo
The modulus of continuity of f € C}, ; we define as usual by the formula

(26) w(f,Cpgit,s) = sup  [[Apsf(,)lpg  (ts>0),
0<h<t,0<5<s

where Ay, sf(z,y) :== f(z +h,y+95) — f(z,y) and (z + h,y + §) € RE.
From (26) it follows that

(27) hm+w(f, pq;t,s) =0

t,s—0

for every f € Cpq, p,q € No. Moreover let O}, denotes the set of all functions

f € Cp,q which the partial derivatives f( k=1,...,m, belong also to Cj, 4.

Jyk—=3i

We introduce the following
Definition 2. Fiz r,s € N. For functions f € Cp 4, p,q € No, we define operators

- B o > - (ny)” j+r k+s
(28) Am,n(f)rvs7x7y) _WZZ k+s) f( m ' n )

7=0 k=0
for (z,y) € RZ, m,n € N, where g(-;7) is defined by (7).
From (28) and (6)—(7) we deduce that A, ,,(f;r,s) are well defined in every
space Cy, 4, D, q € Ng. Moreover for fixed 7, s € N we have
(29) Apn(Lir siz,y) =1 for (z,y) €RZ (m,n € N),
and if f € Cp 4 and f(z,y) = f1(x) fa(y) for all (z,y) € RE, then
(30) Am,n(f”"v S5 x,y) = Am(f1§ r; x)An(f% 5%9)

for all (z,y) € RZ and m,n € N.
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2.2. Main results. Applying Lemma 4 we shall prove the main lemma on A4,, ,
defined by (28).

Lemma 6. For fized p,q € Ny and r,s € N there exists a positive constant Mg =
Ms(p, q,r,s) such that

(31) HAma"(l/wp,q(ta 280, < Ms  for m,neN.

p,q —

Moreover for every f € Cp 4 we have
(32) ||Am7n<f?rﬂ 87 ) .>||p,q S MS ||pr’q fOT‘ m7n e N7 r7 S 6 N'

Formula (28) and inequality (32) show that Ay, ,, m,n € N, are linear positive
operators from the space Cp, 4 into Cp 4.

Proof. The inequality (31) follows immediately from (24), (30) and (10).
From (28) and (25) we get for f € Cp 4, and r,s € N

lAmn(f;m 9, , < ||f||p7q [ A (1/wp,q; 7, 8)||

pg < (m,n €N),

P,
which by (31) implies (32).

Now we shall give two theorems on the degree of approximation of functions
by Ay, defined by (28).

Theorem 4. Suppose that f € C’;’q with fived p,q € Ny. Then for fized r,s € N
there exists a positive constant Mg = My(p, q,7,8) such that for all m,n € N and
(JZ, y) € ROQ

wp,q(fvy) |Am,n(f;7",s;$,y) - f(xvy

)
(33) 1 1
< 80 (U2 Tt + 1yl 20 ),

Proof. Fix (z,y) € Ry. Then for f € C} ,

ft,2) = f(z,y) = [ fulu,2) du+ [7 fi(z,v)do ((t2) € RS).

Thus by (29)

A (F (12057, 5:2,9) = F(@,9) = A (1 o0, ) dusr sia,y)

+Ann <f; fi(z,v)dv;r, s; x, y) .

/t du
x wl”q(u’ Z)

(34)

By (2), (24)—(25) we have

<|f2llp.q <|fz

/:f;(u, z)du

1 n 1 t—af
—T
i wp,q(taz) wpyq(a:,z) ’
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which by (2), (24), (28)—(30) and (6), (8) implies
wp.q(2,y) ‘Amm (ft fl(u, 2)du;r, s; z, y) ‘

< wpg(x,y)Am ( )du‘ rsxy)

t— x|
< £ ) A (L=
< | fallp,q wp,q(x y)( m,n (wp,q(t,z) s x,y)
t_
+Amn i;r,s;x,y
"\ wp,g(, 2)

< 1 £2llp.qg wa(y) An (wa(z);S;y> (wp(fﬂ)Am ('Z}p(f)';r;x)

—|—Am(|t—z|;r;z)>.

Applying the HOLDER inequality, (8), (10), (13) and Lemma 2, we get

A ([t = zfs752) < (Am((t - x)2;7‘;fﬂ)Am(1;r;rﬂ))1/2 < Mio(p, )4/ x;;l

t t 2 2
wp () Am <wp($;r;x) < (wp(z)Am (M;T;Q) X

x (wp(ff)Am <wpl(t);r;m) )1/2 < My(p,r) |

m
for z € Ry and m € N. Consequently

wpyq(xa y) ‘Am,n (fmt f{L(U,Z) dU;T, S;l’,y) ’

z+1
< M12(p7 q,7, S)Hf;Hqu T (m € N)

Analogously we obtain

wp,q(xvy) ‘Am,n (fyz fll)(xav) dU;T‘,S;ZL’,y)’

AT e,

S M13(p7 q,7, S)

Combining these, we derive from (34)

Wy, o(2,Y) [Amn(f;7,852,9)

r+1
<M9<||fx||pq\/ . + 1 £yllp,

)
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for all m,n € N, where My = My(p, q,r,s) = const > 0. Thus the proof of (33) is
completed.

Theorem 5. Suppose that f € C, 4, p,q € No. Then there exists a positive constant
My = Mya(p, q,r,8) such that for all (z,y) € ]ROZ

Wp.g(T,Y) [Amn (i1, 852,9) — f(a,

(3) 1
< Myw| f,C pq,\/ y+ (m,n €N, r,s €N).

Proof. We apply the STEKLOV function f;, 5 for f € C} 4

(36)  fro(zy) fo du [ fz+u,y+v)dv ((z,y) € RE, h,d > 0).
From (36) it follows that
ralv) = f(,0) = $I<Mk Buof(a,9) o
(ﬁ@ﬂ%mzﬁﬂbﬁmﬂxw—Awﬂ%wwv
(fns)y(,y) = k( wof (@y) = Auof(@,y)) du.

Thus

(37) ||fh,5_f||pq§w(f7 pq,haé)v
(38) ||(fh,6) ||pq§2h W(fa P,q3 75)3
(39) |na, | <2570 (s Cryihis).

for all h,é > 0, which show that fj s € Cqu if feCpqand, h,d>0.
Now, for A,, ,, defined by (28), we can write
Wp,g (T, Y) | Amn (fi7, 552, y) = f(2,9)|
<umqmy(p%m(<,>—ﬁm@¢xnaayﬂ
+[Amn (frs(t2)ir, s32,y) = fro(@, )| + | frsle,y) - fz, y)l)
By (25), (32) and (37) obtain

Ti(z) < [[Amn (f = fosimosi50) |l

S <M8||f fh5|| SMSw(fa D,q3 75>7
T3(z) < w(f,Cpgih,0).

p,qa —
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Applying Theorem 4 and (38) and (39), we get

y+1

, 1 :
1366) < 30 [l ot Gl )

1 1
< 2Mow (f,Cpq3 h, 6) (h—u/“ Loty v )
m n

Consequently there exists My5 = Mi5(p, q,7, ) such that

wl”7’1(x7y) |Am,n(f; T, S8, y) - f(xa y)|

(40)
< Misw (f, Cpg3hs 0) (1 +h \/Im?_F o \/ynﬁ)

Setting h = /(x +1)/m and 6 = /(y + 1)/n to (40), we obtain (35).
From Theorem 5 and the property (27) follows

Corollary 3. Let f € Cpq, p,q € Ng. Then forr,s € N

(41) lm Apn(f;rsz,y) = flz,y) ((z,y) € RY).

m,n— o0
Moreover (41) holds uniformly on every rectangle 0 < x < xg, 0 < y < yo.

In this part we give the VORONOVSKAYA type theorem for operators A, .,
n € N.

Theorem 6. Suppose that f € Cf)’q, p,q € Ng. Then for fired r,s € N and for
every (z,y) € RZ : {(z,y) : © > 0,y > 0} we have
x

(42) lim n (Amn(f;r,s;x,y) — f(:v,y))

n—oo 2

fow (@, y) + gf;’y(% Y)-
Proof. Choosing (z,y) € R2, we have by the TAYLOR formula for f € C2,,
ft,2) = f(z,y) + folz,y)(t — o) + fo(z,y)(z = y)
b3 ()t = ) + 262 (0 9)(t — 2)(z — ) + Fy ) (2 — 1))
+otzay)V(E—2) + -yt ((¢2) €R,

where (¢, z) = ¥(t, z; x,y) is a function from C, 4 and ¢ (x,y) = 0. From this and
by (6)7 (8)7 (28)7(30) we get

A (f(t,2)im,852,y) = fo,y) + o2, y) An(t — 575 2)
+fy(@,y)An(z — y; 559) + % (f;'z(af, y)An((t —2)%r;2)
+ Loy (@, y) An(t — 25750) An (2 — y3 559) + oy (@,9) An (2 — 1) %5 s y))

+Ann <¢(t,z) \/(t —x)t+ (z —y)t;rs; amy) for n € N.
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Next,using Lemma 2, we can write

lim n(Apn(firs;2,y) — f(2.9)) = = fl(z,y) + %f;’y(x,y)

n—oo 2
(43)
+ lim nA,, (z/J(t, z) \/(t —x)t+ (z—y)t;r s, y)
By the HOLDER inequality, (6), (8), (28)—(30) and Lemma 2 we have
’Amn (¢(t, 2) \/(t —o)*+ (z —y)h, s T, y) ‘
(44) 1/2

1/2
< (An,n (V2(t,2);, S;x,y)) (An((t —z)hra) + A ((z—y)% S;y))
The properties of ¥ and Corollary 2 imply that

(45) lim Ay, (V2 (t,2)i7, 532, y) * (2, y) = 0.

n—oo

Using (45) and Lemma 2, we obtain from (44)

(46) Tim Ay (0 2) V=207 + (= 97,552,y =0,

From (46) and (43) follows (42).
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