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SOME REFINEMENTS OF
HERMITE-HADAMARD INEQUALITIES

FOR CONVEX FUNCTIONS

Liang-Cheng Wang

In this paper, we define two mappings associated with Hermite-Hadamard
inequalities for convex functions, give their properties, and obtain refinements
of Hermite-Hadamard inequalities by these properties.

1. INTRODUCTION

Let f be a continuous convex function on a closed interval [a, b](a < b). Then

(1) f
(a + b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)
2

.

The inequalities (1) are called Hermite-Hadamard inequalities (see[1-3]).
The inequalities (1) are equivalent to

(2) 2(b− a)f
(a + b

2

)
≤ 2

∫ b

a

f(x) dx ≤ (b− a)
(
f(a) + f(b)

)
.

If f is a continuous function on [a, b], for any x, y ∈ [a, b], x ≤ y, we define two
mappings:

h(x, y) = (y − x)
(
f(x) + f(y)

)
− 2

∫ y

x

f(t) dt,

and
H(x, y) =

∫ y

x

f(t) dt− (y − x)f
(x + y

2

)
,
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where h(x, y) and H(x, y) are generated by difference of right side and left side for
(2), respectively.

Let f be continuous convex on [a, b], any x ∈ (a, b), for above h and H, S. S.
Dragomir and P. Agarwal ([4]) showed the following properties:

(a) h(a, y) is convex increasing with y on [a, b],
(b) H(a, y) is increasing with y on [a, b],

and the following inequalities:

(3)
1

b− a

∫ b

a

f(t) dt ≤ x− a

b− a
· f(a) + f(x)

2
+

1
b− a

∫ b

x

f(t) dt ≤ f(a) + f(b)
2

,

(4)

f
(a + b

2

)
≤ 1

b− a

∫ x

a

f(t) dt− x− a

b− a
f
(a + x

2

)
+ f

(a + b

2

)
≤ 1

b− a

∫ b

a

f(t) dt.

In this paper, we give special properties of h(x, b) and H(x, b), and obtain
some refinements of (1) by their properties and (3)–(4). For other refinements of
(1), see [5-6].

In Section 2, we will use the following lemma.

Lemma. Let g be a continuous function on [a, b], if g has right derivative g′
+ and

g′
+ is increasing on (a, b), then g is convex function on [a, b] (see [7; 8, p.44]).

2. MAIN RESULTS

Theorem 1. Let f be a continuous convex function on [a, b]. Then
(c) h(x, b) is convex decreasing with x on [a, b],
(d) H(x, b) is decreasing with x on [a, b].

Proof. (c) By the continuity of f , we get that h(x, b) is a continuous function with
x on [a, b]. Let h′

+(x, b) is right derivative of h(x, b) for x. for any x ∈ (a, b), using
properties of derivative, we have

(5) h′
+(x, b) = f(x)− f(b) + (b− x)f ′

+(x).

For any x1, x2 ∈ (a, b), x1 < x2, using the convexity of f and (5) we have

h′
+(x2, b)− h′

+(x1, b)
= f(x2)− f(x1) + (x1 − x2)f ′

+(x1) + (b− x2)
(
f ′
+(x2)− f ′

+(x1)
)

≥ (x2 − x1)f ′
+(x1) + (x1 − x2)f ′

+(x1) + (b− x2)
(
f ′
+(x2)− f ′

+(x1)
)

≥ 0,

which shows that h′
+(x, b) is increasing with x on (a, b). By Lemma, it is shown

that h(x, b) is convex with x on [a, b]. (By same method, we can prove that h(a, y)
is convex with y on [a, b]. This method is simpler than [4]).
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Fox any x1, x2 ∈ [a, b], x1 < x2, when x2 < b, since f and h(x, b) is convex,
from (1) it follows that

h(x2, b)− h(x1, b)
x2 − x1

≤ h(x2, b)− h(b, b)
x2 − b

=
h(x2, b)
x2 − b

= −
(
f(x2) + f(b)

)
+

2
b− x2

∫ b

x2

f(t) dt

≤ 0,

when b = x2, from (1) it follows that

h(x1, b) ≥ 0 = h(b, b) = h(x2, b),

hence h(x1, b) ≥ h(x2, b). This shows that h(x, b) is decreasing with x on [a, b].
(d) For any x1, x2 ∈ [a, b], x1 < x2, when x2 < b, since f is convex, from (1)

it follows that

H(x1, b)−H(x2, b)

=
∫ x2

x1

f(t) dt + (b− x2)
(

f
(x2 + b

2

)
− f

(x1 + b

2

))
− (x2 − x1) f

(x1 + b

2

)
≥ (x2 − x1)

(
f
(x2 + x1

2

)
− f

(x1 + b

2

))
+ (b− x2)

(
f
(x2 + b

2

)
− f

(x1 + b

2

))
≥ (x2 − x1)(x2 − b)

2
f ′
+

(x1 + b

2

)
+

(x2 − x1)(b− x2)
2

f ′
+

(x1 + b

2

)
= 0,

when x2 = b, from (1) it follows that

H(x1, b) ≥ 0 = H(b, b) = H(x2, b),

hence H(x1, b) ≥ H(x2, b). This shows that h(x, b) is decreasing with x on [a, b].
The proof is completed.

Theorem 2. Let f be defined as in Theorem 1, then we have

(6)

1
b− a

∫ b

a

f(x) dx ≤ 1
2

(
f(a) + f

(a + b

2

))
− 2

b− a

∫ (a+b)/2

a

f(x) dx +
1

b− a

∫ b

a

f(x) dx

≤ 1
2

f(a) +
1

(b− a)2

∫ b

a

xf(x) dx +
b− 2a

(b− a)2

∫ b

a

f(x) dx

− 2
(b− a)2

∫ b

a

(∫ x

a

f(t) dt

)
dx ≤ f(a) + f(b)

2
,
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and

(7)

1
b− a

∫ b

a

f(x) dx ≤ 1
2

(
f
(a + b

2

)
+ f(b)

)
− 2

b− a

∫ b

(a+b)/2

f(x) dx

+
1

b− a

∫ b

a

f(x) dx ≤ 1
2

f(b)− 1
(b− a)2

∫ b

a

xf(x) dx

+
2b− a

(b− a)2

∫ b

a

f(x) dx− 2
(b− a)2

∫ b

a

(∫ b

x

f(t) dt

)
dx ≤ f(a) + f(b)

2
.

Proof. From (1), we obtain inequality of left side for (6). Applying convexity of
h(a, y) (see (a)) to (1), we obtain

(8)

b− a

2

(
f(a) + f

(a + b

2

))
− 2

∫ (a+b)/2

a

f(x) dx ≤ 1
2
(b− a)f(a)

+
1

b− a

∫ b

a

xf(x) dx− a

b− a

∫ b

a

f(x) dx− 2
b− a

∫ b

a

(∫ x

a

f(t) dt

)
dx

≤ 1
2
(b− a)

(
f(a) + f(b)

)
−
∫ b

a

f(x) dx.

Manipulating (8) we get two inequalities of the right side for (6).
Using h(x, b) and the same method as proof of (6), we get (7).

Corollary. Let f be defined as in Theorem 1, for any positive n, then we have

(9)

1
b− a

∫ b

a

f(x) dx ≤ 1
2

(
f
(a + b

2

)
+

f(a) + f(b)
2

)
≤ 1

2

(
1

b− a

∫ b

a

f(x) dx +
f(a) + f(b)

2

)
≤ · · · ≤ 1

2n
f
(a + b

2

)
+

2n − 1
2n

· f(a) + f(b)
2

≤ 1
2n

· 1
b− a

∫ b

a

f(x) dx +
2n − 1

2n
· f(a) + f(b)

2

≤ 1
2n+1

f
(a + b

2

)
+

2n+1 − 1
2n+1

· f(a) + f(b)
2

≤ · · · ≤ f(a) + f(b)
2

.

Proof. Expression (6) plus (7) with a simple manipulation yields

(10)

1
b− a

∫ b

a

f(x) dx ≤ 1
2

(
f
(a + b

2

)
+

f(a) + f(b)
2

)
≤ 1

2

(
1

b− a

∫ b

a

f(x) dx +
f(a) + f(b)

2

)
≤ f(a) + f(b)

2
.
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From (1) and (10), for any positive integer n, we have

(11)

1
2n

f
(a + b

2

)
+

2n − 1
2n

· f(a) + f(b)
2

≤ 1
2n

· 1
b− a

∫ b

a

f(x) dx +
2n − 1

2n
· f(a) + f(b)

2

≤ 1
2n

· 1
2

(
f
(a + b

2

)
+

f(a) + f(b)
2

)
+

2n − 1
2n

· f(a) + f(b)
2

=
1

2n+1
f
(a + b

2

)
+

2n+1 − 1
2n+1

· f(a) + f(b)
2

≤ 1
2n+1

· f(a) + f(b)
2

+
2n+1 − 1

2n+1
· f(a) + f(b)

2
=

f(a) + f(b)
2

.

Combination of (10) and (11) yields (9).

Theorem 3. Let f be defined as in Theorem 1, for x ∈ (a, b), then we have

(12)
1

b− a

∫ b

a

f(t) dt ≤ b− x

b− a
· f(x) + f(b)

2
+

1
b− a

∫ x

a

f(t) dt ≤ f(a) + f(b)
2

,

(13)

1
b− a

∫ b

a

f(t) dt ≤ 1
4

(
x− a

b− a
f(a) + f(x) +

b− x

b− a
f(b)

)
+

1
2 (b− a)

∫ b

a

f(t) dt ≤ f(a) + f(b)
2

.

Proof. For x ∈ (a, b), Using monotonicity of h(x, b), we get

(14)
0 = h(b, b) ≤ h(x, b) = (b− x)

(
f(x) + f(b)

)
− 2

∫ b

x

f(t) dt

≤ h(a, b) = (b− a) (f(a) + f(b))− 2
∫ b

a

f(x) dx.

Manipulating (14) we get (12). Expression (3) plus (12) with simple manipulation
yields (13).

Theorem 4. Let f be defined as in Theorem 1, for x ∈ (a, b). Then we have

(15)
f
(a + b

2

)
≤ 1

b− a

∫ b

x

f(t) dt− b− x

b− a
f
(x + b

2

)
+ f

(a + b

2

)
≤ 1

b− a

∫ b

a

f(t) dt,

(16)
f
(a + b

2

)
≤ 1

2 (b− a)

∫ b

a

f(t) dt + f
(a + b

2

)
− x− a

2(b− a)
f
(a + x

2

)
− b− x

2 (b− a)
f
(x + b

2

)
≤ 1

b− a

∫ b

a

f(t) dt.
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Proof. Using monotonicity of H(x, b), (4) and the same method as the proof of
Theorem 3, we can prove Theorem 4.

Remark. (3), (6), (7), (9), (12) and (13) are refinements of right side for
(1); (4), (15) and (16) are refinements of left side for (1).
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