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APPELL POLYNOMIALS
AND LOGARITHMIC CONVEXITY

Slavko Simić

In this article we give necessary and sufficient conditions for logarithmic con-
vexity of some sequences of Appell polynomials. Then we apply our results
to Turan’s type polynomial inequalities. Precise upper and lower bounds
for this class of polynomials are also determined and asymptotic behavior of
An(x)1/n (n→∞) as well.

1. INTRODUCTION

A real sequence {an}, n = 0, 1, 2, . . . generates a sequence {An(x)} of Appell
polynomials defined by:

An(x) :=
n∑

k=0

ak

(
n
k

)
xn−k (n = 0, 1, 2, . . .).

This class of polynomials is of importance in real and combinatorial analysis
[1], [2]. For example, the classical Bernoulli and Laguerre polynomials belong
to this class.

For an arbitrary generating sequence {an} it is difficult to say anything about
behavior of the sequence {An(x)}. But, as we shall see, logarithmic convexity is
the property which closely connects {an} and {An(x)}.

Hence, our aim here is to investigate relationships between logarithmic con-
vexity (concavity) of the sequences {An(x)} and {an}. For this purpose, we shall
suppose throughout that the generating sequence {an} consists of positive numbers.

2. RESULTS

We shall prove the following propositions:

Proposition 1. The sequence {log An(x)} is convex (concave) for x > 0 if and
only if the sequence {log an} is convex (concave).
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Proposition 2. The sequence {Bn(x)} defined by

Bn(x) := (An(x)/an)1/n, B0(x) := 1 (n = 1, 2, . . .)

is monotone non-decreasing (non-increasing) for x > 0 if and only if the sequence
{log an} is concave (convex).

It is said that the sequence of polynomials {Cn(x)} have T+ property if it
satisfies Turan’s inequality

C 2
n (x)− Cn−1(x)Cn+1(x) ≥ 0 (x ∈ [a, b], n ∈ N).

Analogously, {Cn(x)} have T− property if it satisfies inverse Turan’s in-
equality

C 2
n (x)− Cn−1(x)Cn+1(x) ≤ 0 (x ∈ [a, b], n ∈ N).

By the referee’s opinion, an application of our results to Turan’s inequality
is of importance. We shall give here some T property criteria. Note that again
{an} is a sequence of positive numbers.

Proposition 3. The sequence {An(x)} have T+ (T−) property for x ∈ (0, b], b > 0
if and only if the sequence {an} have T+ (T−) property.

Proposition 4. If the sequence {an} have not T+ (T−) property, then also
{An(x)} have not this property for x ∈ [a, b], a < 0 < b.

Proposition 5. If {An(x)}, A0(x) = a0 = 1, have T+ property for x > 0, then

an

an
1

≤ An(x)
An

1 (x)
≤ 1 (x > 0, n ∈ N).

If {An(x)} have T− property then the reverse inequalities hold.

Proposition 6. Define A
(θ)
n (x) :=

∑
k aθ

k

(
n
k

)
xn−k, θ ∈ R, n ∈ N; A

(1)
n (x) =

An(x).

If {An(x)} have T+ property for x > 0, then {A(θ)
n (x)} have T+ property for

θ ≥ 0 and T− property for θ < 0.
Analogoues statement takes place if {An(x)} have T− property.

Proposition 7. (i) If {An(x)/an} have T+ property for x > 0, then {An(x)} have
T− property for x > 0.

(ii) If {An(x)/an} have T− property for x > 0, then {An(x)} have T+ pro-
perty for x > 0.

Supposing logarithmic convexity (concavity) on the sequence {an}, enables
us to get some control over {An(x)}, x > 0. This is shown in the sequel.

Apart from the assertion in Proposition 5, we get much stronger inequalities
for An(x) in the next
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Proposition 8. If the sequence {log an} is convex, then

an

(
1 + (an−1/an)x

)n ≤ An(x) ≤ a0(x + an/an−1)n (x > 0; n ∈ N),

with equality if and only if An(x) is of the form An(x) = a0(x + a)n, for some
positive a.

If {log an} is concave, then the reverse inequalities hold.

Logarithmic convexity (concavity) of the sequence {an} is equivalent to mono-
tonicity of the sequence {an/an+1}. Hence limn→∞ an/an+1 exists (in wider sense),
and we obtain asymptotic behavior of

(
An(x)

)1/n (n →∞).

Proposition 9. (i) If the sequence {an/an+1} is monotone and

lim
n→∞

an/an+1 = c (0 < c < ∞),

then, for fixed x > 0, (
An(x)

)1/n → x + 1/c (n →∞).

If {an} is of the form an = (`n)n, where {`n} is from the class of normalized slowly
varying sequences in Karamata’s sense (see definition below), we have

(ii) if an/an+1 ↑∞, then
(
An(x)

)1/n → x (n →∞);

(iii) if an/an+1 ↓ 0, then
(
An(x)

)1/n ∼ an+1/an ∼ `n (n →∞).

PROOFS

Proof of Proposition 1. Suppose first that the sequence
{

log An(x)
}

is convex
(concave) for x > 0. Then the polynomial P (x):

P (x) := A 2
n (x)−An−1(x)An+1(x)

= a 2
n − an−1an+1 + (n− 1)(anan−1 − an+1an−2)x + · · ·+ (a 2

1 − a0a2)x2n−2

is non-negative (non-positive) for x > 0. Using the identity

(1) A′n(x) = nAn−1(x)

we obtain
P ′(x) = (n− 1)

(
An(x)An−1(x)−An+1(x)An−2(x)

)
.

Hence, polynomials P (x) and P ′(x) are of the same sign, i.e. P (x) is either
non-negative and non-decreasing or non-positive and non-increasing for x > 0.

Since it is also continuous in x, it follows that P (0) = a 2
n −an−1an+1 has the

same sign as P (x), x > 0.
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Suppose now that the sequence {log an} is convex (concave).
Putting cn = cn(x) := anx−n, x > 0; n = 0, 1, 2, . . . , we have to prove that

if {log cn} is convex (concave) then the sequence {log Cn}, where

Cn :=
n∑

k=0

(
n
k

)
ck (n = 0, 1, 2, . . .),

is also convex (concave).

It is not difficult to check that if {log cn} is convex (concave), then the se-
quence {log c

(1)
n }, defined by c

(1)
n := cn + cn−1, is also convex (concave).

By induction, the same is valid for sequences {log c
(m)
n }, where

c(m+1)
n := c(m)

n + c
(m)
n−1 (m = 1, 2, . . .).

It is only left to note that c
(n)
n = Cn.

Remark 1. It is evident from the first part of the proof that convexity (concavity)
of the sequence {log An(x)}, x ∈ (0, b], where b is some positive constant, implies
convexity (concavity) of {log an}. From the other hand, convexity (concavity) of
the sequence {log an} implies convexity (concavity) of {log An(x)} for all positive
x.

Remark 2. As the referee notes, the second part of proposition is also proved in
[3].

Proof of Proposition 2. Assume that the sequence {log an} is concave.
By Proposition 1 the sequence

{
log An(t)

}
, t > 0, is also concave i.e.

An(t)
An+1(t)

≥ An−1(t)
An(t)

or, by (1),

(2)
1

n + 1
A′n+1(t)
An+1(t)

≥ 1
n

A′n(t)
An(t)

.

Integrating (2) over t ∈ (0, x), we get

(3)
(
An+1(x)/an+1

)1/(n+1) ≥
(
An(x)/an

)1/n (n = 1, 2, . . .).

This means that the sequence
{
Bn(x)

}
is monotone non-decreasing for each fixed

x > 0.

The convex case can be treated similarly.
Suppose now that

{
Bn(x)

}
is monotone and consider the polynomial Q(x)

defined by
Q(x) :=

(
An+1(x)/an+1

)n −
(
An(x)/an

)n+1
.
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By assumption, Q(x) is non-negative (non-positive) for all x > 0.

We have Q(0) = 0 and, by (1),

Q′(0) = n(n + 1)(an/an+1 − an−1/an) (n = 1, 2, . . .).

Therefore,

(4) Q(x) = n(n + 1)
( an

an+1
− an−1

an

)
x + · · ·+

(( a0

an+1

)n

−
( a0

an

)n+1
)

xn(n+1).

Since x is independent of n, we see from (4) that, for sufficiently small x, the
signs of Q′(0) and Q(x), x > 0 have to be the same, i.e. Proposition 2 is proved.

Proof of Proposition 3. It follows from Proposition 1 and Remark 1.

Proof of Proposition 4. This is a logical consequence of the previous proposition.

Proof of Proposition 5 needs the following lemma.

Lemma 1. If the sequence {bn}, b0 = 1 of positive numbers have T+ property,
then the sequence {b 1/n

n } is non-increasing. Analogously, if {bn} have T− property
then {b 1/n

n } is monotone non-decreasing.

Proof. T+ property implies b 2
n ≥ bn−1bn+1, n ∈ N. Hence

(b0b2)(b1b3)2(b2b4)3 · · · (bn−1bn+1)n ≤ b 2
1 b 4

2 b 6
3 · · · b 2n

n ,

gives b n
n+1 ≤ b n+1

n , i.e. {b 1/n
n } is non-increasing.

Proof of T− case goes along the same lines.

Proof of Proposition 5. T+ property and Lemma 1 imply {An(x)1/n} non-
increasing. Therefore An(x)1/n ≤ A1(x)1 i.e. An(x)/A n

x (x) ≤ 1.

Otherwise, by Proposition 3 we obtain logarithmic concavity of the sequence
{an}. Hence, from Proposition 2 we derive

(An(x)/an)1/n ≥ A1(x)/a1 (x > 0, n = 1, 2, . . .).

This is exactly the left-hand side of the inequality from Proposition 5. The
other case is treated similarly.

Proof of Proposition 6. This is a consequence of the fact that if {an} have T+

property, then {a θ
n } have T+ property for θ ≥ 0 and T− property if θ < 0. Now

we can apply Proposition 3.

Proof of Proposition 7. We shall prove just the assertion (i). The case (ii) can
be treated analogously.

Since {An(x)/an} have T+ property, Lema 1 asserts
{(

An(x)/an

)1/n}
non-

increasing. By Proposition 2, this implies convexity of the sequence {log an} which
in turn, by Proposition 1, gives convexity of {log An(x)}.
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This is equivalent with T− property for the sequence {An(x)}.

Proof of Proposition 8. Suppose that {log an} is concave. To obtain the right-
hand side, we proceed from (3) and, replacing An(t) with A′n+1(t)/(n + 1), we
get (

An+1(t)
)−n/(n+1)

A′n+1(t) ≤ (n + 1)an(an+1)−n/(n+1).

Integrating over t ∈ (0, x), we obtain the needed inequality.
Since logarithmic concavity of {an} implies non-decreasing of the sequence

{an−1/an}, we get
an−1

an
≥ ak−1

ak
(1 ≤ k ≤ n).

From there follows
ak ≥ a0

( an

an−1

)k

(0 ≤ k ≤ n).

Hence

An(x) :=
∑

k

ak

(n
k

)
xn−k ≥ a0

∑
k

( an

an−1

)k(n
k

)
xn−k,

i.e. An(x) ≥ a0(x + an/an−1)n.
This is exactly the left-hand side of the target inequality.
It is evident that the reversed inequalities take place if we suppose logarithmic

convexity of the sequence (an).
Note also that the equality sign in the statement of Proposition 8 holds if

and only if it holds in (3) i.e. if An(x) is of the mentioned form.

Proof of Proposition 9. If, for example,

an−1/an ↓ c
(
0 < c < ∞ (n →∞)

)
,

rewrite the inequality from previous proposition in the form

(5)
n
√

an

(an/an−1)
(x + an/an−1) ≤ An(x)1/n ≤ n

√
a0 (x + an/an−1).

Then an/an−1 → 1/c and also (as is well known) n
√

an → 1/c.
Hence, from (5), we obtain the proof of part (i).
Extreme cases c = 0, c = ∞ can be treated in the following way.
It is obvious from (5) that necessary condition for asymptotic equivalence is

(6) n
√

an ∼
an

an−1
(n →∞).

The form of sequences satisfying (6) is given by the following lemma.

Lemma 2. A sequence {an} of positive numbers satisfies the condition (6) if and
only if an = (`n)n, where {`n} is from the class of normalized slowly varying
sequences (NSVS) in Karamata’s sense.
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Definition. A sequence {`n} is NSVS if and only if it can be represented in the
form

`n = C exp
( n∑

i=1

εi/i
)
,

where C > 0 and {εn} is a null sequence [4, p. 53].

Properties. If {`n} is NSVS, then

(i) `n+1 ∼ `n; (ii) n
(`n+1

`n
−1

)
→ 0; (iii) ∀λ > 0, `[λn] ∼ `n (n →∞);

(iv) the sum, product and quotient of two NSVS is also NSVS.

Examples of slowly varying sequences {`n} satisfying conditions of the part
(iii) of Proposition 9 are

{loga(n + 2)}, a > 0 or
{

exp
(
logb(n + 1)

)}
, 0 < b < 1.

For the part (ii) we can take 1/`n instead of `n.

Proof of Lemma 2. Putting an = exp (nbn), the relation (6) becomes

n(bn − bn−1) → 0 (n →∞).

Define εn := n(bn − bn−1), n ∈ N. Then {εn} is a null sequence and

bn = b0 +
n∑

i=1

εi/i.

Therefore, by the above definition,

exp bn = eb0 exp
( n∑

i=1

εi/i
)

= `n,

is NSVS, i.e. an = (exp bn)n = (`n)n.

On the other hand, if an = (`n)n, using the above Properties we obtain

an

an−1
= `n(`n/`n−1)n−1 = `n exp((n− 1)εn/n) ∼ `n = n

√
an (n →∞).

Therefore Lemma 2 is proved and the proof of the part (ii) follows from (5)
at once.

For the proof of the part (iii), note that now {an} is logarithmicaly convex
and appropriate inequality from Proposition 8 is

n
√

an

(an/an−1)
(
1 + (an−1/an) x

)
≤ An(x)1/n

(an/an−1)
≤ n
√

a0

(
1 + (an−1/an)x

)
.

From there, taking in account Lemma 2, proof of (iii) follows.
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