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APPLICATIONS OF THE HYPER-POWER
METHOD FOR COMPUTING

MATRIX PRODUCTS

Predrag S. Stanimirović

We introduce representations for {1, 2, 3}, {1, 2, 4}-inverses in terms of matrix
products involving the Moore-Penrose inverse. We also use representations
of {2, 3} and {2, 4}-inverses of a prescribed rank, introduced in [6] and [9].
These representations can be computed by means of the modification of the
hyper-power iterative process which is used in computing matrix products
involving the Moore-Penrose inverse, introduced in [8]. Introduced meth-
ods have arbitrary high orders q ≥ 2. A few comparisons with the known
modification of the hyper-power method from [17] are presented.

1. INTRODUCTION

Let Cn be the n-dimensional complex vector space, Cm×n the set of m × n
complex matrices, and Cm×n

r = {X ∈ Cm×n : rank (X) = r}. We use N (A)
to denote the kernel and R(A) to denote the range of A, and ρ(A) to denote the
spectral radius of A. If A ∈ Cn×n and L, M are complementary subspaces of Cn,
then PL,M denotes the projector on L along M .

For any A ∈ Cm×n Penrose defined the following equations in X:

(1) AXA=A, (2) XAX =X, (3) (AX)∗=AX, (4) (XA)∗=XA.

For a subset S of the set {1, 2, 3, 4} the set of matrices obeying the conditions
represented in S will be denoted by A{S}. A matrix G in A{S} is called an S-
inverse of A and denoted by A(S). In particular, the set A{1, 2, 3, 4} consists of
a single element, the Moore-Penrose inverse of A, denoted by A†. The set of
{2, 3} and {2, 4}-inverses of a given rank 0 < s < r is denoted by A{2, 3}s and
A{2, 4}s, as in [5], [6] and [9].
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An application of the following hyper-power method of the order 2

Xk+1 = Xk(2I −AXk) = (2I −XkA)Xk

in usual matrix inversion dates back to the well-known paper of Schulz [15]. Ben-
Israel and Cohen shown that this iterative process converges to A† provided that
X0 =αA∗, where α is a positive and sufficiently small real number [2], [3], [4]. The
hyper-power iterative method of an arbitrary order q ≥ 2 was originally devised by
Altman [1] for inverting a nonsingular bounded operator in a Banach space. In
[11] the convergence of the same method is proved under the condition which is
weaker than the one assumed in [1], and better error estimates are derived.

Zlobec in [21] defined two hyper-power iterative methods of an arbitrary
high order q ≥ 2 :

(1.1)

Y0 = αA∗,

Tk = I − YkA,

Mk = I + Tk + · · ·+ T q−1
k

Yk+1 = MkYk, k = 0, 1, . . .

(1.1′)

Y ′
0 = αA∗,

Tk
′ = I −AYk

′,

M ′
k = I + T ′

k + · · ·+ T ′
k

q−1

Yk+1
′ = Yk

′M ′
k, k = 0, 1, . . .

It is well known that if we take

0 < α ≤ 2
TrA∗A

,

then Yk → A† and Y ′
k → A† [21].

If A is m×N complex matrix, then the process (1.1) is superior with respect
to (1.1’) when m > N [8].

The hyper-power iterative method of the order 2 is investigated in [16] in view
of the singular value decomposition of A. Recently, this method is investigated in
[11] and [13]. In [13] several error estimates of the method are investigated. In
[11] the hyper-power method of the order 2 is implemented by means of parallel
computing, and several acceleration procedures are introduced.

In [20] there are given necessary and sufficient conditions for the starting
approximation of the hyper-power iterative method, ensuring the convergence of
these methods to an arbitrary {1, 2}-inverse. Modifications of the hyper-power
method for computing various subclasses of {1, 2}-inverses are introduced in [17].

In [8] are introduced two methods for computing the matrix products A†B
and BA†, involving the Moore-Penrose inverse, where A ∈ Cm×N and B ∈
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Cm×n are arbitrary complex matrices with equal number of rows. The starting
matrix Y0 is chosen such that

(1.2)
Y0 = A∗WA∗, for some W ∈ Cm×N provided that
ρ

(
PR(A) −AY0

)
< 1,

where PR(A) is the orthogonal projection on the range of A. The sequence {Xk},
defined by the following modification of the hyper-power method:

(1.3)

Y0 is given by (1.2),
X0 = Y0B,

T0 = I − Y0A,

Mk = I + Tk + T 2
k + . . . + T q−1

k ,

Xk+1 = MkXk,

Tk+1 = T q
k = I + Mk[Tk − I].

converges to A†B [8].

In [8] it is shown that (1.3) is an improvement (over using (1.1) to find A†

and then forming A†B) only when N > n.

In [19] we develop an iterative method for computing the best approximate
solution and the basic solution of a given system of linear equations. This method is
an adaptation of the modified hyper-power method (1.3). In this paper we introduce
several modifications of the iterative process (1.3), applicable in computing {1, 2, 3},
{1, 2, 4} and {2, 3}, {2, 4} generalized inverses of a given rank.

In the second section we introduce representations for {1, 2, 3} and {1, 2, 4}
inverses of a given complex matrix, in terms of matrix products involving the
Moore-Penrose inverse. We also restate usual representations for {2, 3} and
{2, 4}-inverses from [5], [6] and [9].

In view of these representations, we propose several modifications of the
hyper-power method (1.3), which can be used in computation of {2, 3}, {1, 2, 3}
and {2, 4}, {1, 2, 4}-inverses. Methods have arbitrary high order q ≥ 2. Represen-
tations for {i, j, k} inverses of a matrix of rank 1 are also investigated. Introduced
methods can be considered as a continuation of the papers [8] and [19].

In the third section we describe main implementation details in the package
MATHEMATICA and present an illustrative example.

2. ITERATIVE METHODS FOR COMPUTING {i, j, k} INVERSES

The following representations for {2, 3} {2, 4}-inverses are restated from [5,
p. 56–58], [6, p. 47–48] and [9].

Proposition 2.1. Let A ∈ Cm×N
r and 0 < s < r be a chosen integer. Then the

following is valid:
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(a) A{2, 4}s =
{
(W2A)†W2 : W2 ∈ Cs×m, W2A ∈ Cs×N

s

}
.

(b) A{2, 3}s =
{
W1(AW1)† : W1 ∈ CN×s, AW1 ∈ Cm×s

s

}
.

In the following theorem we investigate similar representations of {1, 2, 3}
and {1, 2, 4}-inverses, in terms of matrix products involving the Moore-Penrose
inverse.

Theorem 2.1. Let A ∈ Cm×N
r and A = PQ be a full-rank factorization of A.

Then the following statements about the sets A{1, 2, 3} and A{1, 2, 3} are valid:

(a) The set of {1, 2, 4}-inverses of A can be represented as follows:

A{1, 2, 4} =
{
(W2A)†W2 : W2 ∈ Cr×m, W2P is invertible

}
.

(b) The set of {1, 2, 3}-inverses of A can be represented as follows:

A{1, 2, 3} =
{
W1(AW1)† : W1 ∈ CN×r, QW1 is invertible

}
.

(c) Particularly,

A† = (P ∗A)†P ∗ = Q∗(AQ∗)†.

Proof. (a) Consider an arbitrary matrix W2∈Cr×m, such that W2P is invertible.
Since the matrix X = (W2A)†W2 is {2, 4} inverse of A, we must to verify the
equation AXA = A. We use the following important property of the Moore–
Penrose inverse [7]: (UV )† = V †U† if and only if both of the following two
conditions are satisfied

(2.1) U†UV V ∗U∗ = V V ∗U∗, V V †U∗UV = U∗UV.

The matrix U = W2P is invertible and V = Q is the right invertible. So the
conditions (2.1) are satisfied in this case, and we get

AXA = PQ(W2PQ)†W2PQ = PQQ†(W2P )†W2PQ = PQ = A.

In this way, X ∈ A{1, 2, 4}.
On the other hand, consider an arbitrary matrix X ∈ A{1, 2, 4}. Using the

general representation of {1, 2, 4}-inverses from [14], and [18], we conclude that X
can be represented in the form

X = Q∗(QQ∗)−1(Y P )−1Y = Q†(Y P )−1Y, Y ∈ Cr×m
r ,

where A = PQ is a full-rank factorization of A. Since the conditions (2.1) are
satisfied for U = Y P , V = Q, we get

X = (Y A)†Y ∈
{
(W2A)†W2 : W2∈Cr×m, W2P is invertible

}
.
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(b) It is sufficient to apply the property (2.1) with U = P and V = QY ,
Y ∈ CN×r, and the full-rank representation of {1, 2, 3}-inverses from [14] and [18].

(c) This part of the proof follows from the following transformations:

(P ∗A)†P ∗ = Q†(P ∗P )†P ∗Q∗(QQ∗)−1(P ∗P )−1P ∗ = A†,

Q∗(AQ∗)† = Q∗(QQ∗)†P †Q∗(QQ∗)−1(P ∗P )−1P ∗ = A†.

In order to compare general representations of {1,2,3} and {1,2,4} inverses
with known results [5, p. 58] and [6, p. 48] we state the following corollary.

Corollary 2.1. Under the assumptions of Theorem 2.2 we have

A{1, 2, 4} =
{
(W2A)†W2 : W2 ∈ Cr×m, W2P is invertible

}
=

{
(W2A)†W2 : W2A ∈ Cr×N

r

}
A{1, 2, 3} =

{
W1(AW1)† : W1 ∈ CN×r, QW1 is invertible

}
=

{
W1(AW1)† : AW1 ∈ Cm×r

r

}
.

Remark 2.1. Sharper versions of Proposition 2.1 and Theorem 2.1 are proved in
[10].

Let A ∈ Cm×N
r and 0 < s < r. Then

A{2, 4}s =
{
(W2A)(1,4)W2 : W2A ∈ Cs×N

s

}
A{2, 3}s =

{
W1(AW1)(1,3) : AW1 ∈ Cm×s

s

}
A{1, 2, 4}s =

{
(W2A)(1,4)W2 : W2A ∈ Cr×N

r

}
A{1, 2, 3}s =

{
W1(AW1)(1,3) : AW1 ∈ Cm×r

r

}
However, in this paper we use representations from Proposition 2.1 and Theorem

2.1, because the hyper-power method computes the Moore-Penrose inverse.

Introduced representations of generalized inverses are convenient for the ap-
plication of the modified hyper-power iterative method (1.3). Using this idea, we
introduce two modifications of the hyper-power method for construction of {1, 2, 3}
and {1, 2, 4} generalized inverses, and two modifications of the hyper-power method
for computing subsets of {2, 3} and {2, 4}-inverses. In these algorithms we consider
an arbitrary matrix A of the order m×N . Also, it is assumed that rank A = r ≥ 2
and q ≥ 2 is any integer. Algorithm A24 can be used in construction of {2, 4}-
inverses, and Algorithm A23 can be used in construction of {2, 3}-inverses.
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Algorithm A24.

(2.1)

Y0 = (W2A)∗W (W2A)∗, for some W2 ∈ Cs×N such that
ρ

(
PR(W2A) −W2AY0

)
< 1, 1 < s ≤ rankA, W2A ∈ Cs×N

s

X0 = Y0W2,

T0 = I − Y0W2A,

Mk = I + Tk + T 2
k + · · ·+ T q−1

k ,

Xk+1 = MkXk = (I + Tk + T 2
k + · · ·+ T q−1

k )Xk,

Tk+1 = T q
k = I + Mk[Tk − I],

k = 0, 1, . . . .

This algorithm is an improvement (over using a modification of (1.1) to find (W2A)†

and then forming (W2A)†W2) only in the case N > m.

Algorithm A23.

(2.3)

Y0 = (AW1)∗W (AW1)∗, for some W1 ∈ Cm×s such that
ρ

(
PR(AW1) −AW1Y0

)
< 1, 1 < s ≤ rank A, AW1 ∈ Cm×s

s

X0 = W1Y0,

T0 = I −AW1Y0,

Mk = I + Tk + T 2
k + . . . + T q−1

k ,

Xk+1 = XkMk = Xk(I + Tk + T 2
k + · · ·+ T q−1

k ),
Tk+1 = T q

k = I + Mk[Tk − I],
k = 0, 1, . . . .

This algorithm is an improvement (over using a modification of (1.1) to find (AW1)†

and then forming W1(AW1)†) in the case m > N .

Remark 2.2. Instead of the initial approximations Y0, used in (2.2) and (2.3), we
can use the following approximations:

(2.2′) Y0 = α(W2A)∗, 0 < α ≤ 2
Tr

(
(W2A)∗W2A

) ,

(2.3′) Y0 = α(AW1)∗, 0 < α ≤ 2
Tr

(
(AW1)∗AW1

) .

Initial approximations (2.2) and (2.3) are more general, but (2.2’) and (2.3’) are
simpler for computation.

Theorem 2.2. For an arbitrary matrix A ∈ Cm×N
r , any integer 1 < s ≤ r and

arbitrary matrices W2 ∈ Cs×m, W1 ∈ CN×s the following statements are valid:

(a) In general, the sequence Xk, k = 0, 1, . . . , defined in Algorithm A24
converges to

(2.4) Xk → (W2A)†W2 ∈ A{2, 4}s if and only if W2A ∈ Cs×N
s .
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(b) In the case s = r the sequence Xk, k = 0, 1, . . ., defined in Algorithm A24
satisfies

(2.4′) Xk → (W2A)†W2 ∈ A{1, 2, 4} if and only if W2P is invertible.

(c) The optimal order q of methods (a) and (b) minimizes the function

f(q) = (m/N + q − 1)/ ln q.

(d) In general, the sequence Xk, k = 0, 1, . . . , defined in Algorithm A23
satisfies

(2.5) Xk → W1(AW1)† ∈ A{2, 3}s if and only if AW1 ∈ Cm×s
s .

(e) In the case s = r the sequence Xk, k = 0, 1, . . . , defined in Algorithm
A23 satisfies

(2.5′) Xk → W1(AW1)† ∈ A{1, 2, 3} if and only if QW1 is invertible.

(f) The optimal order q of methods in (d) and (e) minimizes the function

f(q) = (N/m + q − 1)/ ln q.

Proof. (a), (b) It is not difficult to verify

Xk = YkW2, k = 0, 1, . . .

where the sequence {Yk} is defined as in the following:

Y0 = α(W2A)∗, 0 < α ≤ 2
Tr

(
(W2A)∗W2A

) , W2A ∈ Cs×N
s

T0 = I − Y0W2A,

Mk = I + Tk + T 2
k + · · ·+ T q−1

k ,

Yk+1 = MkYk = (I + Tk + T 2
k + . . . + T q−1

k )Yk,

Tk+1 = T q
k = I + Mk[Tk − I],

k = 0, 1, . . . .

Since the sequence {Yk} is defined by applying the usual hyper-power method (1.1)
on the matrix W2A, we conclude Yk → (W2A)†. Hence, we get Xk → (W2A)†W2.
Then statements (2.4) and (2.4’) follows from Proposition 2.1 and Theorem 2.1,
respectively.

(c) The optimal order q can be determined using the known results from [8].

The parts (d), (e) and (f) can be proved in a similar way.
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In the case rank A = 1 the set of {1, 2, 3} and {1, 2, 4}-inverses can be gener-
ated using the next known proposition from [17]:

A† =
1

Tr (A∗A)
A∗.

Corollary 2.2. If A is m × N matrix satisfying rankA = 1, then the following
statements are valid:

(a) X = W1(AW1)† ∈ A{1, 2, 3} is given by

X =
1

Tr
(
(AW1)∗AW1

) W1(AW1)∗.

(b) Y = (W2A)†W2 ∈ A{1, 2, 4} is given by

Y =
1

Tr
(
(W2A)∗W2A

) (W2A)∗W2.

3. IMPLEMENTATION METHOD

In this section we describe implementation details of the introduced algo-
rithms, in the package MATHEMATICA. In the following function norm [a] we

compute the norm

√
m∑

i=1

n∑
j=1

a2
ij of the matrix a.

norm[a_]: Block[{m,n,i,j,u},
{m,n\}=Dimensions[a];
u=Sum[a[[i,j]]^2,{i,m},{j,n}];
Return[N[Sqrt[u],20]]

]

In the function HyperPower 124 is implemented Algorithm A24.

(* A^(2,4)=(W2A)^+ W2 *)
HyperPower124[a_,w2_,q_,eps_]:

Block[{tk,tk1,c=w2.a,e,x0,x1,y,alpha,s,k=1,m,n,nor=1},
alpha=2/trace[Transpose[Conjugate[c]].c];
y=alpha Conjugate[Transpose[c]];
x0=y.w2;
e=IdentityMatrix[n];
tk=s=e-y.c;
While[nor>=eps,

s=e; tk1=tk; Do[s+=tk1; tk1=tk1.tk,{i,q-1}];
x1=s.x0;
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tk=tk1;
nor=norm[x1-x0];
x0=x1; k=k+1

];
N[x1]

]

In the function HyperPower 123 is implemented Algorithm A23.

(* A^ {}(2,3)=W1(AW1)^ {}+ *)
HyperPower123[a_,w1_,q_,eps_]:

Block[{tk,tk1,c=a.w1,e,x0,x1,y,alpha,s,k=1,m,n,nor=1},
alpha=2/trace[Transpose[Conjugate[c]].c];
y=alpha Conjugate[Transpose[c]];
x0=w1.y;
e=IdentityMatrix[n];
tk=s=e-c.y;
While[nor>=eps,

s=e; tk1=tk; Do[s+=tk1; tk1=tk1.tk,\{i,q-1\}];
x1=x0.s;
tk=tk1;
nor=norm[x1-x0];
x0=x1; k=k+1

];
N[x1]

]

Example 3.1. In this example we construct {1, 2, 4} and {1, 2, 3}-inverse of the
matrix

A =


−1 0 1 2
−1 1 0 −1

0 −1 1 3
0 1 −1 −3
1 −1 0 1
1 0 −1 −2


which are generated, respectively, by the matrices

(3.1) W2 =
[

3 1 3 1 2 −1
0 −1 0 0 −2 1

]
, W1 =


2 0
0 1
1 0
4 2

 .

By means of the expression HyperPower124[a,w2, 3, 10 (̂−11)] we apply the Algo-
rithm A24 for the matrices A, W2, using the order q = 3 and the precision 10−11.
In this case is s = rankA = 2, and the resulting matrix
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
−0.647059 0.843137 −0.647059 −0.215686 1.68627 −0.843137

0.411765 −0.627451 0.411765 0.137255 −1.2549 0.627451
0.235294 −0.215686 0.235294 0.0784314 −0.431373 0.215686
0.0588235 0.196078 0.0588235 0.0196078 0.392157 −0.196078


is an {1, 2, 4}-inverse of A.

Similarly, by means of the expression HyperPower123[a,w1, 3, 10̂ (−11)] we
apply the Algorithm A23 for the matrices A, W1, using the modified Hyper-power
method of the order 3, with the precision 10−11. The resulting {1, 2, 3}-inverse of
A is equal to
−0.117647 −0.176471 0.0588235 −0.0588235 0.176471 0.117647

0.186275 0.196078 −0.00980392 0.00980392 −0.196078 −0.186275
−0.0588235 −0.08882353 0.0294118 −0.0294118 0.0882353 0.0588235

0.137255 0.0392157 0.0980392 −0.0980392 −0.0392157 −0.137255

 .

Consider now the following matrix of rank 3

A =


−1 0 1 2
−1 3 0 −1

0 −1 1 3
0 1 −1 −3
1 −1 0 1
1 0 −1 −2


and the matrices W1, W2 as in (3.1). In this case is s = 2 < rank A = 3, and the
expression HyperPower124[a,w2, 4, 10̂ (−12)] produces the following {2, 4}-inverse
of A :


−0.205821 0.243243 −0.205821 −0.0686071 0.486486 −0.243243
−0.380457, 0.540541 −0.380457 −0.126819 1.08108 −0.540541

0.0997921 −0.027027 0.0997921 0.033264 −0.0540541 0.027027
0.0935551 0.162162 0.0935551 0.031185 0.324324 −0.162162

 .

Also, the result of the expression HyperPower123[a,w1, 4, 10̂ (−12)] is the
following {2, 3}-inverse of A:


−0.038633 −0.170877 0.0401189, −0.0401189 0.0787519 0.038633

0.0903913 0.20109 0.0151065 −0.0151065 −0.0752848 −0.0903913
−0.0193165 −0.0854383 0.0200594 −0.0200594 0.0393759 0.0193165

0.103517 0.060426 0.110451 −0.110451 0.00693413 −0.103517

 .
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4. CONCLUSION

In this section we present a few concluding remarks and comparisons of the
introduced method with the modification of the hyper-power method introduced in
[17].

Remark 4.1. We point out the following advantages of defined algorithms with
respect to modifications of the hyper-power method which are introduced in [17]:

(a) In the iterations defined in this paper it is not necessary to multiply the
matrix MkXk (or the matrix XkMk) by the matrices W1 and W2 from the
left and right, respectively.

(b) Iterations defined in [17] require a full-rank factorization of A in computation
of {1, 2, 3} and {1, 2, 4}-inverses. On the other hand, the iterations (2.2) and
(2.3) do not require the full-rank factorization.

In order to demonstrate these advantages we consider, in parallel, iterations
introduced in this paper and in [17].

By means of Algorithm A24, the sets A{2, 4}s and A{1, 2, 4} can be generated
as follows:

Y0 = α(W2A)∗, 0 < α ≤ 2
Tr

(
(W2A)∗W2A

) , W2P is invertible,

X0 = Y0W2, T0 = I − Y0W2A,

Xk+1 = (I + Tk + T 2
k + · · ·+ T q−1

k )Xk,

Tk+1 = T q
k , k = 1, . . . .

Applying iterations from [17], Lemma 2.1], we must compute a full-rank
factorization A = PQ and then generate the following iterations:

Y0 = α(W2AQ∗)∗, 0 < α ≤ 2
Tr

(
(W2AQ∗)∗W2AQ∗

)
Tk = I − YkW2AQ∗ = T q

k−1

Yk+1 = (I + Tk + T 2
k + · · ·+ T q−1

k )Yk,

Xk+1 = W1Yk+1W2, k = 0, 1, . . . .

Similarly, by means of Algorithm A23, the set A{1, 2, 3} can be generated as
follows:

Y0 = α(AW1)∗, 0 < α ≤ 2
Tr

(
(AW1)∗AW1

) , QW1 is invertible,

X0 = W1Y0, T0 = I −AW1Y0,

Xk+1 = Xk(I + Tk + T 2
k + · · ·+ T q−1

k ),
Tk+1 = T q

k , k = 0, 1, . . . .
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Also, using the method defined in [17, Lemma 2.1], we must compute a full-
rank factorization A = PQ and generate the following iterations:

Y0 = α(P ∗AW1)∗, 0 < α ≤ 2
Tr

(
(P ∗AW1)∗P ∗AW1

)
Tk = I − P ∗AW1Yk = T q

k−1

Yk+1 = Yk(I + Tk + T 2
k + · · ·+ T q−1

k ),
Xk+1 = W1Yk+1W2, k = 0, 1, . . . .
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10. M. Haverić: Generalized inverses. Master Thesis, University of Belgrade, Faculty of

science and Mathematics, (1982) (in Serbian).

11. V. Pan, R. Schreiber: An improved Newton iteration for the generalized inverse of

a matrix, with applications. SIAM. J. Sci. Stat. Comput., 12 (1991), 1109–1130.

12. W. V. Petryshyn: On the inversion of matrices and linear operators. Proc. Amer.

Math. Soc., 16 (1965), 893–901.

13. W. H. Pierce: A self-correcting matrix iteration for the Moore-Penrose inverse. Lin-

ear Algebra Appl., 244 (1996), 357–363.



Applications of the hyper-power method ... 25
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