AN INTEGRAL INEQUALITY FOR NON-NEGATIVE POLYNOMIALS

Luciana Lupas

If p is a polynomial of the exact degree $n, p \geq 0$ on $[a, b]$, the aim of this paper is to establish an inequality of the form

$$
\frac{1}{b-a} \int_{a}^{b} p(x) \mathrm{d} x \geq \alpha_{n}(p(a)+p(b))+\beta_{n}|p(a)-p(b)|
$$

There are given all extremal polynomials for which the equality case is attained.

1. Supposing that n is a fixed natural number, let us define

$$
\begin{equation*}
m=\left[\frac{n}{2}\right], \quad s=n-2 m, \quad d=\left[\frac{n+1}{2}\right], \tag{1}
\end{equation*}
$$

where the symbol [•] denotes the integral part.
By Π we denote the algebra of univariate polynomials with real coefficients and by Π_{n} the real linear space of all polynomials from Π of the degree at most n.

The set $\mathcal{P}_{n}{ }^{+}[a, b]$ consists of the polynomials $p, p \in \Pi_{n}$, with the properties

$$
\text { degree }[p]=n, \quad p(x) \geq 0 \text { for all } x \in[a, b] .
$$

Let

$$
R_{n}^{(\alpha, \beta)}(x)={ }_{2} F_{1}\left(-n, n+\alpha+\beta+1 ; \alpha+1 ; \frac{1-x}{2}\right)=\frac{P_{n}^{(\alpha, \beta)}(x)}{\binom{n+\alpha}{n}}
$$

be the JACOBI polynomial of the degree n normalized by $R_{n}^{(\alpha, \beta)}(1)=1$.
Further, for a fixed n, let us select the division

$$
-1<z_{1}<z_{2}<\cdots<z_{m}<1
$$

$$
\begin{equation*}
R_{m}^{(1, s)}\left(z_{j}\right)=0, \quad j=1,2, \ldots, m \tag{2}
\end{equation*}
$$

m and s having the same meaning as in (1). At the same time we shall denote $y_{k}=-z_{m+1-k}, k=1,2, \ldots, m$. It is known that

$$
\begin{equation*}
R_{m}^{(s, 1)}\left(y_{k}\right)=0, \quad k=1,2, \ldots, m \tag{3}
\end{equation*}
$$

Suppose that m, s, d, z_{k} are as in (1)-(2) and let us denote

$$
\begin{gathered}
C_{0}=\frac{8 s}{(n+2)^{2}-s}, \quad C_{m+1}=\frac{8}{(n+2)^{2}-s}, \quad G_{k}=\frac{1+(1-s) z_{k}}{\left(R_{d}^{(0,0)}\left(z_{k}\right)\right)^{2}}, k=1, \ldots, m, \\
\zeta=\frac{2^{s+2}}{(n+2)^{2}-s}, \quad \eta_{n}=\frac{2^{n+2} m!(m+1)!d!(d+1)!}{(n+1)!(n+2)!}, \quad \mu_{n}=(-1)^{n+1} \eta_{n} .
\end{gathered}
$$

Further we need the following result.
Lemma 1. If $f \in C^{n+1}[-1,1]$, then there exist in $(-1,1)$ at least two points θ_{1}, θ_{2} such that
(4) $\int_{-1}^{1} f(x) \mathrm{d} x=C_{0} f(-1)+\zeta \sum_{k=1}^{m} G_{k} f\left(z_{k}\right)+C_{m+1} f(1)-\eta_{n} \frac{f^{(n+1)}\left(\theta_{1}\right)}{(n+1)!}$,
(5)

$$
\int_{-1}^{1} f(x) \mathrm{d} x=C_{0} f(1)+\zeta \sum_{k=1}^{m} G_{m+1-k} f\left(y_{k}\right)+C_{m+1} f(-1)-\mu_{n} \frac{f^{(n+1)}\left(\theta_{2}\right)}{(n+1)!} .
$$

Proof. In order to justify (4)-(5) it is sufficient to use the Bouzitat quadrature formulas for the LEGENDRE weight, i.e. the RADAU formulas. Let $n=2 m+s$. When n is even $(s=0)$ the quadrature from (5) may be derived, by a suitable linear transformation, from the Bouzitat formula of the first kind (see [2]). If $n=2 m+1$, then (4) is the same with Bouzitat elementary quadrature formulae of the second kind (see (4.7.1) and (4.8.1) from [2]) .
2. Let us consider the polynomials H^{*} and G^{*} where

$$
\begin{aligned}
H^{*}(x) & :=\left(\mathcal{A}(x-a)^{s}+\mathcal{B} s(b-x)\right)\left(R_{m}^{(1, s)}\left(\frac{2 x-a-b}{b-a}\right)\right)^{2}, \\
G^{*}(x) & :=H^{*}(a+b-x)
\end{aligned}
$$

where $\mathcal{A}>0$ when $s=0$ and $\mathcal{A} \geq 0, \mathcal{B} \geq 0, \mathcal{A} \neq \mathcal{B}$ for $s=1$.
The main result is the following proposition:
Theorem 1. If $p \in \mathcal{P}_{n}{ }^{+}[a, b], m=[n / 2], s=n-2 m$, then

$$
\frac{1}{b-a} \int_{a}^{b} p(x) \mathrm{d} x \geq \frac{2(1+s)}{(n+2)^{2}-s}(p(a)+p(b))+\frac{2(1-s)}{(n+2)^{2}-s}|p(a)-p(b)|
$$

The equality case is attained only for the polynomials $H^{*}(x)$ or $G^{*}(x)$.
Proof. First, let us observe that the extremal polynomial H^{*} may be written as

$$
H^{*}(x)=\frac{\mathcal{A}(x-a)^{s}+\mathcal{B} s(b-x)}{(x-a)^{2 s}}\left(\frac{P_{m}(y(x))-P_{m+1+s}(y(x))}{b-x}\right)^{2} .
$$

where $y(x)=\frac{2 x-a-b}{b-a}$ and $P_{m}(x)=\frac{1}{2^{m} m!}\left(\left(x^{2}-1\right)^{m}\right)^{(m)}$ being the LEGENDRE polynomial.

We shall prove the above result in the case $[a, b]=[-1,1]$. Supposing that

$$
E_{n}(p ; s):=\frac{4(1+s)}{(n+2)^{2}-s}(p(-1)+p(1))+\frac{4(1-s)}{(n+2)^{2}-s}|p(-1)-p(1)|
$$

we must prove that the inequality

$$
\begin{equation*}
\int_{-1}^{1} p(x) \mathrm{d} x \geq E_{n}(p ; s) \tag{6}
\end{equation*}
$$

is verified for any polynomial p, of the degree n, which is non-negative on the interval $[-1,1]$.

Using the notation (1) we observe that if $p \in \mathcal{P}_{n}{ }^{+}[-1,1]$, then there exist two polynomials A_{m}, B_{d-1}

$$
A_{m} \in \Pi_{m}, \quad A_{m}(1)=p(1), \quad B_{d-1} \in \Pi_{d-1},
$$

such that

$$
\begin{equation*}
p(x)=\left(\frac{1+x}{2}\right)^{s} A_{m}^{2}(x)+(1-x)(1+x)^{1-s} B_{d-1}^{2}(x) . \tag{7}
\end{equation*}
$$

This representation is in fact a form of a theorem of LUKÁCs (see [4]-[5]). According to (4)

$$
\begin{aligned}
\int_{-1}^{1} p(x) \mathrm{d} x & =\frac{8}{(n+2)^{2}-s}(s p(-1)+p(1))+\zeta \sum_{k=1}^{m} G_{k} p\left(z_{k}\right) \\
& \geq \frac{8}{(n+2)^{2}-s}(s p(-1)+p(1))
\end{aligned}
$$

and in the same manner from (5)

$$
\begin{aligned}
\int_{-1}^{1} p(x) \mathrm{d} x & =\frac{8}{(n+2)^{2}-s}(p(-1)+s p(1))+\zeta \sum_{k=1}^{m} G_{m+1-k} p\left(y_{k}\right) \\
& \geq \frac{8}{(n+2)^{2}-s}(p(-1)+s p(1))
\end{aligned}
$$

For n even $(s=0)$, from the above inequalities we find

$$
\int_{-1}^{1} p(x) \mathrm{d} x \geq \frac{8}{(n+2)^{2}} \max \{p(-1), p(1)\} E_{n}(p ; 0)
$$

When $s=1$, that is, n is odd one observes that

$$
\int_{-1}^{1} p(x) \mathrm{d} x \geq \frac{8}{(n+2)^{2}-1}(p(-1)+p(1)) E_{n}(p ; 1) .
$$

Let us show that (6) cannot be improved. We shall show that there exists a polynomial $h^{*} \in \mathcal{P}_{n}{ }^{+}[-1,1]$ such that

$$
\int_{-1}^{1} h^{*}(x) \mathrm{d} x=E_{n}\left(h^{*} ; s\right) .
$$

Consider the polynomial

$$
\begin{equation*}
h^{*}(x)=\left(\left(\frac{1+x}{2}\right)^{s}+B s\left(\frac{1-x}{2}\right)\right)\left(R_{m}^{(1, s)}(x)\right)^{2} \tag{8}
\end{equation*}
$$

where $B \geq 0, B \neq 1$. It is clear that $h^{*} \in \mathcal{P}_{n}{ }^{+}$, and moreover

$$
h^{*}(-1)=\frac{4(1-s)}{(n+1)^{2}}+s B, \quad h^{*}(1)=1, \quad h^{*}\left(z_{k}\right)=0, \quad k=1,2, \ldots, m
$$

At the same time, according to (4)-(5)

$$
\int_{-1}^{1} h_{1}^{*}(x) \mathrm{d} x=\frac{8\left(1+s h^{*}(-1)\right)}{(n+2)^{2}-s}=E_{n}\left(h^{*} ; s\right)
$$

which means that the equality case in (6) holds.
Let us investigate the equality cases:
(i) $s=0$: then $d=m$ and $p(x)=A_{m}^{2}(x)+\left(1-x^{2}\right) B_{m-1}^{2}(x)$.

In order to have equality in (7) we must have one of the following two situations:
a) $B_{m-1}\left(z_{k}\right)=0, \quad A_{m}\left(z_{k}\right)=0, \quad k=1,2, \ldots, m$, and $p(1) \geq p(-1)$, or
b) $B_{m-1}\left(y_{k}\right)=0, \quad A_{m}\left(y_{k}\right)=0, \quad k=1,2, \ldots, m$, and $p(-1) \geq p(1)$.

When a) holds, then $B_{m-1}=0$ and

$$
p(x)=\lambda_{1}\left(R_{m}^{(1,0)}(x)\right)^{2}, \quad \lambda_{1}>0
$$

that is $p(x)=\lambda_{1} h^{*}(x)$.

Suppose that b) is true. Then we observe that

$$
p(x)=\lambda_{2}\left(R_{m}^{(0,1)}(x)\right)^{2}=\lambda_{3}\left(R_{m}^{(1,0)}(-x)\right)^{2}, \quad \lambda_{2}, \lambda_{3}>0
$$

Thus, $p(x)$ must be of the form $p(x)=\lambda_{4} h^{*}(-x), \lambda_{4}>0$.
(ii) $s=1$: then $d-1=m$ and

$$
p(x)=\frac{1+x}{2} A_{m}^{2}(x)+(1-x) B_{m-1}^{2}(x) .
$$

It may be seen that for equality case it is necessary and sufficient to have

$$
p\left(z_{k}\right)=0, \quad k=1,2, \ldots, m
$$

therefore $B_{d-1}(x)=\mu_{1} R_{m}^{(1,1)}(x), B_{m}(x)=\mu_{2} R_{m}^{(1,1)}(x)$. In other words, the extremal polynomials $p^{*}(x)$ have the representation

$$
p^{*}(x)=(\mu x+\nu)\left(R_{m}^{(1,1)}(x)\right)^{2}=\mu_{1} h^{*}(x)=\mu_{2} h^{*}(-x)
$$

with $0<|\mu| \leq \nu, \mu_{1}>0, \mu_{2}>0$.
In conclusion, the equality in (6) holds only for polynomials from $\mathcal{P}_{n}{ }^{+}[-1,1]$ which have the representation

$$
p(x)=\psi_{1} h^{*}(x) \text { or } p(x)=\psi_{2} h^{*}(-x),
$$

ψ_{1}, ψ_{2} being positive constants and $h^{*}(x)$ as in (8).
Remark. When n is even, i.e. $s=0$ the above theorem was proved by F. Lukács in [3]: see also the excellent monograph [4], pages 132-133 (Theorem 1.7.1 and Theorem 1.7.2).
3. A more general problem may be formulated in the following manner. We consider a non-negative weight $w(x)$ which is defined on a bounded interval $[a, b]$ such that all moments

$$
\int_{a}^{b} x^{i} w(x) \mathrm{d} x, \quad i=0,1, \ldots, \quad \int_{a}^{b} w(x) \mathrm{d} x=1
$$

are finite and $\operatorname{supp}(w)$ has a positive measure.
Suppose that z_{1}, z_{2} are fixed points

$$
-\infty<a \leq z_{1}<z_{2} \leq b<\infty,\left(z_{1}-a\right)^{2}+\left(b-z_{2}\right)^{2}>0
$$

Problem. Find the "best constants"

$$
K_{1, n}=K_{1, n}\left(z_{1}, z_{2} ; w\right), K_{2, n}=K_{2, n}\left(z_{1}, z_{2} ; w\right)
$$

in order that the inequality

$$
\int_{a}^{b} p(x) w(x) \mathrm{d} x \geq K_{1, n}\left(p\left(z_{1}\right)+p\left(z_{2}\right)\right)+K_{2, n}\left|p\left(z_{1}\right)-p\left(z_{2}\right)\right|
$$

be valid for all $p \in \mathcal{P}_{n}{ }^{+}[a, b]$.
It seems that in the case $a=z_{1}<z_{2}<b$, or when $a<z_{1}<z_{2}=b$ the above problem may be solved (n odd) by means of Fillippi quadrature formula (see [1], p. 328).

REFERENCES

1. H. Engels: Numerical quadrature and cubature. Academic Press, New York, 1980.
2. A. Ghizzetti, A. Ossicini: Quadrature formulae. Birkhäuser Verlag, ISNM vol. 13, Basel, 1970.
3. F. LukÁcs: Verschärfung des ersten Mittelwertsatzes der Integralrechnung für rationale Polynome. Math. Z. 2 (1918), 295-305.
4. G. V. Milovanović, D. S. Mitrinović , Th.M.Rassias: Topics in polynomials: Extremal problems, Inequalities, Zeros. World Scientific, Singapore, London, 1994.
5. G.Szegö: Orthogonal polynomials. Amer. Math. Soc. Colloq. Publications, 23 (1978).

University "Lucian Blaga" of Sibiu,
(Received December 20, 1998)
Faculty of Sciences,
Department of Mathematics,
Str. I. Raţiu nr.7,
2400-Sibiu, Romania
E-mail: lucianalupas@yahoo.com

