Ser. Mat. 14 (2003), 94–98.

TWO SHORTER PROOFS IN SPECTRAL GRAPH THEORY ¹

Slobodan Simić, Dragan Stevanović

We give shorter proofs of two inequalities already known in spectral graph theory.

1. INTRODUCTION

Let G be a simple graph with V(E) as its vertex (respectively, edge) set. The spectrum of G is the spectrum of its adjacency matrix. For all other definitions (or notation not given here), especially those related to graph spectra, see [1].

The purpose of this note is to provide shorter proofs of two inequalities already known in spectral graph theory. The first bounds vertex eccentricities of a connected graph in terms of some spectral quantities, while the second bounds the spectral radius of a graph in terms of vertex degrees. The first inequality is a slight generalization of a bound due to C.D. Godsil, while the second, also known as the Runge-Hofmeister conjecture, was first proved by A.J. Hoffman et al. (The proofs given here were obtained by the first and second author, respectively.)

2. A NEW PROOF OF THE BOUNDS ON ECCENTRICITIES

Let G be a simple graph, with adjacency matrix A. Assume that $\mu_1, \mu_2, \ldots, \mu_m$ are the distinct eigenvalues of A (and therefore of G), and let P_1, P_2, \ldots, P_m be the matrices of the orthogonal projections of the whole space onto the eigenspaces corresponding to these eigenvalues. Then, by the spectral decomposition theorem,

¹Both authors would like to gratefully acknowledge support from the Grant 1389 of the Serbian Ministry of Science, Technology and Development.

²⁰⁰⁰ Mathematics Subject Classification: $05\mathrm{C}50$

Keywords and Phrases: Spectral radius, vertex eccentricities, graph angles, vertex degrees.

we can write $A = \sum_{i=1}^{m} \mu_i P_i$ (see, for example, [2 p.3]). It follows that

$$A^k = \sum_{i=1}^m \mu_i^k P_i \quad (k = 0, 1, 2, \ldots).$$

Let $N_k(s,t)$ be the number of walks of length k between vertices s and t of G. Then we have

$$N_k(s,t) = \sum_{i=1}^{m} \mu_i^k(P_i)_{st}.$$

Denote by d(s,t) the distance between vertices s and t in G. From here onwards, we will assume that the graph G in question is connected.

Let m_{st} be the number of non-zero members in the list

$$(P_1)_{st},\ldots,(P_m)_{st}.$$

Then the following lemma holds:

Lemma 1. If s and t are two vertices of a connected graph G then $d(s,t) \leq m_{st}-1$.

Proof. For brevity, put d = d(s,t), and assume, to the contrary, that $d \geq m_{st}$. Then

(1)
$$\sum_{i=1}^{m} \mu_i^k(P_i)_{st} = 0 \quad (k = 0, 1, \dots, d-1),$$

while

(2)
$$\sum_{i=1}^{m} \mu_i^d(P_i)_{st} \neq 0.$$

If we consider (1) as a system of linear equations in m_{st} unknowns (the non-zero members from the list $(P_1)_{st}, \ldots, (P_m)_{st}$), then, since $d \geq m_{st}$, we get that $(P_i)_{st} = 0$ for all $i = 1, \ldots, m$. But this contradicts (2).

We will next find some bounds on m_{st} . Observe first that $(P_i)_{st}$ is equal to 0 if (i) $||P_ie_s|| = 0$, or (ii) $||P_ie_t|| = 0$, or (iii) the vectors P_ie_s , P_ie_t are orthogonal. Consider now conditions (i) and (ii). Recall also that $||P_ie_j|| = \alpha_{ij}$ (here α_{ij} is the (i,j)-th entry of the angle matrix $\mathcal{A} = (\alpha_{ij})$, where index i corresponds to the i-th eigenspace, and index j to the vertex j of the graph in question; note also that the angle matrix is usually ordered so that it represents a graph invariant, cf. [2, p.75]). Now, if $\alpha_{is} = 0$ or $\alpha_{it} = 0$, then $(P_i)_{st} = 0$. Guided by this fact, we define $\hat{m}_{st} = |\{i \mid \alpha_{is} \neq 0 \land \alpha_{it} \neq 0\}|$, and arrive at the following result:

Lemma 2. If s and t are two vertices of a graph G then $m_{st} \leq \hat{m}_{st}$.

REMARK. In general, $m_{st} \neq \hat{m}_{st}$, in view of (iii).

We now switch to the bounds on vertex eccentricities. Recall, $ecc(s) = \max\{d(s,t) \mid t \in V\}$. By Lemma 1, we first get that $ecc(s) \leq \max\{m_{st} \mid t \neq s\} - 1$; we next get, by Lemma 2, that $ecc(s) \leq \max\{\hat{m}_{st} \mid t \neq s\} - 1$. Let $m_s = \max\{\hat{m}_{st} \mid t \neq s\}$. We therefore obtain:

Theorem 3. If s is any vertex of a (connected) graph G then $ecc(s) \leq m_s - 1$.

Let m'_s be the number of non-zero entries in the s-th column of the angle matrix of G. Clearly, $m_s \leq m'_s$ (since only condition (i) from above has been used to define m'_s); note also that $m'_s = m_{ss}$. Accordingly we get the following result of C. D. Godsil (see [3]) as a corollary:

Corollary 4. If s is any vertex of G, then $ecc(s) \leq m'_{s} - 1$.

REMARK. It is well known that $diam(G) \leq m-1$ for any connected graph G (see [1, p.88]). Based on the above observations, we have $diam(G) \leq \max\{m_s \mid s \in V\} - 1$. In many situations this bound can be better than the previous one. Note also that the bound is completely extracted from the angle matrix of a graph, in contrast to (lower) bounds where the eigenvalues are involved (see, for example, [2, p.84]).

3. A NEW PROOF OF THE RUNGE-HOFMEISTER CONJECTURE

Let G be a simple graph with n vertices and m edges. Recall that the vertex set and the edge set of G are denoted by V and E, respectively. The spectral radius ρ of G is the largest eigenvalue of A, the adjacency matrix of G. The degree of a vertex $i \in V$ is denoted by d_i .

The graph G is called (r_1, r_2) -semiregular if it is bipartite with bipartition (V_1, V_2) such that all vertices in V_i have the same degree r_i for i = 1, 2. The graph G is called almost regular if there is a non-negative real number r such that every component of G is either r-regular or (r_1, r_2) -semiregular with $r_1r_2 = r^2$. F. Runge [6] (see also [1, p.49]) showed that if G is a regular or semiregular graph, then

(3)
$$m = \rho^2 \sum_{(i,j) \in E} \frac{1}{d_i d_j},$$

and conjectured that the condition (3) is sufficient for a graph to be regular or semiregular. Since F. Runge had not explicitly required the graph to be connected, M. Hofmeister [5] weakened this to the conjecture that the condition (3) is sufficient for a graph to be almost regular. This conjecture was proved in [4], and here we give a new and shorter proof.

Theorem 5. For any graph G we have

(4)
$$\rho^2 \ge \frac{m}{\sum_{(i,j)\in E} \frac{1}{d_i d_j}}.$$

The case of equality holds if and only if G is almost regular.

Proof. It is known that

(5)
$$\rho = \sup \{ x^{\mathsf{T}} A x : x \in \mathbf{R}^n, ||x|| = 1 \} \\ = \sup \{ 2 \sum_{(i,j) \in E} x_i x_j : x \in \mathbf{R}^n, ||x|| = 1 \},$$

with the supremum attained if and only if x is an eigenvector of A corresponding to ρ . Setting $x_i = \sqrt{\frac{d_i}{2m}}$ for $i \in V$ (giving ||x|| = 1, since $\sum_{i \in V} d_i = 2m$), we get from (5) that

$$\rho \ge 2\sum_{(i,j)\in E} \sqrt{\frac{d_i}{2m}} \sqrt{\frac{d_j}{2m}} = \frac{1}{m} \sum_{(i,j)\in E} \sqrt{d_i d_j}.$$

It follows from the inequality between arithmetic and geometric means that

$$\rho \ge \left(\prod_{(i,j)\in E} \sqrt{d_i d_j}\right)^{1/m}.$$

Squaring both sides of this inequality, we get

$$\rho^2 \ge \left(\prod_{(i,j)\in E} d_i d_j\right)^{1/m}.$$

Finally, from the inequality between geometric and harmonic means, we obtain

(6)
$$\rho^2 \ge \frac{m}{\sum_{(i,j)\in E} \frac{1}{d_i d_j}}.$$

Equality holds in (6) if and only if $x = (x_i)_{i \in V}$ is an eigenvector of A corresponding to ρ and

(7)
$$d_i d_i = \rho^2 \quad \text{for each } (i, j) \in E.$$

Let u be any vertex of G, and let C be the component of G containing u. From (7) we conclude that $d_v = \rho^2/d_u$ holds for all vertices v of C at an odd distance from u, while $d_v = d_u$ for all those at an even distance from u. Thus, if $d_u = \rho$ then C is ρ -regular graph, while if $d_u \neq \rho$ then C is a $(d_u, \rho^2/d_u)$ -semiregular graph with bipartition $(\{v \in C \mid d_v = d_u\}, \{v \in C \mid d_v = \rho^2/d_u\})$.

REFERENCES

- 1. D. CVETKOVIĆ, M. DOOB, H. SACHS: Spectra of Graphs—Theory and Application. Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
- 2. D. CVETKOVIĆ, P. ROWLINSON, S. SIMIĆ: *Eigenspaces of Graphs*. Cambridge University Press, Cambridge, 1997.

- 3. C.D. Godsil: Matching and walks in graphs. J. Graph Theory, 5 (1981), 285–297.
- 4. A.J. Hoffman, P. Wolfe, M. Hofmeister: A Note on Almost Regular Matrices. Linear Algebra Appl. 226–228 (1995), 105–108.
- 5. M. Hofmeister: A Note on Almost Regular Graphs. Math. Nachr. ${\bf 166}$ (1994), 259–262.
- 6. F. Runge: Beiträge zur Theorie der Spektren von Graphen und Hypergraphen. Dissertation, TH Ilmenau, 1976.

Faculty of Electrical Engineering, P.O. Box 35–54, 11120 Belgrade, Serbia and Montenegro E-mail: simics@kondor.etf.bg.ac.yu

Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia and Montenegro E-mail: dragance@pmf.ni.ac.yu (Received May 4, 2004)