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TWO SHORTER PROOFS IN SPECTRAL
GRAPH THEORY 1

Slobodan Simić, Dragan Stevanović

We give shorter proofs of two inequalities already known in spectral graph
theory.

1. INTRODUCTION

Let G be a simple graph with V (E) as its vertex (respectively, edge) set.
The spectrum of G is the spectrum of its adjacency matrix. For all other definitions
(or notation not given here), especially those related to graph spectra, see [1].

The purpose of this note is to provide shorter proofs of two inequalities al-
ready known in spectral graph theory. The first bounds vertex eccentricities of a
connected graph in terms of some spectral quantities, while the second bounds the
spectral radius of a graph in terms of vertex degrees. The first inequality is a slight
generalization of a bound due to C.D. Godsil, while the second, also known as the
Runge-Hofmeister conjecture, was first proved by A.J. Hoffman et al. (The
proofs given here were obtained by the first and second author, respectively.)

2. A NEW PROOF OF THE BOUNDS ON ECCENTRICITIES

Let G be a simple graph, with adjacency matrix A. Assume that µ1, µ2, . . .,
µm are the distinct eigenvalues of A (and therefore of G), and let P1, P2, . . ., Pm be
the matrices of the orthogonal projections of the whole space onto the eigenspaces
corresponding to these eigenvalues. Then, by the spectral decomposition theorem,
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we can write A =
∑m

i=1 µiPi (see, for example, [2 p.3]). It follows that

Ak =
m∑

i=1

µk
i Pi (k = 0, 1, 2, . . .).

Let Nk(s, t) be the number of walks of length k between vertices s and t of
G. Then we have

Nk(s, t) =
m∑

i=1

µk
i (Pi)st.

Denote by d(s, t) the distance between vertices s and t in G. From here
onwards, we will assume that the graph G in question is connected.

Let mst be the number of non-zero members in the list

(P1)st, . . . , (Pm)st.

Then the following lemma holds:

Lemma 1. If s and t are two vertices of a connected graph G then d(s, t) ≤ mst−1.

Proof. For brevity, put d = d(s, t), and assume, to the contrary, that d ≥ mst.
Then

(1)
m∑

i=1

µk
i (Pi)st = 0 (k = 0, 1, . . . , d − 1),

while

(2)
m∑

i=1

µd
i (Pi)st �= 0.

If we consider (1) as a system of linear equations in mst unknowns (the non-
zero members from the list (P1)st, . . . , (Pm)st), then, since d ≥ mst, we get that
(Pi)st = 0 for all i = 1, . . . ,m. But this contradicts (2).

We will next find some bounds on mst. Observe first that (Pi)st is equal to
0 if (i) ||Pies|| = 0, or (ii) ||Piet|| = 0, or (iii) the vectors Pies, Piet are orthogonal.
Consider now conditions (i) and (ii). Recall also that ||Piej || = αij (here αij is
the (i, j)-th entry of the angle matrix A = (αij), where index i corresponds to the
i-th eigenspace, and index j to the vertex j of the graph in question; note also that
the angle matrix is usually ordered so that it represents a graph invariant, cf. [2,
p.75]). Now, if αis = 0 or αit = 0, then (Pi)st = 0. Guided by this fact, we define
m̂st = |{i | αis �= 0 ∧ αit �= 0}|, and arrive at the following result:

Lemma 2. If s and t are two vertices of a graph G then mst ≤ m̂st.

Remark. In general, mst �= m̂st, in view of (iii).



96 Slobodan Simić, Dragan Stevanović

We now switch to the bounds on vertex eccentricities. Recall, ecc(s) =
max{d(s, t) | t ∈ V }. By Lemma 1, we first get that ecc(s) ≤ max{mst | t �=
s} − 1; we next get, by Lemma 2, that ecc(s) ≤ max{m̂st | t �= s} − 1. Let
ms = max{m̂st | t �= s}. We therefore obtain:

Theorem 3. If s is any vertex of a (connected) graph G then ecc(s) ≤ ms − 1.

Let m′
s be the number of non-zero entries in the s-th column of the angle

matrix of G. Clearly, ms ≤ m′
s (since only condition (i) from above has been used

to define m′
s); note also that m′

s = mss. Accordingly we get the following result of
C. D. Godsil (see [3]) as a corollary:

Corollary 4. If s is any vertex of G, then ecc(s) ≤ m′
s − 1.

Remark. It is well known that diam(G) ≤ m−1 for any connected graph G (see [1,
p.88]). Based on the above observations, we have diam(G) ≤ max{ms | s ∈ V }−1.
In many situations this bound can be better than the previous one. Note also that
the bound is completely extracted from the angle matrix of a graph, in contrast to
(lower) bounds where the eigenvalues are involved (see, for example, [2, p.84]).

3. A NEW PROOF OF THE RUNGE-HOFMEISTER CONJECTURE

Let G be a simple graph with n vertices and m edges. Recall that the vertex
set and the edge set of G are denoted by V and E, respectively. The spectral radius
ρ of G is the largest eigenvalue of A, the adjacency matrix of G. The degree of a
vertex i ∈ V is denoted by di.

The graph G is called (r1, r2)-semiregular if it is bipartite with bipartition
(V1, V2) such that all vertices in Vi have the same degree ri for i = 1, 2. The
graph G is called almost regular if there is a non-negative real number r such that
every component of G is either r-regular or (r1, r2)-semiregular with r1r2 = r2. F.
Runge [6] (see also [1, p.49]) showed that if G is a regular or semiregular graph,
then

(3) m = ρ2
∑

(i,j)∈E

1
didj

,

and conjectured that the condition (3) is sufficient for a graph to be regular or
semiregular. Since F. Runge had not explicitly required the graph to be connected,
M. Hofmeister [5] weakened this to the conjecture that the condition (3) is
sufficient for a graph to be almost regular. This conjecture was proved in [4], and
here we give a new and shorter proof.

Theorem 5. For any graph G we have

(4) ρ2 ≥ m∑
(i,j)∈E

1
didj

.

The case of equality holds if and only if G is almost regular.
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Proof. It is known that

(5)
ρ = sup { xTAx : x ∈ Rn, ‖x‖ = 1 }

= sup { 2
∑

(i,j)∈E xixj : x ∈ Rn, ‖x‖ = 1 },

with the supremum attained if and only if x is an eigenvector of A corresponding

to ρ. Setting xi =
√

di

2m for i ∈ V (giving ‖x‖ = 1, since
∑

i∈V di = 2m), we get
from (5) that

ρ ≥ 2
∑

(i,j)∈E

√
di

2m

√
dj

2m
=

1
m

∑
(i,j)∈E

√
didj .

It follows from the inequality between arithmetic and geometric means that

ρ ≥

 ∏

(i,j)∈E

√
didj




1/m

.

Squaring both sides of this inequality, we get

ρ2 ≥

 ∏

(i,j)∈E

didj




1/m

.

Finally, from the inequality between geometric and harmonic means, we obtain

(6) ρ2 ≥ m∑
(i,j)∈E

1
didj

.

Equality holds in (6) if and only if x = (xi)i∈V is an eigenvector of A corre-
sponding to ρ and

(7) didj = ρ2 for each (i, j) ∈ E.

Let u be any vertex of G, and let C be the component of G containing u. From
(7) we conclude that dv = ρ2/du holds for all vertices v of C at an odd distance
from u, while dv = du for all those at an even distance from u. Thus, if du = ρ
then C is ρ-regular graph, while if du �= ρ then C is a (du, ρ2/du)-semiregular graph
with bipartition ({v ∈ C | dv = du}, {v ∈ C | dv = ρ2/du}).
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6. F. Runge: Beiträge zur Theorie der Spektren von Graphen und Hypergraphen. Disser-

tation, TH Ilmenau, 1976.

Faculty of Electrical Engineering, (Received May 4, 2004)
P.O. Box 35–54, 11120 Belgrade,
Serbia and Montenegro
E–mail: simics@kondor.etf.bg.ac.yu

Faculty of Science and Mathematics,
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