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A CLASS OF REFLEXIVE CACTUSES WITH

FOUR CYCLES

Zoran Radosavljević, Marija Rašajski

A simple graph is reflexive if its second largest eigenvalue λ2 is less than or

equal to 2. A graph is a cactus, or a treelike graph, if any pair of its cycles

(circuits) has at most one common vertex. For a lot of cactuses the property

λ2 ≤ 2 can be tested by identifying and deleting a single cut-vetex (Theorem

1). if this theorem cannot be applied to a connected reflexive cactus and if

all its cycles do not form a bundle, such a graph has at most five cycles. On

the same conditions, in this paper we find some classes of maximal reflexive

cactuses with four cycles. The complete case of four cycles, together with

that of five cycles, is being settled in [10].

1. INTRODUCTION

For a simple graph G (an undirected graph without loops and/or multiple
edges) let PG (λ) = det(λI − A) be the characteristic polynomial of its (0, 1) ad-
jacency matrix. It is defined to be the characteristic polynomial of G and will be
denoted as P (λ) if it is clear which graph it is related to. Its roots are eigenvalues
of G, while the family of these roots makes up the spectrum of G. Since the eigen-
values of a simple graph are real, we assume their non-increasing order: λ1(G) ≥
λ2(G) ≥ · · · ≥ λn(G), The largest eigenvalue λ1(G) is also called the index of
G. (Recall, if G is connected, then λ1(G) > λ2(G), while for a disconnected graph
λ1(G) = λ2(G) if these are the indices of two distinct components of G.) The results
of this paper concern only connected graphs.

Graphs with the spectral property λ2 ≤ 2 are usually called reflexive graphs
and, if λ2 ≤ 2 ≤ λ1 they are also known as hyperbolic graphs. Reflexive graphs
correspond to some sets of vectors in the Lorentz space Rp,1 and are interesting
since they have some application to the construction and classification of reflexion
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groups [7]. In particular, reflexive trees have been studied in [5] and [6], and a
class of bicyclic reflexive graphs in [11] (see also [8] and [3]).

A cactus or a treelike graph is a graph in which any two cycles have at most
one common vertex (i.e. are edge disjoint).

The interrelation between the spectra of a graph G and its induced subgraph
H is expressed by the so-called interlacing theorem.

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of a graph G and µ1 ≥ µ2 ≥ · · ·
≥ µm eigenvalues of its induced subgraph H. Then the inequalities λn−m+i ≤ µi

≤ λi (i = 1, 2, . . . ,m) hold.
Thus, e.g. if m = n− 1, it will be λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · , and also λ1 µ1 if

G is connected.
According to this theorem, the graphic property λ2 ≤ 2 is hereditary (every

induced subgraph preserves the property) and that is why the results of this paper
are to be expressed through sets of maximal graphs.

In Section 2 we give some known results, to be useful devices in further
investigations, including Theorem 1, whose non-applicability will be a permanent
condition throughout further consideration. We also give some facts concerning
the cyclic structure of reflexive cactuses whose cycles do not form a bundle (the
complete discussion will be carried out in [10]). Section 3 contains the main result
of the paper - a class of maximal reflexive cactuses with four cycles. The complete
case of four cycles, together with that of five cycles (which is the maximum number
of cycles on the assumed conditions) is being solved in [10]).

The terminology of the theory of graph spectra in this paper follows [1], while
for other graph theoretic notions one can see [4].

2. SOME PRELIMINARY FACTS AND GENERAL RESULTS

The following facts will play important roles in getting the results of Section
3.
Lemma 1. ([13], see also [1], p.79) The index of a graph G satisfies λ1(G) ≤ 2
(λ1(G) < 2) if and only if each component of G is a subgraph (a proper subgraph)
of one of the graphs displayed in Fig. 1, all of which have λ1 = 2.

These graphs are known as Smith graphs.
The following formulae express an interrelation between the characteristic

polynomial of a graph and a set of its subgraphs.
Lemma 2. ([12], see also [1], p.78) Given a graph G, let C(v)

(
C(uv)

)
denote the

set of all cycles containing a vertex v and an edge uv of G, respectively. Then

(1)PG(λ) = λPG−v(λ) −
∑

u∈Adj(v)

PG−v−u(λ) − 2
∑

C∈C(v)

PG−V (C)(λ),

(2)PG(λ) = PG−uv(λ) − PG−v−u(λ) − 2
∑

C∈C(uv)

PG−V (C)(λ),
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where Adj (v) denotes the set of neighbours of v, while G − V (C) is the graph
obtained from G by removing the vertices belonging to the cycle C.

These relations of A. Schwenk have some simple consequences (due to E.
Heilbronner, see e.g. [1], p.59).

Corollary 1. Let G be a graph obtained by joining a vertex v1 of a graph G1 to a
vertex v2 of a graph G2 by an edge. Let G′

1(G
′
2) be the induced subgraph of G1(G2)

obtained by deleting the vertex v1(v2) from G1 (resp. G2). Then

PG(λ) = PG1(λ)PG2(λ) − PG
′
1
(λ)PG

′
2
(λ).

Corollary 2. Let G be a graph with a pendent edge v1v2, v1 being of degree 1.
Then

PG(λ) = λPG1(λ) − PG2(λ),

where G1(G2) is the graph obtained from G (resp. G1) by deleting the vertex v1

(resp. v2).
The next lemma gives a list of values P (2) for some types of graphs, which

will appear to be a very suitable device for treating many particular cases in the
coming investigation.

Lemma 3. [11] Let G1, . . . , G10 be the graphs displayed in Fig. 2. Then
1. PG1(2) = k + 2;
2. PG2(2) = 4;
3. PG3(2) = −klm + k + l + m + 2;
4. PG4(2) = 4 (1 − kl);
5. PG5(2) = −km;
6. PG6(2) = −m (2kl + k + l);
7. PG7(2) = −4m;
8. PG8(2) = −m (3kl + 2k + 2l + 1);
9. PG9(2) = klmn − (m + n)(2kl + k + l);

10. PG10(2) = −(3k + 2)mn.

If the removal of a cut-vertex (a cutpoint) of a graph G decomposes it into
two components which are both Smith graphs, according to the interlacing theorem
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we get λ2(G) = 2. The general answer what will happen in case of an arbitrary
number of components among which there are Smith graphs is contained in the
following theorem. Let us call a graph G positive, null or negative if λ1(G) > 2,
λ1(G) = 2 and λ1(G) < 2, respectively.

Theorem 1. [11] Let G be a graph of the form depicted in Fig. 3, u being a
cutpoint.

1. If at least two components of G − u are supergraphs of Smith graphs, and if
at least one of them is a proper supergraph, then λ2(G) > 2.

2. If at least two components of G − u are Smith graphs, and the rest are
subgraphs of Smith graphs, then λ2(G) = 2.

3. If at most one component of G− u is a Smith graph, and the rest are proper
subgraphs of Smith graphs, then λ2(G) < 2.

We see that this theorem gives no response if we have one positive and all
other negative components. That is why in further investigations, considering cer-
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tain class of graphs, we always assume that Theorem 1 is not applicable, and are
engaged in solving only those cases which are not concerned by this theorem.

If all cycles of a cactus have the common vertex, we say that they form a
bundle. The problem of finding all maximal reflexive cactuses whose cycles make
a bundle appears to be a hard one, and anyhow it is to be regarded as a separate
problem. That is why the condition that the cycles of a considered cactus do not
form a bundle is another permanent assumption throughout this paper.

Theorem 1 completely covers the case of a cactus having cycles which are
connected with the unique walk whose length is 2 (Fig. 4).

The case which takes place when two cycles are connected by the bridge has
been completely solved in [11]. It turned out that those graphs are bicyclic, with
only one exception; the tricyclic graph T0 (Fig. 5) is a maximal reflexive cactus
and it has a crucial role in some steps of further research.

If between cycles of a cactus there are no bridges (recall, it goes without
saying that we do not consider bundles), there must be a cycle which touches at
least two other cycles (at two distinct vertices). If these two vertices of touch are
not adjacent, the only possibility is that of Fig. 6(a) (otherwise, Theorem 1 gives
a clear answer), and if they are adjacent, we have the graph at Fig. 6(b).

In the case (a) the possibility of adding new cycles is being exhausted in the
way which gives rise to the graphs Q1 and Q2 of Fig. 7. It is interesting that all

c1 c2

(a) (b)

k

Figure 6.
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graphs within the range between the graph of Fig. 4 and the graphs Q1 and Q2

have λ2 = 2 and that Q1 and Q2 are maximal for that property.
In the case (b), if we add a new cycle leaned, say, on the vertex c2, applying

Lemma 2.(1) to c2 we get k = 2(
P (2), < 0 i.e. λ2 < 2

)
and

k = 3 (λ2 = 2), which, after some additional investigation, gives graphs T1

and T2 of Fig. 7, both of them being maximal reflexive graphs (λ2 = 2), and again
the graphs Q1 and Q2.

The complete discussion concerning this result will be given in [10], together
with the entire list of maximal reflexive cactuses with four cycles (on the assumed
conditions).

Theorem 2. A cactus to which Theorem 1 cannot be applied and whose cycles do
not make a bundle has at most five cycles. The only such graphs with five cycles,
which are all maximal, i.e. cannot be extended at any vertex, are the four families
of graphs Q1, Q2, T1 and T2.

3. MAXIMAL REFLEXIVE CACTUSES WITH FOUR CYCLES

Graphs with five cycles of Fig. 7 are the apparent starting point for produc-
ing various classes of maximal reflexive cactuses with four cycles. Let the central
quadrangles of the graphs Q1 and Q2 and triangles of T1 and T2 be called central
cycles, and let us call the remaining cycles (of arbitrary lengths) of these graphs
their outer cycles. If we extend a graph by introducing an additional edge incident
to some vertex v, we will say that v is loaded by this edge. The procedure which
leads to finding maximal reflexive cactuses with four cycles evidently includes start-
ing from a graph obtained by removing a cycle from some of the graphs of Fig. 7,
and then extending it by new acyclic additional parts up to the moment when it
becomes maximal for the property λ2 ≤ 2. In this paper we will find all such max-
imal graphs on one additional condition, namely, that at least one vertex distinct
from c-vertices (vertices of central cycles) of such a graph is loaded. The remaining
cases will be solved in [10].

Graphs Q1 and Q2 generate two starting graphs with four cycles (Fig. 8).
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Proposition 1. Any extension of the graph of Fig. 8(a) at any vertex of its outer
cycles different from c1 and c2 implies λ2 > 2.

Proof. After deleting the vertex c4 we get just the graph T0 of Fig. 5 which is
maximal for the property λ2 ≤ 2 in the class of cactuses with the bridge between
the cycles, and therefore cannot be extended within this class, i.e. can be extended
only backwards (by c4).

Proposition 2. A cactus with four cycles, with the same cyclic structure as that
of Fig. 8(b), whose at least one vertex of its outer cycles different from c-vertices
is loaded, is reflexive if and only if it is an induced subgraph of some of the 48
(families of) graphs H1 − H48 displayed in Fig. 9.

Proof. The only outer cycle whose vertices are to be loaded is the middle one
(which contains c2); otherwise, by removing c3 and applying Theorem 1 to c2, we
would get λ2 > 2. Of course, the vertex c3 also can be loaded.

The rest of the proof is based on the results of the Propositions 4.2, 4.3 and
4.4 of [11], because all possibilities of extension of the starting graph are bounded
by the maximal graphs of these propositions. The resulting sets of maximal graphs
(in the class of bicyclic graphs with a bridge between the cycles) of these three
propositions are, respectively, A1 − A14 of Fig. 20, B1 − B11 of Fig. 11 and
C1 − C41 of Fig. 9 of [11] (not depicted here). For example, the graph A2 of
Proposition 4.2. (the only graph of this proposition to be considered, see Fig. 20)
points out the analogous maximal possible extension of the starting graph (Fig.
10).

One should only verify whether the graph (b) satisfies λ2 ≤ 2 and, if not,
to find the maximal one by reducing it. But in all cases except for the graphs
C11 −C15 of Proposition 4.3 it just happens that the analogous graph satisfies the
condition of being reflexive, while C11 −C15 apparently have to be excluded, since
otherwise one of the c-vertices incident with outer cycles of arbitrary lengths (c1 or
c4) would be loaded.

Remark. In Proposition 4.3. of [11] three resulting graphs were missed. Those
are the graphs B9 − B11 at Fig.11. Also, the graph A10 of Fig. 20 was misdrawn
at Fig. 5 in [11].

In what follows, as suggested by Fig. 9-11, let the vertices of outer cycles
adjacent to c-vertices be denoted and called black vertices, and let the rest be white
vertices.
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Graphs T1 and T2 generate the next two starting graphs for families of re-
flexive cactuses with four cycles (Fig. 12).

Proposition 3. Let G be a cactus with the same cyclic structure as that of Fig.
12(a). If at least two vertices of its outer cycles, different from c-vertices, are
loaded, i.e. are of degree at least three, G is reflexive if and only if it is an induced
subgraph of some of the 9 (families of) graphs I1 − I9 displayed at Fig. 13.

Proof. First, no vertex of the left outer cycle (leaned on c1) can be loaded: if we
add a pendent edge at c1 and apply Lemma 2.1. and Lemma 3, we get P (2) =
mn1n2 > 0, i.e. λ2 > 2, and the like happens if we load some other vertex of this
cycle. Also, a white vertex cannot be of degree four, because Theorem 1, when
applied to c2, gives λ2 > 2 and the same reason says that there cannot be two
loaded white vertices on the same cycle. The assumption that there is a loaded
white vertex at each of two cycles, after applying Lemma 2.1 and Lemma 3 to c2,
gives P (2) = 0 in the case of the graph I1.
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A black vertex also cannot be of degree four (P (2) > 0 after applying the
same Lemmas as before). The same holds if we have a white and a black vertex
of degree 3 on the same cycle (P (2) = mn (k + 4) l > 0, see Fig.14(a)), then in
the similar way if there are two black vertices of one cycle and a white vertex of
another cycle of degree 3, and if three black vertices are loaded. If there is a loaded
white vertex on one cycle and such a black vertex on another cycle (Fig. 14(b))
we see that P (2) = m

(
(n + 2)(kl − 1) + 2kl − k − l − 4

)
. For k = l = 1 n is not

bounded, while k = 2, l = 1 gives n = 1 (λ2 = 2). Since in the first case such a
graph cannot be extended, it is a member of the solution (the graph I2, λ2 < 2),
while in the second case we have I3 (λ2 = 2).

If two black vertices of the same cycle are loaded we always get P (2) = 0 (the
graph I4). Now, if we suppose that one black vertex of each cycle is of degree 3, let
us consider the graph I9 of Fig.13. We see that P (2) = −m (n1 + n2 + 6) < 0 and,
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in order to attain maximal graphs, we can try to extend it by adding new pendent
edges at the vertices of degree one or at c-vertices. In the first case (Fig. 14(c))
we find P (2) = m

(
n1(n2 + 2)− 4

)
getting possibilities (1, 1) and (1, 2) for (n1, n2).

Neither of these graphs can be extended any more, and they are the graphs I5 and
I6 of the solution. In the second case we have P (2) = m (n1n2 + n1 + n2 − 3) (for
both c2 and c3) and n1 = n2 = 1 (the graphs I7 and I8 ). Thus, the graph I9 is a
solution if n1 = 1, n2 ≥ 3 (and vice versa) or if min(n1, n2) ≥ 2.

In all cases we have passed through (when λ2 < 2, and also if λ2 = 2), the
fact that a graph cannot be extended any more can be verified by appropriate
application of Lemma 1, or Corollary 2 (with respect to added pendent edge), or
with a little aid of a computer, which is actually very often much more suitable.

The resulting maximal graphs for which λ2 < 2 are marked by asterisk.

Proposition 4. Let G be a cactus with the same cyclic structure as that of Fig.
12(a). If one of its white vertices and none of its black vertices is loaded, G is
reflexive if and only if it is an induced subgraph of some of the 11 (families of)
graphs J1 − J11 displayed at Fig. 15.

Proof. By assumption, we should discuss the situation of Fig. 16(a). Applying
appropriate Lemmas one gets P (2) = mn (2kl − k − l − 4), i.e. P (2) = 0 for
(k, l) = (2, 2) and (k, l) = (1, 5) (the resulting maximal reflexive graphs J1 and J2

cannot be extended any more). For k = 1 and l = 1, 2, 3, 4 we need some further
discussion.

If l = 1, the graph can be extended by the new edge leaned at the vertex of
degree one (J3), and also by adding two pendent edges at c2 and c3 (J4). If we want
to load only one of the two possible c-vertices, let us have a look at Fig. 16(b).
Since we always get P (2) < 0, the added path can be of arbitrary length. But if we
introduce a new pendent edge as in Fig. 16(c), we see that λ2 = 2 for q = 1, and
the same holds if we choose c2 instead of c3. Thus we get J5 and J6. For l = 2 the
extension is possible up to the graphs J7 and J8 and l = 3 gives rise to J9 and J10.
In all considered cases the obtained graphs are maximal and have λ2 = 2. Finally,
if l = 4, we get the graph J11, which has λ2 < 2, but also cannot be extended in
any way.

Proposition 5. Let G be a cactus with the cyclic structure as in Fig. 12(a). If it
has one black vertex and no white vertex loaded, G is reflexive if and only if it is
an induced subgraph of some of the 36 (families of) graphs K1 − K36 of Fig.17.
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Proof. Let us start with the fact that, when leaning two graphs G1 and G2 on
the vertices c1 and c2, respectively, of the starting graph of Fig. 12(a), we get the
same value P (2) as if we interchange them, i.e. lean G1 on c2 and G2 on c1. It can
easily be proved applying Lemma 1, combined with Corollary 1, to the c-vertices,
but the proof needs some more designations and we will omit it.

Suppose now that a black vertex is loaded by a path of length k (Fig. 18(a)).
Since P (2) = mn

(
p (k − 2) − 4

)
, the maximum possible value is k = 6 (if p = 1),

and the following possibilities arise: p = 1 if k = 5 or 6, p ≤ 2 if k = 4 , p ≤ 4 if
k = 3 and for k ≤ 2 p is not bounded. On the other hand we already proved that
the loaded black vertex cannot be of degree greater than 3, and in the similar way
one can prove that the path cannot spread at any vertex. Taking care of these facts
and other possibilities of extension (c2 and c3), for k ≤ 3 we come to the graphs
K1 − K6. If k = 2, look at the graph at Fig. 18(b) having paths leaned on c2 and
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c3. Here we obtain P (2) = mn
(
p (2kl + k + l) + 4 (kl − 1)

)
and see that, since

p ≥ 1, one number of the pair (k, l) must be 0. Having checked out all possibilities
of extension (spreading of paths), we get graphs K7 − K14 for p = 1, 2, 3, 4, while
for p > 4 (k, l) = (0, 0) and the maximal graph is K15 (λ2 < 2).

If a black vertex is loaded only by a single pendent edge, let us consider the
graph of Fig. 18(c). Since now P (2) = mn

(
p(kl − 1) + 2kl − k − l − 4

)
, we see

that k, l �= 0 is possible (if min(k, l) = 0, the extension would give rise to graphs
we already obtained or to those to be obtained in the last part of the proof). The
possible combinations of p, k and l produce the graphs K16 − K22; of course, if
k = l = 1, p is not bounded (K22).

Finally, let us inspect the graph of Fig. 18(d) and suppose l ≥ 1. Now
P (2) = mn ((p + lt)(k − 1) + k − 5

)
, and if k = 1, P (2) < 0 for any p. If p = 1,

(k, l) = (2, 1) (the graphs K23 and K24) or (k, l) = (2, 2) (K25 and K26). If p = 2,
(k, l) = (2, 1) (the graphs K27 and K28), while l = 2 gives only k = 1. Thus, if
p + l ≥ 4, we get k = 1 and the graphs K35 and K36. Now, if we suppose l = 0 (c3

is of degree 4,) in the similar manner we find the graphs K29 −K34, and again K35

and K36 for p ≥ 4.

In further investigation the starting graph will be the graph of Fig. 12(b).

Proposition 6. Let G be a cactus with the same cyclic structure as that of Fig.
12(b). If at least two vertices of its outer cycles different from c-vertices are loaded,
G is reflexive if and only if it is an induced subgraph of some of the 12 (families
of) graphs L1 − L12 displayed at Fig. 19.

Proof. Now every c-vertex has its incident outer cycle, and pairwise bounds are
defined by the result of the Proposition 4.2 of [11] (maximal graphs A1 − A14 of
Fig. 20) if both outer cycles have loaded vertices, and also by Propositions 4.3 and
4.4 of [11] (maximal graphs B1 −B11 of Fig. 11 and C1 −C41 if one outer cycle is
without loaded vertices, in which case, of course, the result does not depend on its
length).

Three white loaded vertices have the bound defined by A1 and give rise to
a maximal graph with four cycles, denoted by L1. If we have two white vertices
and one black vertex loaded, the corresponding bounds are determined by A1 and
A12, and, indeed, generate the maximal reflexive graph L2. The case when two
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white vertices and no black ones are loaded is bounded by A1 and B5 and again
the upper bound is at the same time the resulting maximal graph L3. If there are
two black loaded vertices and only one white, we have some more possibilities: the
relation white-black is defined by A12 − A14, and black-black by A3 − A11. But
only the combination A11 with A12 gives a maximal graph (L4), and all the rest
is not possible. If we have one white and one black vertex loaded, i.e. one outer
cycle has no loaded vertices (except the c-vertex), the graph A12, combined with
the bound B5 for the white vertex and C16 for the black one, gives L5, while A13

generates only L6 and A14 gives nothing.
Now, consider the case when two loaded black vertices are on the same cycle.

The graph A2 shows that we can have at most one pendent edge at each of the
remaining two c-vertices. Such a graph (the upper bound) has P (2) > 0 and we
can easily make sure (e.g. by Corollary 1) that after removing one pendent edge
we also do not have a reflexive graph. Also, leaning two paths of lengths k and l
on c-vertices (instead of single edges) we find P (2) = 0 only for k = l = 1, which
proves that the only maximal graph whose two black loaded vertices are on the
same cycle is L7.

Suppose now that three black vertices are loaded (one on each cycle). The
case generated by A11 gives rise to L8. All other bounds (A3−A10) combined with
each other, give P (2) > 2, and one can easily verify that actually no c-vertex can
be loaded by a new pendent edge and no black vertex can be loaded by more than
a single pendent edge.

Finally, let us consider the case of only two loaded black vertices. The case
of two triangles, bounded by A3 and A7 (and also by the corresponding graphs of
the set C1 − C41 of Proposition 4.4) gives rise to L9 and L10, while A4, A6 and
A8 (quadrangle - triangle), after all necessary verifications, generate only L11 and
the case pentagon - triangle (A5, A10) gives nothing. The bound defined by A11,
combined with C16, gives rise to L12 and by applying of appropriate Lemmas one
can easily get evidence that L12 is a maximal reflexive graph for arbitrary lengths
of its outer cycles.

Proposition 7. Let G be a cactus with the same cyclic structure as that of Fig.
12(b). If exactly one white vertex and no black vertex of its outer cycles is loaded,
G is reflexive if and only if it is an induced subgraph of some of the 12 (families
of) graphs M1 − M12 depicted at Fig. 21.

Proof. Let us start with the graph of Fig. 22(a), which, besides a white vertex of
degree 3, has all c-vertices loaded, each by an additional pendent edge. But since
P (2) = mn (5kl + k + l − 3) > 0 for k, l ≥ 1, we see that at most two c-vertices
can be loaded with new edges. Also, if we assume that a white vertex is loaded by
the path of length 2 and even if all c-vertices are of degree 4, we get the maximal
graph M1.

Now, let us consider the graph of Fig. 22(b). We find that

P (2) = mn
(
(p + q)(kl − 1) + 2kl − k − l − 4

)
.
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M2

M6

M10 M12M11M9

M8M7M5

M1 M4M3

*

Figure 21.

For k = l = 1 the lengths p and q of two added paths are arbitrary, but the
graph B5 of Fig. 11 points to the upper bounds if these two paths are replaced
by some trees (which means that the paths cannot spread in any other way), and
one can verify that this bound really generates the maximal graph M2. The rest
of the proof in this case includes number analysis of corresponding expressions and
checking out that the obtained graphs cannot be extended any more. Thus, for
k = 2, l = 1 we get P (2) = mn (p + q − 3), implying p = 2, q = 1 and p = 3, q = 0
and giving rise to M3 and M4. In the same way, if (k, l) is (3, 1), (4, 1), (5, 1) and
(2, 2), we get M5,M6,M7 and M8 respectively.
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N1 N4N3 *N2
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p
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N21 N22 *
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N23 N25N24 *
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N27 N28 N29 N30

N31 * N32 * N33 N34

N35 N36 *
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Figure 23.
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N37 * N38 N39

N40 N41 N42

Figure 24.
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Figure 25.

At last, let us assume the situation as in Fig. 22(c). Now

P (2) = mn
(
(p + q + 2)(kl − k − l − 3) + (p + 1)(q + 1)(k + l + 2)

)
,

where k = l = 1 implies p = q = 1 and we have M9. Since k, l ≥ 1, in all remaining
cases p = 0 (the graphs we already obtained) or q = 0, which for (k, l) = (1, 1) allows
arbitrary p and gives rise to M10, for (2, 1) and (3, 1) M11 and M12, respectively,
and for (4, 1), (5, 1) and (2, 2) we get three graphs which were already obtained.

Proposition 8. Let G be a cactus with the cyclic structure as in Fig. 12(b). If it
has exactly one black vertex and no white vertex loaded, G is reflexive if and only if
it is an induced subgraph of some of the 42 (families of) graphs N1−N42 of Figures
23 and 24.4

Proof. Consider graphs N and K of Fig. 25, where G1 and G2 are arbitrary graphs
with no cycles at vertices c2 and c3. Applying Lemma 2 to K and N , we get the
following useful result: PK(2) = PN (2).

Since Proposition 5 covers all possibilities for families of the K graphs, the
discussion on values of parameters p, q, k, l is valid for corresponding families of the
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N graphs, too. This observation and appropriate verifications on the computer give
the graphs N1 − N36 of Fig. 23.

Also, we get three more graphs N37−N39 by loading all three vertices c1, c2, c3,
and graphs N40 −N42 by loading vertices c1 and c3. The proof is similar to that in
previous cases.

Thus, we have come to the final result.

Theorem 3. (The main result) A cactus with four cycles, to which Theorem 1
cannot be applied, whose cycles do not form a bundle and which, besides the c-
vertices, has at least one vertex of its outer cycles loaded, is reflexive if and only
if it is an induced subgraph of some of the (families of) graphs H1 − H48, I1 − I9,
J1 − J11, K1 − K36, L1 − L12, M1 − M12 and N1 − N42 of Propositions 2-8.
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April 1995, 53–76.

4. F. Harary: Graph theory. Addison–Wesley Publishing Company, Reading, Mas-

sachusetts, 1969.

5. G. Maxwell: Hyperbolic trees. J. Algebra, 54 (1978), 46-49.

6. A. Neumaier: The second largest eigenvalue of a tree. Linear Algebra and its Appl.,

46 (1982), 9–25.

7. A. Neumaier, J. J. Seidel: Discrete hyperbolic geometry. Combinatorica, 3 (1983),

219–237
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