SOME IDENTITIES FOR THE RIEMANN ZETA-FUNCTION

Aleksandar Ivić

Several identities for the Riemann zeta-function $\zeta(s)$ are proved. For example, if $s=\sigma+i t$ and $\sigma>0$, then

$$
\int_{-\infty}^{\infty}\left|\frac{\left(1-2^{1-s}\right) \zeta(s)}{s}\right|^{2} \mathrm{~d} t=\frac{\pi}{\sigma}\left(1-2^{1-2 \sigma}\right) \zeta(2 \sigma) .
$$

Let as usual $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}(\Re \mathrm{e} s>1)$ denote the Riemann zeta-function. The motivation for this note is the quest to evaluate explicitly integrals of $\left\lvert\, \zeta\left(\frac{1}{2}+\right.\right.$ $i t)\left.\right|^{2 k}, k \in \mathbb{N}$, weighted by suitable functions. In particular, the problem is to evaluate in closed form

$$
\int_{0}^{\infty}(3-\sqrt{8} \cos (t \log 2))^{k}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} \frac{\mathrm{~d} t}{\left(\frac{1}{4}+t^{2}\right)^{k}} \quad(k \in \mathbb{N})
$$

When $k=1,2$ this may be done, thanks to the identities which will be established below. The first identity in question is given by

Theorem 1. Let $s=\sigma+i t$. Then for $\sigma>0$ we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\frac{\left(1-2^{1-s}\right) \zeta(s)}{s}\right|^{2} \mathrm{~d} t=\frac{\pi}{\sigma}\left(1-2^{1-2 \sigma}\right) \zeta(2 \sigma) \tag{1}
\end{equation*}
$$

Since $\lim _{s \rightarrow 1}(s-1) \zeta(s)=1$, then setting in (1) $\sigma=\frac{1}{2}$ we obtain the following
Corollary 1.

$$
\begin{equation*}
\int_{0}^{\infty}(3-\sqrt{8} \cos (t \log 2))\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2} \frac{\mathrm{~d} t}{\frac{1}{4}+t^{2}}=\pi \log 2 \tag{2}
\end{equation*}
$$

Another identity, which relates directly the square of $\zeta(s)$ to a Mellin-type integral, is contained in

Theorem 2. Let $\chi_{\mathcal{A}}(x)$ denote the characteristic function of the set \mathcal{A}, and let

$$
\begin{equation*}
\varphi(x):=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{1}^{x} \chi_{[2 m-1,2 m)}\left(\frac{x}{u}\right) \chi_{[2 n-1,2 n)}(u) \frac{\mathrm{d} u}{u} \quad(x \geqslant 1) \tag{3}
\end{equation*}
$$

Then for $\sigma>0$ we have

$$
\begin{equation*}
s^{2} \int_{1}^{\infty} \varphi(x) x^{-s-1} \mathrm{~d} x=\left(1-2^{1-s}\right)^{2} \zeta^{2}(s) \tag{4}
\end{equation*}
$$

From (4) we obtain the following

Corollary 2.

$$
\begin{equation*}
\int_{0}^{\infty}(3-\sqrt{8} \cos (t \log 2))^{2}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} \frac{\mathrm{~d} t}{\left(\frac{1}{4}+t^{2}\right)^{2}}=\pi \int_{1}^{\infty} \varphi^{2}(x) \frac{\mathrm{d} x}{x^{2}} \tag{5}
\end{equation*}
$$

The integral on the right-hand side of (5) is elementary, but nevertheless its evaluation in closed form is complicated.

Proof of Theorem 1. We start from (see e.g., [1, Chapter 1]) the identity

$$
\begin{equation*}
\left(1-2^{1-s}\right) \zeta(s)=\sum_{n=1}^{\infty}(-1)^{n-1} n^{-s} \quad(\sigma>0) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\cos (\alpha x)}{\sigma^{2}+x^{2}} \mathrm{~d} x=\frac{\pi}{\sigma} \mathrm{e}^{-|\alpha| \sigma} \quad(\alpha \in \mathbb{R}, \sigma>0) \tag{7}
\end{equation*}
$$

which follows by the residue theorem on integrating $e^{i \alpha z} /\left(\sigma^{2}+z^{2}\right)$ over the contour consisting of $[-R, R]$ and semicircle $|z|=R, \Im m z>0$ and letting $R \rightarrow \infty$. By using (6) and (7) it is seen that the left-hand side of (1) becomes

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(-1)^{m+n}(m n)^{-\sigma} \int_{-\infty}^{\infty}\left(\frac{m}{n}\right)^{i t} \frac{\mathrm{~d} t}{\sigma^{2}+t^{2}} \\
&=\frac{\pi}{\sigma} \zeta(2 \sigma)+2 \sum_{m=1}^{\infty} \sum_{n<m}(-1)^{m+n}(m n)^{-\sigma} \int_{-\infty}^{\infty} \frac{\cos \left(t \log \frac{m}{n}\right)}{\sigma^{2}+t^{2}} \mathrm{~d} t \\
&=\frac{\pi}{\sigma}\left(\zeta(2 \sigma)+2 \sum_{m=1}^{\infty}(-1)^{m} m^{-\sigma} \sum_{n=1}^{m-1}(-1)^{n} n^{-\sigma} \cdot e^{-\sigma \log \frac{m}{n}}\right) \\
&=\frac{\pi}{\sigma}\left(\zeta(2 \sigma)+2 \sum_{m=1}^{\infty}(-1)^{m} m^{-2 \sigma} \sum_{n=1}^{m-1}(-1)^{n}\right) \\
&=\frac{\pi}{\sigma}\left(\zeta(2 \sigma)+2 \sum_{k=1}^{\infty}(-1)^{2 k}(2 k)^{-2 \sigma}(-1)\right)=\frac{\pi}{\sigma}\left(1-2^{1-2 \sigma}\right) \zeta(2 \sigma) .
\end{aligned}
$$

This holds initially for $\sigma>1$, but by analytic continuation it holds for $\sigma>0$ as well.

We shall provide now a second proof of Theorem 1. As in the formulation of Theorem 2, let $\chi_{\mathcal{A}}(x)$ denote the characteristic function of the set \mathcal{A}, and let the interval $[a, b)$ denote the set of numbers $\{x: a \leqslant x<b\}$. Then, for $\sigma>0$, we have

$$
\begin{align*}
& \int_{1}^{\infty} x^{-s-1} \sum_{n=1}^{\infty} \chi_{[2 n-1,2 n)}(x) \mathrm{d} x=\sum_{n=1}^{\infty} \int_{2 n-1}^{2 n} x^{-s-1} \mathrm{~d} x \\
& =\frac{1}{s} \sum_{n=1}^{\infty}\left((2 n-1)^{-s}-(2 n)^{-s}\right)=\frac{\left(1-2^{1-s}\right) \zeta(s)}{s} \tag{8}
\end{align*}
$$

in view of (6). Now we invoke Parseval's identity for Mellin transforms (see e.g., [1] and [3]). We need this identity for the modified Mellin transforms, defined by

$$
F^{*}(s) \equiv m[f(x)]:=\int_{1}^{\infty} f(x) x^{-s-1} \mathrm{~d} x .
$$

The properties of this transform were developed by the author in [2]. In particular, we need Lemma 3 of [2] which says that

$$
\begin{equation*}
\int_{1}^{\infty} f(x) g(x) x^{1-2 \sigma} \mathrm{~d} x=\frac{1}{2 \pi i} \int_{\Re \mathrm{e} s=\sigma} F^{*}(s) \overline{G^{*}(s)} \mathrm{d} s \tag{9}
\end{equation*}
$$

if $F^{*}(s)=m[f(x)], G^{*}(s)=m[g(x)]$, and $f(x), g(x)$ are real-valued, continuous functions for $x>1$, such that

$$
x^{\frac{1}{2}-\sigma} f(x) \in L^{2}(1, \infty), \quad x^{\frac{1}{2}-\sigma} g(x) \in L^{2}(1, \infty)
$$

From (8) and (9) we obtain, for $\sigma>0$,

$$
\int_{1}^{\infty} \frac{1}{x^{2}}\left(\sum_{n=1}^{\infty} \chi_{[2 n-1,2 n)}(x)\right)^{2} x^{1-2 \sigma} \mathrm{~d} x=\frac{1}{2 \pi i} \int_{\Re \mathrm{e} s=\sigma}\left|\frac{\left(1-2^{1-s}\right) \zeta(s)}{s}\right|^{2} \mathrm{~d} s
$$

But as $\chi_{\mathcal{A}}^{2}(x)=\chi_{\mathcal{A}}(x)$, it is easily found that the left-hand side of the above identity equals

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{1}^{\infty} \chi_{[2 m-1,2 m)}(x) \chi_{[2 n-1,2 n)}(x) x^{-1-2 \sigma} \mathrm{~d} x \\
& =\sum_{n=1}^{\infty} \int_{2 n-1}^{2 n} x^{-1-2 \sigma} \mathrm{~d} x=\frac{\left(1-2^{1-2 \sigma}\right) \zeta(2 \sigma)}{2 \sigma}
\end{aligned}
$$

in view of (6), and (1) follows.
For the Proof of Theorem 2 we need the following

Lemma. Let $0<a<b$. If $f(x)$ is integrable on $[a, b]$, then

$$
\begin{align*}
& \left(\int_{a}^{b} f(x) x^{-s} \mathrm{~d} x\right)^{2} \tag{10}\\
& =\int_{a^{2}}^{a b} x^{-s} \int_{a}^{x / a} f(u) f\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u} \mathrm{~d} x+\int_{a b}^{b^{2}} x^{-s} \int_{x / b}^{b} f(u) f\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u} \mathrm{~d} x
\end{align*}
$$

The identity (10) remains valid if $b=\infty$, provided the integrals in question converge, in which case the second integral on the right-hand side is to be omitted.

Proof. We write the left-hand side of (10) as the double integral

$$
\int_{a}^{b} \int_{a}^{b}(x y)^{-s} f(x) f(y) \mathrm{d} x \mathrm{~d} y
$$

and make the change of variables $x=X / Y, y=Y$. The Jacobian of this transformation equals $1 / Y$, hence the left-hand side of (10) becomes

$$
\begin{aligned}
& \int_{a^{2}}^{b^{2}} X^{-s}\left(\int_{\max (a, X / b)}^{\min (X / a, b)} f(Y) f\left(\frac{X}{Y}\right) \frac{\mathrm{d} Y}{Y}\right) \mathrm{d} X \\
& =\int_{a^{2}}^{a b} X^{-s} \int_{a}^{X / a} f(Y) f\left(\frac{X}{Y}\right) \frac{\mathrm{d} Y}{Y} \mathrm{~d} X+\int_{a^{b}}^{b^{2}} X^{-s} \int_{X / b}^{b} f(Y) f\left(\frac{X}{Y}\right) \frac{\mathrm{d} Y}{Y} \mathrm{~d} X,
\end{aligned}
$$

as asserted.

Proof of Theorem 2. We use (8) and the Lemma to obtain that (4) certainly holds with $\varphi(x)$ given by (3), since trivially $\varphi(x) \ll x$. To see that it holds for $\sigma>0$, we note that

$$
\begin{equation*}
\int_{1}^{x} g(u) g\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u}=\int_{1}^{\sqrt{x}}+\int_{\sqrt{x}}^{x}=2 \int_{\sqrt{x}}^{x} g(u) g\left(\frac{x}{u}\right) \frac{\mathrm{d} u}{u}, \tag{11}
\end{equation*}
$$

and use (11) with

$$
g(x)=\sum_{n=1}^{\infty} \chi_{[2 n-1,2 n)}(x)
$$

Note then that the integrand in $\varphi(x)$ equals $1 / u$ for $2 m-1 \leqslant u \leqslant 2 m, 2 n-1 \leqslant$ $u \leqslant 2 n$, and otherwise it is zero. This gives the condition

$$
4 m n-2 m-2 n+1 \leqslant x<4 m n, \frac{1}{2} \sqrt{x} \leqslant n \leq \frac{1}{2}(x+1), 1 \leqslant m \leqslant \frac{1}{2}(\sqrt{x}+1) .
$$

We also have

$$
\int_{\sqrt{x}}^{x} \chi_{[2 m-1,2 m)}\left(\frac{x}{u}\right) \chi_{[2 n-1,2 n)}(u) \frac{\mathrm{d} u}{u} \leqslant \int_{2 n-1}^{2 n} \frac{\mathrm{~d} u}{u} \leqslant \frac{1}{2 n-1} .
$$

Therefore

$$
\begin{align*}
\varphi(x) & \ll \sum_{m \leqslant \sqrt{x}} \sum_{x /(4 m)<n \leqslant(x-1+2 m) /(4 m-2)} \frac{1}{n} \tag{12}\\
& \ll \sum_{m \leqslant \sqrt{x}} \frac{m}{x}\left(1+\frac{x}{m^{2}}\right) \ll \log x .
\end{align*}
$$

This bound shows that the integral in (4) is absolutely convergent for $\sigma>0$. Thus by the principle of analytic continuation this completes the proof of Theorem 2.

Corollary 2 follows then from (4) and (9) on setting $\sigma=\frac{1}{2}$.
It is interesting to note that the bound in (12) is actually of the correct order of magnitude. Namely we have

Theorem 3. For any given $\varepsilon>0$ we have

$$
\begin{equation*}
\varphi(x)=\frac{1}{4} \log x+\frac{1}{2} \log \left(\frac{\pi}{2}\right)+O_{\varepsilon}\left(x^{\varepsilon-\frac{1}{4}}\right) . \tag{13}
\end{equation*}
$$

Proof. By (8) and the inversion formula for the Mellin transform $m[f(x)]$ (see [2, Lemma 1]) we have, for any $c>0$,

$$
\begin{equation*}
\varphi(x)=\frac{1}{2 \pi i} \int_{\Re \mathrm{e} s=c} \frac{\left(1-2^{1-s}\right)^{2} \zeta^{2}(s) x^{s}}{s^{2}} \mathrm{~d} s . \tag{14}
\end{equation*}
$$

We shift the line of integration in (14) to $c=\varepsilon-1 / 4$ with $0<\varepsilon<1 / 8$, which clearly may be assumed. Since $\zeta(0)=-\frac{1}{2}$ and $\zeta^{\prime}(0)=-\frac{1}{2} \log (2 \pi)$, the residue at the double pole $s=0$ is found to be

$$
\begin{equation*}
\frac{1}{4} \log x+A, \quad A=-\zeta^{\prime}(0)-\log 2=\frac{1}{2} \log \left(\frac{\pi}{2}\right) . \tag{15}
\end{equation*}
$$

We use the functional equation (see e.g., $[\mathbf{1}$, Chapter 1]) for $\zeta(s)$, namely

$$
\zeta(s)=\chi(s) \zeta(1-s), \quad \chi(s)=2^{s} \pi^{s-1} \sin \left(\frac{1}{2} \pi s\right) \Gamma(1-s)
$$

with

$$
\chi(s)=\left(\frac{2 \pi}{t}\right)^{\sigma+i t-\frac{1}{2}} \mathrm{e}^{i\left(t+\frac{1}{4} \pi\right)} \cdot\left(1+O\left(\frac{1}{t}\right)\right) \quad(t \geqslant 2) .
$$

Let $s=\varepsilon-\frac{1}{4}+i t$. Then by absolute convergence we have

$$
\begin{aligned}
& \int_{T}^{2 T} \frac{\left(1-2^{1-s}\right)^{2} \zeta^{2}(s) x^{s}}{s^{2}} \mathrm{~d} t \\
= & i \sum_{n=1}^{\infty} d(n) n^{\varepsilon-5 / 4} \int_{T}^{2 T} \frac{\left(1-2^{1-s}\right)^{2}}{s^{2}} x^{\varepsilon-\frac{1}{4}+i t}\left(\frac{t}{2 \pi}\right)^{\frac{3}{2}-2 \varepsilon} \mathrm{e}^{i F(t, n)} \mathrm{d} t+O\left(T^{-\frac{1}{2}-2 \varepsilon}\right),
\end{aligned}
$$

where $d(n)$ is the number of divisors of n and

$$
F(t, n):=2 t+t \log n-2 t \log (t / 2 \pi), \quad \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}(t \log x+F(t, n))=-\frac{2}{t}
$$

Hence by the second derivative test (see [1, Lemma 2.2]) the above series is

$$
\ll \sum_{n=1}^{\infty} d(n) n^{\varepsilon-5 / 4} T^{-2 \varepsilon}=\zeta^{2}\left(\frac{5}{4}-2 \varepsilon\right) T^{-2 \varepsilon} \ll T^{-2 \varepsilon}
$$

This shows that

$$
\int_{\Re \mathrm{e} s=\varepsilon-1 / 4} \frac{\left(1-2^{1-s}\right)^{2} \zeta^{2}(s) x^{s}}{s^{2}} \mathrm{~d} s \ll x^{\varepsilon-1 / 4},
$$

hence (13) follows from (14), (15) and the residue theorem.
In concluding, note that if we write

$$
\varphi(x)=\frac{1}{4} \log x+A+\varphi_{1}(x)
$$

where A is given by (15) then, for $\Re \mathrm{e} s=\sigma>0$, (4) yields

$$
s^{2}\left(\frac{A}{s}+\frac{1}{4 s^{2}}+\int_{1}^{\infty} \varphi_{1}(x) x^{-s-1} \mathrm{~d} x\right)=\left(1-2^{1-s}\right)^{2} \zeta^{2}(s)
$$

and the above integral converges absolutely, for $\sigma>-1 / 4$, in view of (13). Thus by analytic continuation it follows that, for $\sigma>-1 / 4$,

$$
A s+\frac{1}{4}+s^{2} \int_{1}^{\infty} \varphi_{1}(x) x^{-s-1} \mathrm{~d} x=\left(1-2^{1-s}\right)^{2} \zeta^{2}(s)
$$

REFERENCES

1. A. Ivić The Riemann zeta-function. John Wiley \& Sons, New York, 1985.
2. A. Ivić On some conjectures and results for the Riemann zeta-function and Hecke series. Acta Arith. 109(2001), 115-145.
3. E.C. Titchmarsh Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford, 1948.

Katedra Matematike RGF-a Universiteta u Beogradu,

