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ON A SUM INVOLVING
THE PRIME COUNTING FUNCTION 7(x)

Aleksandar Ivié

An asymptotic formula for the sum of reciprocals of 7(n) is derived, where

m(x) is the number of primes not exceeding z. This result improves the pre-

vious results of DE KONINCK-IVI¢ and L. PANAITOPOL.

Let, as usual, m(z) = > _ 1 denote the number of primes not exceeding z.

The prime number theorem (see e.g., [2, Chapter 12]) in its strongest known form
states that

(1) m(x) =iz + R(z),

with

rode 1 1! ! 1
2) lix::/ _a:<+2+~-+ - +0( — ))
o logt logz ~ log®x log™ " x logm ™ x

for any fixed integer m > 0, and

(3) R(z)<zexp(—Cé(x)), 6&(z):= (log2)%/°(loglogz)~Y/>  (C > 0),

where henceforth C,Cy,... will denote absolute constants. In [1, Theorem 9.1]
J.-M. DE KONINCK and the author proved that

1,
(4) Z "2 log” z + O(log z).
2<n<zx

Recently L. PANAITOPOL [1] improved (4) to

1
(5) > g =5 o8~ logw —loglozz + O(1),
2<n<zx T
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One obtains (5) from the asymptotic formula

(6) .1—916<10gx1k1k2...km(1+am(x))>’

liz logz  log?z log™ @

where a,, () <, 1/logx, and the constants ki, ..., k,, are defined by the recur-
rence relation

(7) km+ Ukpm1+ -+ m—1lkg=m-m! (m € N),

so that k1 = 1, ko = 3, ks = 13, etc. This was established in [3]. Using (6) we shall
give a further improvement of (4), contained in the following

Theorem. For any fixed integer m > 2 we have

1 1
Z =3 log® z — logz — loglog z + C'
(8) 2<n<zx (n)
ko k3 m 1
2 + te + m—1 + O T m 5
logz  2log”x (m —1)log x log™ x
where C is an absolute constant, and ks, ...,k are the constants defined by (7).

Proof. From (1) we have

I 1 R(n)
Z m_l—’— Z lin Z lin (lin+ R(n))

2<n<zx 3<n<zx 3<n<zx
1 > R(n) ) R(n)
= —+ 1= — = |t T V7Y
391290 lin ( T;) lin (lin+ R(n)) — lin(lin+ R(n))

= Zl +C1 + ZQ,

say. By using the bound liz < x/logx and (3) it is seen that

Z Z lin hn + R Z em e/

n>x

< —Cé(z)/?)/ % —Cé(t)/ﬁdt<<e—06(m)/3’
rz—1

since d(x) is increasing for x > xg, and the substitution logt = u easily shows that
the above integral is convergent. To evaluate ), we need the familiar EULER-
MACLAURIN summation formula (see e.g., [2, eq. (A.23)]) in the form

(9) /f B dt — H(Y) F(V) + (X /w

X<n<X
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where ¢(z) = x — [z] — 1/2 and f(x) € C*[X, Y]. We obtain from (6), for m > 2
a fixed integer,

Y=

10 3<n<z
(10) - Z 1 e 1 ke ke ko (14 am(n))
N JEL. & logn  log’n log™ n ’

and we evaluate each sum in (10) by using (9). We obtain

1 1 1
> B Jlogta s +0(<ET),
n 2 T

3<n<zx
1 1
Z — = logx +co +O<7>,
3<n<z n x
k1
Z = loglogx+03+0( ),
nlogn xlogx
3<n<zx

and for 2 <r<m

k Toode 1
b=k | o Gt O( )
Z nlog" n /3 tlog"t Ot zloghx

3<n<zx
o dt o dt 1
=k, —— —k, ——+C.+ 0
/3 tlog't /z tlog t+ + (xlogrm)

k 1
:DT_—TJFO( _ )
(r—1)log" ' a zlog"

with
dt

tlog't’

Finally in view of a,,(z) < 1/logz it follows that, for m > 2 fixed,

) foit) = 3l (i)
nlog™ n nlog™n log™ x

3<n<x n=3

oo
DT:CT+I~:T/
3

Putting together the above expressions in (10) we infer that

1
Zl =3 log® z — logz — loglogz 4+ C'

ko k3 km 1
N e —— +O( - )
logz  2log”x (m —1)log x log™ x
and then (8) easily follows with
ad kmaum,(n)
— —¢y—c3—Dy—---—D,, — ZmEm )
C Cl + C1 Co C3 2 Z n logm n

n=3
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The constant C' in (8) does not depend on m, which can be easily seen by taking
two different values of m and then comparing the results.

Note that we can evaluate directly >, by the EULER-MACLAURIN summation
formula to obtain

(11) 21:/3 %+Co+o(loix).

Integration by parts gives, for x > 3,

v dt r Tlog (lit
/ — = / logtd(log lit) = logzlog (liz) — / w dt — log 3logli 3,
3 ht 3 3 t

which inserted into (11) gives another expression for our sum, namely

1 ] lit
(12) Z mzlogaclog(liac)—/3 gdt—l—B—&-O(e_Dé(m)) (D > 0),
2<n<zx

from which we can again deduce (8) by using (2). The advantage of (12) is that it
has a sharper error term than (8), but on the other hand the expressions on the
right-hand side of (12) involve the non-elementary function liz. Note also that the
RIEMANN hypothesis (that all complex zeros of the RIEMANN zeta-function ((s)
have real parts equal to 3) is equivalent to the statement (see [2]) that, for any
given € > 0, R(z) < x'/?*¢ in (3), which would correspondingly improve the error
term in (12) to O(z~1/2+¢).
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