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ON FRACTIONAL DERIVATIVES OF SOME

FUNCTIONS OF EXPONENTIAL TYPE

Kostadin Trenčevski, Živorad Tomovski

In this paper a new proof of the well known fact that the derivative of eλx

of order α ∈ R is equal to λαeλx is given. It enables to conclude that
sin(α)(x) = sin(x + απ/2) and cos(α)(x) = cos (x + απ/2) which is initial
assumption (axiom) for the classical theory of fractional derivatives. Namely
we use a new method for calculation of fractional derivatives of functions of
exponential type.

1. PRELIMINARIES

Several authors have considered and introduced different methods for calcu-
lating of fractional derivatives of a given function (see [2]).

In this paper will be considered summation of series, more precisely sum-
mation of “divergent” series which helps for calculating of fractional derivatives of
functions of exponential type and also will be calculated some fractional derivatives

via introduced method. Namely, for a given series
+∞∑
i=0

ai, we consider the formal

potential series
+∞∑
i=0

aix
i and look for a differential equations which it satisfies, even

if the radius of convergence of the potential series is 0. If f is the solution of the

corresponding differential equation, then we take that f(x) =
+∞∑
i=0

aix
i for each x,

and we put
+∞∑
i=0

ai = f(1). The method of calculating of the fractional derivatives

is the following. If f is developed in the form

(1.1) f(x) =
+∞∑

i=−∞
ai

xi

i!
,

then for any α ∈ R, the derivation of order α is defined to be

(1.2) f (α)(x) =
+∞∑

i=−∞
ai

xi−α

(i− α)!
,
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where x! = Γ(x + 1). Note that (−1)! = (−2)! = · · · = ±∞ and hence xi/i! = 0
for i = −1,−2, . . . , but these zero summands of f have important role for the
derivatives of order α because xi−α/(i − α)! 6= 0 if α is non-integer number. The
interpretation of the coefficients a−i, i ∈ Z+ is the following. The coefficient a−1

is equal to g(0), where g′(x) = f(x), i.e. it is the integral constant of
∫

f dx.
Analogously a−2 is equal to the integral constant of

∫
(
∫

f dx) dx, and so on. Thus
the calculation of the fractional derivative of f requires knowledge of all coefficients
of integration, but not only the analytical mapping f : R → R. Note that if
f is given by the right side of (1.2), then its derivatives of any order is defined
analogously. It happens very often that the left side of (1.2) diverges, and then we
apply the method of summation of the divergent series presented previously.

The paper belongs to the theory of non-standard analysis, but on the other
hand it is convenient for obtaining results. This approach has not appeared un-
til now in the literature and it is a subject of our consideration. The analytical
functions should be treated as given series but not classically according to the set
theory of functions. This new approach can find application in solving the differ-
ential equations with fractional derivatives.

Using this new approach in this paper we verify some formulas for fractional
derivatives of functions of exponential type.

2. FRACTIONAL DERIVATIVE OF eλx AND ITS IMPLICATIONS

First we prove the following lemma.

Lemma 2.1. For all α > −1 the following identity

e
(
(−α)! + α

1∫
0

e−1/ttα−1 dt
)

= 1 +
1

1− α
+

1

(1− α)(2− α)
+

1

(1− α)(2− α)(3− α)
+ · · ·

is true, where (−α)! = Γ(1− α).

Proof. Let F (z) =
+∞∫
z

e−tt−α dt, where α > 0 and Re z > 0. In [3], p.288–289, is

proved the following identity

(1) F (z) = e−z

(
1
zα

− α

zα+1
+

α(α + 1)
zα+2

− · · ·+(−1)n α(α + 1) · · · (α + n− 1)
zα+n

)
+(−1)n+1α(α+1) · · · (α+n)

+∞∫

z

e−t

tα+n+1
dt.

We have:

(−α)! = Γ(−α + 1) =
+∞∫
0

e−tt−α dt =
1∫
0

e−tt−α dt +
+∞∫
1

e−tt−α dt.
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For the first integral we obtain

(2)

1∫

0

e−tt−α dt =

1∫

0

( +∞∑
n=0

(−1)n tn−α

n!

)
dt

=
+∞∑
n=0

(−1)n

n!

1∫

0

tn−α dt =
+∞∑
n=0

(−1)n

n!
1

n− α + 1
.

The second integral is equal to F (1), i.e.

(3)
+∞∫
1

e−tt−α dt = e−1
(
1− α + α(α + 1)− · · ·+ (−1)nα(α + 1) · · · (α + n− 1)

)

+(−1)n+1α(α + 1) · · · (α + n)

+∞∫

1

e−t

tα+n+1
dt.

On the other hand according to (1) we obtain,

(4)

1∫

0

e−1/ttα−1 dt =

+∞∫

1

e−t

tα+1
dt = e−1

(
1− (α + 1) + (α + 1)(α + 2)− · · ·

+(−1)n−1(α + 1)(α + 2) · · · (α + n− 1)
)

+(−1)n(α + 1)(α + 2) · · · (α + n)

+∞∫

1

e−t

tα+n+1
dt.

Now, from (2), (3) and (4) we have:

(−α)! e + eα
1∫
0

e−1/ttα−1 dt = e

(
+∞∑
n=0

(−1)n

n!

1

n− α + 1
+ e−1

(
1− α + α(α + 1)− · · ·

+(−1)nα(α + 1) · · · (α + n− 1)
)

+ (−1)n+1α(α + 1) · · · (α + n)

+∞∫

1

e−t

tα+n+1
dt

+e−1
(
α− α(α + 1) + α(α + 1)(α + 2)− · · ·+ (−1)n−1α(α + 1) · · · (α + n− 1)

)

+(−1)nα(α + 1)(α + 2) · · · (α + n)

+∞∫

1

e−t

tα+n+1
dt

)

= e

+∞∑
n=0

(−1)n

n!

1

n− α + 1
+ 1 =

+∞∑
n=0

1

n!

+∞∑
n=0

(−1)n

n!

1

n− α + 1
+ 1.
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Let as =
1
s!

, bs =
(−1)s

s!
1

s− α + 1
. Then

+∞∑
s=0

as ·
+∞∑
s=0

bs =
+∞∑
s=0

cs, where

cs =
s∑

k=0

as−kbk =
s∑

k=0

1
(s− k)!

(−1)k

k!
1

k − α + 1
=

1
s!

s∑

k=0

(−1)k
(s
k

) 1
k − α + 1

.

Then we shall apply the following identity, obtained by D. S. Mitrinović
and J. D. Kečkić (see [1], p.146)

n∑

k=0

(−1)k
(n
k

) 1
ak + b

=
n! an

b(a + b)(2a + b) · · · (na + b)
.

The left hand side of this identity is, in fact, equal to

(1/b)F (−n, b/a; 1 + b/a; 1),

and so it is an immediate consequence of the Chu–Vandermonde summation
theorem for the finite Gauss hypergeometric series F (−n, b; c; 1) with b replaced
by b/a and c = 1 + b/a.

If a = 1 and b = 1− α, we obtain:

s∑

k=0

(−1)k
(s
k

) 1
k − α + 1

=
s!

(1− α)(2− α)(3− α) · · · (s + 1− α)
.

Thus,

+∞∑
n=0

1
n!

+∞∑
n=0

(−1)n

n!
1

n− α + 1
+ 1 =

1
n!

+∞∑
n=0

n!
(1− α)(2− α) · · · (n + 1− α)

+ 1

= 1 +
1

1− α
+

1
(1− α)(2− α)

+ · · · ,

i.e. our identity is finally proved. ut
For other proved identities of this type, see ([4], [5]).
Now we are ready to prove the main theorem. We convenient that everywhere

further ex will denotes the expansion
+∞∑

k=−∞

xk

k!
.

Theorem 2.1. The α-th derivative of eλx is equal to λαeλx, i.e.

(eλx)(α) = λαeλx.

Proof. It is sufficient to prove the theorem for α /∈ Z, because for α ∈ Z, the
theorem is obvious. So, assume that α /∈ Z.
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Using the expansion

eλx = · · ·+ λ−2 x−2

(−2)!
+ λ−1 x−1

(−1)!
+ λ0 x0

0!
+ λ1 x1

1!
+ λ2 x2

2!
+ · · ·

we obtain

(eλx)(α) = · · ·+ λ−2 x−2−α

(−2− α)!
+ λ−1 x−1−α

(−1− α)!

+ λ0 x−α

(−α)!
+ λ1 x1−α

(1− α)!
+ λ2 x2−α

(2− α)!
+ · · ·

and hence the theorem will be proved if we prove the identity

· · ·+ λ−2 x−2−α

(−2− α)!
+ λ−1 x−1−α

(−1− α)!
+ λ0 x−α

(−α)!
+ λ1 x1−α

(1− α)!

+ λ2 x2−α

(2− α)!
+ · · · = λαeλx.

Multiplying this equality by (−α)! xα we get

· · ·+ (λx)−2 (−α)!
(−2− α)!

+ (λx)−1 (−α)!
(−1− α)!

+ (λx)0
(−α)!
(−α)!

+ (λx)1
(−α)!

(1− α)!
+ (λx)2

(−α)!
(2− α)!

+ · · · = (−α)! (λx)αeλx

and using the identity (x + n)! = (x + n)(x + n − 1) · · · (x + 1) x! for any x and
positive integer n, we obtain the following equivalent equality

· · · − z−3α(α + 1)(α + 2) + z−2α(α + 1)− z−1α + 1 + z
1

1− α

+z2 1
(2− α)(1− α)

+ z3 1
(3− α)(2− α)(1− α)

+ · · · = (−α)! zαez,

where z = λx. By multiplying this equality by z−α we should prove the following
equivalent equality

· · · − z−3−αα(α + 1)(α + 2) + z−2−αα(α + 1)− z−1−αα + z−α + z1−α 1
1− α

+z2−α 1
(2− α)(1− α)

+ z3−α 1
(3− α)(2− α)(1− α)

+ · · · = (−α)! ez.

Note that the left side “L” of the previous equality satisfies dL/dz = L, it follows
that L = C × ez. Hence it is sufficient to prove that C = (−α)!. Namely, it is
sufficient to prove the previous equality for z = 1, i.e.

( · · · − α(α + 1)(α + 2) + α(α + 1)− α
)

+
(
1 +

1
1− α

+
1

(2− α)(1− α)
+

1
(3− α)(2− α)(1− α)

+ · · ·
)

= (−α)! e.
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We will prove this identity for α > −1. Note that the series

1 +
1

1− α
+

1
(2− α)(1− α)

+
1

(3− α)(2− α)(1− α)
+ · · ·

is convergent for any α /∈ {1, 2, 3, · · ·}, but the series

−α + α(α + 1)− α(α + 1)(α + 2) + · · ·

is divergent and first we should sum it. Thus we consider the function

f(z) = −αz1+α + α(α + 1)z2+α − α(α + 1)(α + 2)z3+α + · · ·

and we should find f(1). Hence f satisfies the following differential equation

f ′(z) = −α(α + 1)zα + α(α + 1)(α + 2)z1+α

−α(α + 1)(α + 2)(α + 3)z2+α + · · · = − f(z) + αz1+α

z2
,

i.e.

f ′(z) = − f(z)
z2

− αzα−1.

Moreover, f(0) = 0 because α > −1. Hence the required function is

f(z) = −e1/zα
z∫
0

e−1/ttα−1 dt

and f(1) = −eα
1∫
0

e−1/ttα−1 dt. Thus the proof of theorem for α > −1 is finished if

we prove that

−eα

1∫

0

e−1/ttα−1 dt + 1 +
1

1− α
+

1
(2− α)(1− α)

+
1

(3− α)(2− α)(1− α)
+ · · · = (−α)! e.

But this equality is true according to lemma 2.1 and the proof of the theorem for
α > −1 is finished.

Now, suppose that α ≤ −1. Let k be any integer smaller than α + 1. Then
α− k ≥ −1 and using that

dα

dxα
◦ dβ

dxβ
=

dα+β

dxα+β
,

we obtain
dαex

dxα
=

dα−k

dxα−k
◦ dk

dxk
ex =

dα−k

dxα−k
ex = ex. ut
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As a consequence of the previous theorem we obtain the following two corol-
laries.

Corollary 2.1. If the functions sin(x) and cos(x) are defined by

cos(x) =
+∞∑

k=−∞
ak

xk

k!
, sin(x) =

+∞∑

k=−∞
bk

xk

k!
,

where a2k+1 = 0, a2k = (−1)k, b2k+1 = (−1)k and b2k = 0, (k ∈ Z), then

sin(α)(x) = sin
(
x +

απ

2

)
, cos(α)(x) = cos

(
x +

απ

2

)
.

Proof. According to the definitions of cos and sin it follows that cos(x)+i sin(x) =
eix. According to the theorem 2.1 we get

cos(α)(x) + i sin(α)(x) = iαeix.

Hence we obtain
cos(α)(x) = Re (iαeix) = cos

(
x +

απ

2

)

and
sin(α)(x) = Im (iαeix) = sin

(
x +

απ

2

)
. ut

Note that the previous corollary is of special interest, because the classical
theory of fractional derivatives starts just from the conclusions of the previous
corollary, but without the assumption for sin and cos, which means by considering
these functions as maps from R to R.

Corollary 2.2. Assume that the functions sin and cos are defined as in corollary
2.1. Then

(
ex cos(x)

)(α) = 2α/2ex cos
(
x +

απ

4

)
,

(
ex sin(x)

)(α) = 2α/2ex sin
(
x +

απ

4

)
.

The proof is analogous to the proof of corollary 2.1. These equalities can be
proved directly as follows. We develop the function ex in the form

+∞∑
n=−∞

xα+n

(α + n)!

and the functions cos and sin develop like in Corollary 2.1. Then the Cauchy
products ex cosx and ex sin x are given by

ex cos x =
+∞∑

n=−∞
pn

xα+n

(α + n)!
, ex sin x =

+∞∑
n=−∞

qn
xα+n

(α + n)!
,
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where pn = 2(n+α)/2 cos
(
(n + α)π/4

)
and qn = 2(n+α)/2 sin

(
(n + α)π/4

)
. Hence

(ex cos x)(α) and (ex sin x)(α) are obtained as Taylor’s series and we obtain

(ex cos x)(α) =
+∞∑

n=−∞
pn

xn

n!
=

+∞∑
n=−∞

2(n+α)/2 cos
(n + α)π

4
xn

n!
= 2α/2ex cos

(
x+

απ

4

)

and

(ex sin x)(α) =
+∞∑

n=−∞
qn

xn

n!
=

+∞∑
n=−∞

2(n+α)/2 sin
(n + α)π

4
xn

n!
= 2α/2ex sin

(
x+

απ

4

)
.

Remark. If the functions sin x and cos x are not defined as in the Corollary 2.1,

and if ex is not defined as
+∞∑

k=−∞
xk/k!, then the Theorem 2.1 and the Corollaries

2.1 and 2.2 are not true. For example, if we use the expansions

ex =
+∞∑

k=0

xk

k!
, sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · · , cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · ,

then
lim
x→0

(sinx)(1/2) = 0, while lim
x→0

sin
(
x +

π

4

)
=
√

2/2,

lim
x→0

(cos x)(1/2) = ±∞, while lim
x→0

cos
(
x +

π

4

)
=
√

2/2, and

lim
x→0

(ex)(1/2) = ±∞, while lim
x→0

ex = 1.
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