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ON EQUIVALENCE AND SPECTRAL
MULTIPLICITY OF SOME GAUSSIAN

PROCESSES

Slobodanka S. Mitrović

In this paper we consider some Gaussian second-order stochastic processes
(continuous left and purely nondeterministic), in a separable Hilbert space
and analyze conditions for these processes to be equivalent. Also, we connect
some results of H. Cramer (from Structural and statistical problems for a
class of stochastic processes, Princeton Univ. Press, Princeton, NJ, 1971)
concerning the problem of spectral multiplicity.

1. INTRODUCTION

Let x(t), t ∈ (a, b) ⊂ R be a second-order real-valued process with Ex(t) = 0
for each t. Let H(x, t) be the linear closure generated by x(s), s ∈ (a, t] in the
Hilbert space H of all random variables with finite variance (Ex2(t) < ∞). We
will suppose that x(t), t ∈ (a, b) is continuous left and purely nondeterministic (i.e.
∩t>aH(x, t) = 0). It is well known (see [1]) that there is a representation:

(1) x(t) =
N∑

n=1

∫ t

a

gn(t, u) dzn(u), u ≤ t, t ∈ (a, b),

where:
1. The processes zn(u), n = 1, . . . , N are mutually orthogonal with orthogonal
increments such that Ezn(u) = 0 and Ez 2

n (u) = Fn(u), where Fn(u), n = 1, . . . , N
are non decreasing functions left continuous everywhere on (a, b).
2. The non-random functions gn(t, u), u ≤ t, are such that:

Ex2(t) =
N∑

n=1

∫ t

a

g 2
n (t, u) dFn(u) < ∞, for each t ∈ (a, b),
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3. dF1 > dF2 > · · · > dFn, where the relation > means absolute continuity between
measures.

4. H(x, t) =
N∑

n=1

⊕H(zn, t), t ∈ (a, b).

The expansion (1) satisfying the conditions 1, 2, 3 and 4 is the canonical
representation for the process x(t). The number N (finite or infinite) is called the
multiplicity of x(t), and N is uniquely determined by the process x(t). But, the
processes zn(u) and the functions gn(t, u) are not uniquely determined.

Let x(t) be a Gaussian process given by one integral representation:

(2) x(t) =
∫ t

a

g(t, u) dz(u), u ≤ t, t ∈ [a, b],

where the kernel g(t, u) and Gaussian process z(u) satisfy the conditions 1 and 2.
This representation may not be canonical. The main question here is to determine
spectral multiplicity of x(t). Before we consider this problem let us denote some
very well known facts about Gaussian processes.

If we take x(t) = x(w, t), w ∈ Ω, t ∈ [a, b] = T ⊂ R, as a measurable mapping
of the basic probability space (Ω, U, P ) into the measurable space (X,β, Px) which
to each w ∈ Ω, corresponds the trajectory x(w, t) ∈ X, t ∈ T , we may now consider
the probability space (X, β, Px) instead of the space (Ω, U, P ), where the probability
measure is:

Px(B) = P
(
w : x(w, t) ∈ B, B ∈ β

)
,

β is a Borel σ-field spanned by the cylindric sets {x(t) : [x(t1), . . . , x(tn)] ∈ C},
and C is a Borel set from Rn. When a stochastic process x(t), t ∈ T , is a
Gaussian (all its finite distributions are Gaussian), then the probability Px is called
a Gaussian measure.

If Px1 and Px2 are two Gaussian measures on the space (X,β), it is well
known, they are either equivalent (mutually absolutely continuous) or orthogonal(∃A ∈ β : Px1(A) = 1 and Px2(A) = 0

)
. In the case of equivalence of two Gaussian

measures Px1 and Px2 induced from x1(t) and x2(t) we say that these Gaussian
processes x1(t) and x2(t) are equivalent and converse.

According to the fact that a Gaussian process is uniquely determined by the
mean Ex(t), t ∈ T , and the covariance function B(s, t) = E

(
x(s)−Ex(s)

)(
x(t)−

Ex(t)
)
, s, t ∈ T , in order to find conditions for equivalence of two Gaussian pro-

cesses, it is sufficient to consider two particular cases: a) the case of different means
but the same covariance functions; and b) the case of the same means and different
covariance functions (see [5]). Here it will be considered the case b) because we
have assumed that for our processes Ex(t) = 0 for each t.

In this case (see [5]) two Gaussian processes x1(t) and x2(t) given by (2), are
equivalent if and only if there exists

y ∈ H(z1)⊗ H(z2), y =
∫ b

a

∫ b

a

h(u, v) dz1(u) dz2(v),
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such that ∫ b

a

∫ b

a

h2(u, v) dF1(u) dF2(v) < ∞,

and the next equation is satisfied

(3) B1(s, t)−B2(s, t) =
∫ b

a

∫ b

a

h(u, v) g1(s, u) g2(t, v) dF1(u) dF2(v), s, t ∈ T,

where Bi(s, t) are covariance functions of xi(t) =
∫ t

a
gi(t, u) dzi(u), t ∈ T .

For equivalent processes x1(t) and x2(t), the spectral multiplicity is the same
(see [5]). The converse doesn’t hold. This fact is shown in the next simple example.
Example. Let x1(t) be a Wiener process, x1(t) =

∫ t

0
dz(u), u ≤ t, t ∈ [0, τ ], and

x2(t) a Markov process given by

x2(t) = g(t)x1(t) = g(t)
∫ t

0

dz(u), u ≤ t, u, t ∈ [0, τ ],

where g(t) > 0, t ∈ [0, τ ], is not absolutely continuous. Then the difference of their
covariance functions

B1(s, t)−B2(s, t) = (1− g(s) g(t)) min(s, t),

is not absolutely continuous and we cannot represent this difference in the form
(3). It means x1(t) and x2(t) are not equivalent. But the spectral multiplicity for
x1(t) and x2(t) is the same (see [2]).

Lemma. Let us suppose for the process x(t) given by (2), the functions g(t, u) and
∂g(t, u)/∂t are bounded and continuous for u, t ∈ [a, b], u ≤ t, and the function
F (u) = Ez2(u) is absolutely continuous with f(u) = ∂F (u)/∂u. Then the covari-
ance function B(s, t) of this process has continuous partial derivatives ∂B(s, t)/∂t
and ∂B(s, t)/∂s for all s, t except for s = t. At s = t there is a jump equal to
g2(t, t) f(t).
Proof. It is well known that the covariance function of such process is

B(s, t) =
∫ s∧t

a

g(s, u) g(t, u) f(u) du.

According to the assumption about g(t, u) and ∂g(t, u)/∂t it is easy to see that
∂B(s, t)/∂t and ∂B(s, t)/∂s are continuous partial derivatives for all s 6= t. At the
diagonal s = t, we have to consider two cases. When min(s, t) = s we have

lim
s→t

B(s, t)−B(t, t)
s− t

= lim
s→t

∫ s

a

g(t, u)
g(s, u)− g(t, u)

s− t
f(u) du− lim

s→t

∫ t

s

g2(t, u)
s− t

f(u) du

=
∫ t

a

g(t, u) f(u) ∂g(t, u)/∂t du + g2(t, t) f(t).
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If min(s, t) = t we obtain

lim
s→t

B(s, t)−B(t, t)
s− t

= lim
s→t

∫ t

a

g(t, u)
g(s, u)− g(t, u)

s− t
f(u) du

=
∫ t

a

g(t, u) f(u) ∂g(t, u)/∂tdu.

So, there is a jump of the height g2(t, t) f(t) at the diagonal s = t for partial
derivatives of B(s, t).

Corollary. For equivalence of two Gaussian processes x1(t) and x2(t), the neces-
sary condition is that the discontinuities of the partial derivatives of B1(s, t) and
B2(s, t) at the diagonal s = t must be the same :

(4) f1(t) g 2
1 (t, t) = f2(t) g 2

2 (t, t).

2. MAIN RESULT

One of the problems here is to find out a criteria for processes given by (2)
to be multiplicity N = 1. Cramer stated in Theorem 5.1. in [1], that the regu-
larity conditions ensure a multiplicity of unity for a process which has a canonical
expansion. Here the main idea is to fortify equivalence of two Gaussian processes
from which one has already multiplicity one.

Theorem 1. Let x(t), t ∈ [0, τ ] = T, be a process given by (2) where z(u), u ∈ [0, τ ],

is a Wiener process. If g(t, t) 6= 0, for all t ∈ T, and
(

g(t, u)
g(t, t)

)′

t

∈ L2(dt× du),

i.e.

(5)
∫ τ

0

∫ τ

0

((
g(t, u)
g(t, t)

)′

t

)2

dtdu < ∞,

then the process x(t) has multiplicity one.
Proof. Let us introduce the process y(t) =

∫ t

0
g(t, t) dz(u), u ≤ t, u, t ∈ [0, τ ] =

T, where z(u) is a Wiener process. Now, one of the necessary condition for
equivalence of x(t) and y(t) is satisfied (see the previous corollary (4)).

The difference between their covariance functions is

B1(s, t)−B2(s, t) =
∫ s∧t

0

(
g(s, u) g(t, u)− g(s, s) g(t, t)

)
du.

According to (3) to find out the necessary and sufficient condition for equiva-
lence of x(t) and y(t) we have to solve the next integral equation, regarding h(u, v)
as the unknown function:

∫ s∧t

0

(
g(s, u)

g(t, u)
g(t, t)

− g(s, s)
)

du =
∫ s

0

∫ t

0

h(u, v) g(s, u) dudv, s, t ∈ T.
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If we suppose min(s, t) = s, after some calculation we obtain for u < s < t :

h(u, t) =
(

g(t, u)
g(t, t)

)′

t

.

The same holds when we suppose min(s, t) = t. Now, the necessary and
sufficient condition for equivalence of processes x(t) and y(t) is

∫ τ

0

∫ τ

0

((
g(t, u)
g(t, t)

)′

t

)2

dtdu < ∞, u ≤ t.

If this condition is satisfied the spectral multiplicity of x(t) and y(t) will be the
same and equal to one because the Markov process y(t) has multiplicity one ([2]).
The proof is completed.

Theorem 2. Let x(t), t ∈ [a, b] = T, be a process given by (2) where z(u), u ∈ [a, b],
is a Gaussian process such that the function f(u) = ∂F (u)/∂u = ∂Ez2(u)/∂u is
continuous and f(u) 6= 0, for all t ∈ T. If g(t, t) 6= 0, for all t ∈ T, and

1
f(t)

(
g(t, u)
g(t, t)

)′

t

∈ L2(f(t) dt× f(u) du),

i.e.

(6)
∫ b

a

∫ b

a

1
f(t)

((
g(t, u)
g(t, t)

)′

t

)2

f(u) dt du < ∞,

then the process x(t) has multiplicity one.
Proof. In a similar way like in previous proof we can show (solving the next
integral equation

∫ s∧t

a

(
g(s, u)

g(t, u)
g(t, t)

− g(s, s)
)

f(u) du

=
∫ s

a

∫ t

a

h(u, v) g(s, u) f(u) f(v) dudv, s, t ∈ T,

by unknown function h(u, v)) that processes x(t) and y(t) =
∫ t

a
g(t, t) dz(u), u ≤ t,

u, t ∈ T , are equivalent processes if and only if

∫ b

a

∫ b

a

1
f(t)

((
g(t, u)
g(t, t)

)′

t

)2

f(u) dt du < ∞.

In this case the spectral multiplicity of x(t) and y(t) is the same and equal to one.
The proof is completed.

Note. The statement of the Theorem 1 is valid even we assume that T is an
infinite subinterval of R.
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