ON EQUIVALENCE AND SPECTRAL MULTIPLICITY OF SOME GAUSSIAN PROCESSES

Slobodanka S. Mitrović

Abstract

In this paper we consider some Gaussian second-order stochastic processes (continuous left and purely nondeterministic), in a separable Hilbert space and analyze conditions for these processes to be equivalent. Also, we connect some results of H. Cramer (from Structural and statistical problems for a class of stochastic processes, Princeton Univ. Press, Princeton, NJ, 1971) concerning the problem of spectral multiplicity.

1. INTRODUCTION

Let $x(t), t \in(a, b) \subset \mathbf{R}$ be a second-order real-valued process with $E x(t)=0$ for each t. Let $H(x, t)$ be the linear closure generated by $x(s), s \in(a, t]$ in the Hilbert space H of all random variables with finite variance $\left(E x^{2}(t)<\infty\right)$. We will suppose that $x(t), t \in(a, b)$ is continuous left and purely nondeterministic (i.e. $\cap_{t>a} H(x, t)=0$). It is well known (see [1]) that there is a representation:

$$
\begin{equation*}
x(t)=\sum_{n=1}^{N} \int_{a}^{t} g_{n}(t, u) \mathrm{d} z_{n}(u), \quad u \leq t, \quad t \in(a, b) \tag{1}
\end{equation*}
$$

where:

1. The processes $z_{n}(u), n=1, \ldots, N$ are mutually orthogonal with orthogonal increments such that $E z_{n}(u)=0$ and $E z_{n}^{2}(u)=F_{n}(u)$, where $F_{n}(u), n=1, \ldots, N$ are non decreasing functions left continuous everywhere on (a, b).
2. The non-random functions $g_{n}(t, u), u \leq t$, are such that:

$$
E x^{2}(t)=\sum_{n=1}^{N} \int_{a}^{t} g_{n}^{2}(t, u) \mathrm{d} F_{n}(u)<\infty, \quad \text { for each } t \in(a, b),
$$

[^0]3. $\mathrm{d} F_{1}>\mathrm{d} F_{2}>\cdots>\mathrm{d} F_{n}$, where the relation $>$ means absolute continuity between measures.
4. $H(x, t)=\sum_{n=1}^{N} \oplus H\left(z_{n}, t\right), \quad t \in(a, b)$.

The expansion (1) satisfying the conditions $1,2,3$ and 4 is the canonical representation for the process $x(t)$. The number N (finite or infinite) is called the multiplicity of $x(t)$, and N is uniquely determined by the process $x(t)$. But, the processes $z_{n}(u)$ and the functions $g_{n}(t, u)$ are not uniquely determined.

Let $x(t)$ be a Gaussian process given by one integral representation:

$$
\begin{equation*}
x(t)=\int_{a}^{t} g(t, u) \mathrm{d} z(u), \quad u \leq t, \quad t \in[a, b] \tag{2}
\end{equation*}
$$

where the kernel $g(t, u)$ and Gaussian process $z(u)$ satisfy the conditions 1 and 2 . This representation may not be canonical. The main question here is to determine spectral multiplicity of $x(t)$. Before we consider this problem let us denote some very well known facts about Gaussian processes.

If we take $x(t)=x(w, t), w \in \Omega, t \in[a, b]=T \subset \mathbf{R}$, as a measurable mapping of the basic probability space (Ω, U, P) into the measurable space $\left(X, \beta, P_{x}\right)$ which to each $w \in \Omega$, corresponds the trajectory $x(w, t) \in X, t \in T$, we may now consider the probability space $\left(X, \beta, P_{x}\right)$ instead of the space (Ω, U, P), where the probability measure is:

$$
P_{x}(B)=P(w: x(w, t) \in B, B \in \beta)
$$

β is a Borel σ-field spanned by the cylindric sets $\left\{x(t):\left[x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right] \in \mathbf{C}\right\}$, and C is a Borel set from \mathbf{R}^{n}. When a stochastic process $x(t), t \in T$, is a Gaussian (all its finite distributions are Gaussian), then the probability P_{x} is called a Gaussian measure.

If $P_{x_{1}}$ and $P_{x_{2}}$ are two Gaussian measures on the space (X, β), it is well known, they are either equivalent (mutually absolutely continuous) or orthogonal $\left(\exists A \in \beta: P_{x_{1}}(A)=1\right.$ and $\left.P_{x_{2}}(A)=0\right)$. In the case of equivalence of two Gaussian measures $P_{x_{1}}$ and $P_{x_{2}}$ induced from $x_{1}(t)$ and $x_{2}(t)$ we say that these Gaussian processes $x_{1}(t)$ and $x_{2}(t)$ are equivalent and converse.

According to the fact that a Gaussian process is uniquely determined by the mean $E x(t), \quad t \in T$, and the covariance function $B(s, t)=E(x(s)-E x(s))(x(t)-$ $E x(t)), s, t \in T$, in order to find conditions for equivalence of two Gaussian processes, it is sufficient to consider two particular cases: a) the case of different means but the same covariance functions; and b) the case of the same means and different covariance functions (see [5]). Here it will be considered the case b) because we have assumed that for our processes $E x(t)=0$ for each t.

In this case (see [5]) two Gaussian processes $x_{1}(t)$ and $x_{2}(t)$ given by (2), are equivalent if and only if there exists

$$
y \in H\left(z_{1}\right) \otimes H\left(z_{2}\right), \quad y=\int_{a}^{b} \int_{a}^{b} h(u, v) \mathrm{d} z_{1}(u) \mathrm{d} z_{2}(v)
$$

such that

$$
\int_{a}^{b} \int_{a}^{b} h^{2}(u, v) \mathrm{d} F_{1}(u) \mathrm{d} F_{2}(v)<\infty
$$

and the next equation is satisfied

$$
\begin{equation*}
B_{1}(s, t)-B_{2}(s, t)=\int_{a}^{b} \int_{a}^{b} h(u, v) g_{1}(s, u) g_{2}(t, v) \mathrm{d} F_{1}(u) \mathrm{d} F_{2}(v), \quad s, t \in T, \tag{3}
\end{equation*}
$$

where $B_{i}(s, t)$ are covariance functions of $x_{i}(t)=\int_{a}^{t} g_{i}(t, u) \mathrm{d} z_{i}(u), t \in T$.
For equivalent processes $x_{1}(t)$ and $x_{2}(t)$, the spectral multiplicity is the same (see [5]). The converse doesn't hold. This fact is shown in the next simple example. Example. Let $x_{1}(t)$ be a Wiener process, $x_{1}(t)=\int_{0}^{t} \mathrm{~d} z(u), u \leq t, t \in[0, \tau]$, and $x_{2}(t)$ a Markov process given by

$$
x_{2}(t)=g(t) x_{1}(t)=g(t) \int_{0}^{t} \mathrm{~d} z(u), u \leq t, u, t \in[0, \tau],
$$

where $g(t)>0, t \in[0, \tau]$, is not absolutely continuous. Then the difference of their covariance functions

$$
B_{1}(s, t)-B_{2}(s, t)=(1-g(s) g(t)) \min (s, t),
$$

is not absolutely continuous and we cannot represent this difference in the form (3). It means $x_{1}(t)$ and $x_{2}(t)$ are not equivalent. But the spectral multiplicity for $x_{1}(t)$ and $x_{2}(t)$ is the same (see [2]).
Lemma. Let us suppose for the process $x(t)$ given by (2), the functions $g(t, u)$ and $\partial g(t, u) / \partial t$ are bounded and continuous for $u, t \in[a, b], u \leq t$, and the function $F(u)=E z^{2}(u)$ is absolutely continuous with $f(u)=\partial F(u) / \partial u$. Then the covariance function $B(s, t)$ of this process has continuous partial derivatives $\partial B(s, t) / \partial t$ and $\partial B(s, t) / \partial s$ for all s, t except for $s=t$. At $s=t$ there is a jump equal to $g^{2}(t, t) f(t)$.
Proof. It is well known that the covariance function of such process is

$$
B(s, t)=\int_{a}^{s \wedge t} g(s, u) g(t, u) f(u) \mathrm{d} u
$$

According to the assumption about $g(t, u)$ and $\partial g(t, u) / \partial t$ it is easy to see that $\partial B(s, t) / \partial t$ and $\partial B(s, t) / \partial s$ are continuous partial derivatives for all $s \neq t$. At the diagonal $s=t$, we have to consider two cases. When $\min (s, t)=s$ we have

$$
\begin{aligned}
& \lim _{s \rightarrow t} \frac{B(s, t)-B(t, t)}{s-t} \\
& \quad=\lim _{s \rightarrow t} \int_{a}^{s} g(t, u) \frac{g(s, u)-g(t, u)}{s-t} f(u) \mathrm{d} u-\lim _{s \rightarrow t} \int_{s}^{t} \frac{g^{2}(t, u)}{s-t} f(u) \mathrm{d} u \\
& \quad=\int_{a}^{t} g(t, u) f(u) \partial g(t, u) / \partial t \mathrm{~d} u+g^{2}(t, t) f(t) .
\end{aligned}
$$

If $\min (s, t)=t$ we obtain

$$
\begin{aligned}
\lim _{s \rightarrow t} \frac{B(s, t)-B(t, t)}{s-t} & =\lim _{s \rightarrow t} \int_{a}^{t} g(t, u) \frac{g(s, u)-g(t, u)}{s-t} f(u) \mathrm{d} u \\
& =\int_{a}^{t} g(t, u) f(u) \partial g(t, u) / \partial t \mathrm{~d} u
\end{aligned}
$$

So, there is a jump of the height $g^{2}(t, t) f(t)$ at the diagonal $s=t$ for partial derivatives of $B(s, t)$.
Corollary. For equivalence of two Gaussian processes $x_{1}(t)$ and $x_{2}(t)$, the necessary condition is that the discontinuities of the partial derivatives of $B_{1}(s, t)$ and $B_{2}(s, t)$ at the diagonal $s=t$ must be the same:

$$
\begin{equation*}
f_{1}(t) g_{1}^{2}(t, t)=f_{2}(t) g_{2}^{2}(t, t) \tag{4}
\end{equation*}
$$

2. MAIN RESULT

One of the problems here is to find out a criteria for processes given by (2) to be multiplicity $N=1$. Cramer stated in Theorem 5.1. in [1], that the regularity conditions ensure a multiplicity of unity for a process which has a canonical expansion. Here the main idea is to fortify equivalence of two Gaussian processes from which one has already multiplicity one.
Theorem 1. Let $x(t), t \in[0, \tau]=T$, be a process given by (2) where $z(u), u \in[0, \tau]$, is a WIENER process. If $g(t, t) \neq 0$, for all $t \in T$, and $\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime} \in L^{2}(\mathrm{~d} t \times \mathrm{d} u)$, i.e.

$$
\begin{equation*}
\int_{0}^{\tau} \int_{0}^{\tau}\left(\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime}\right)^{2} \mathrm{~d} t \mathrm{~d} u<\infty \tag{5}
\end{equation*}
$$

then the process $x(t)$ has multiplicity one.
Proof. Let us introduce the process $y(t)=\int_{0}^{t} g(t, t) \mathrm{d} z(u), u \leq t, u, t \in[0, \tau]=$ T, where $z(u)$ is a WIENER process. Now, one of the necessary condition for equivalence of $x(t)$ and $y(t)$ is satisfied (see the previous corollary (4)).

The difference between their covariance functions is

$$
B_{1}(s, t)-B_{2}(s, t)=\int_{0}^{s \wedge t}(g(s, u) g(t, u)-g(s, s) g(t, t)) \mathrm{d} u
$$

According to (3) to find out the necessary and sufficient condition for equivalence of $x(t)$ and $y(t)$ we have to solve the next integral equation, regarding $h(u, v)$ as the unknown function:

$$
\int_{0}^{s \wedge t}\left(g(s, u) \frac{g(t, u)}{g(t, t)}-g(s, s)\right) \mathrm{d} u=\int_{0}^{s} \int_{0}^{t} h(u, v) g(s, u) \mathrm{d} u \mathrm{~d} v, \quad s, t \in T
$$

If we suppose $\min (s, t)=s$, after some calculation we obtain for $u<s<t$:

$$
h(u, t)=\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime}
$$

The same holds when we suppose $\min (s, t)=t$. Now, the necessary and sufficient condition for equivalence of processes $x(t)$ and $y(t)$ is

$$
\int_{0}^{\tau} \int_{0}^{\tau}\left(\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime}\right)^{2} \mathrm{~d} t \mathrm{~d} u<\infty, u \leq t
$$

If this condition is satisfied the spectral multiplicity of $x(t)$ and $y(t)$ will be the same and equal to one because the Markov process $y(t)$ has multiplicity one ([2]). The proof is completed.

Theorem 2. Let $x(t), t \in[a, b]=T$, be a process given by (2) where $z(u), u \in[a, b]$, is a Gaussian process such that the function $f(u)=\partial F(u) / \partial u=\partial E z^{2}(u) / \partial u$ is continuous and $f(u) \neq 0$, for all $t \in T$. If $g(t, t) \neq 0$, for all $t \in T$, and

$$
\frac{1}{f(t)}\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime} \in L^{2}(f(t) \mathrm{d} t \times f(u) \mathrm{d} u)
$$

i.e.

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b} \frac{1}{f(t)}\left(\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime}\right)^{2} f(u) \mathrm{d} t \mathrm{~d} u<\infty \tag{6}
\end{equation*}
$$

then the process $x(t)$ has multiplicity one.
Proof. In a similar way like in previous proof we can show (solving the next integral equation

$$
\begin{aligned}
\int_{a}^{s \wedge t}(g(s, u) & \left.\frac{g(t, u)}{g(t, t)}-g(s, s)\right) f(u) \mathrm{d} u \\
& =\int_{a}^{s} \int_{a}^{t} h(u, v) g(s, u) f(u) f(v) \mathrm{d} u \mathrm{~d} v, \quad s, t \in T
\end{aligned}
$$

by unknown function $h(u, v))$ that processes $x(t)$ and $y(t)=\int_{a}^{t} g(t, t) \mathrm{d} z(u), u \leq t$, $u, t \in T$, are equivalent processes if and only if

$$
\int_{a}^{b} \int_{a}^{b} \frac{1}{f(t)}\left(\left(\frac{g(t, u)}{g(t, t)}\right)_{t}^{\prime}\right)^{2} f(u) \mathrm{d} t \mathrm{~d} u<\infty
$$

In this case the spectral multiplicity of $x(t)$ and $y(t)$ is the same and equal to one. The proof is completed.
Note. The statement of the Theorem 1 is valid even we assume that T is an infinite subinterval of \mathbf{R}.

REFERENCES

1. H. Cramer: Structural and Statistical Problems for a Class of Stochastic Processes. Princeton University Press., Princeton, New Jersey (1971), pp. 30.
2. M. Hitsuda: Multiplicity of Some Classes of Gausian Processes. Nagoya Math. J., 52, 1 (1973), 39-46.
3. S. Mitrović: A note concerning a theorem of Cramer. Proceedings of the Amer. Math. Soc. 121 (2) (1994), 589-591.
4. S. Mitrović: Spectral Multiplicity of Some Stochastic Processes. Proc. Amer. Math. Soc. 126 (1) (1998), 239-243.
5. Yu. A. Rozanov: Infinite-dimensional Gaussian distribution. Trudy Ord. Lenina, Math. Inst. V. A. Steklova 108 (1968), 1-136 (Russian).

Ljutice Bogdana 2/2, No. 35
(Received October 30, 2001)
11040 Belgrade, Serbia
E-mail: minatas@eunet.yu

[^0]: 1991 Mathematics Subject Classification: 60G12
 Keywords and Phrases: Gaussian second-order stochastic processes, canonical representation, spectral multiplicity, equivalence of Gaussian measures.

