UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 13 (2002), 66–70.

EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR LOBACEVSKY'S FUNCTIONAL EQUATION

Nicolae N. Neamţu

The purpose of this paper is to give a theorem for the existence and uniqueness of solution of LOBACEVSKY's functional equation and to effective find it.

Theorem 1. Let $f : \mathbf{R} \to \mathbf{R}$, f(0) > 0 and strictly increasing at zero. Then there exists a unique function such that

- (1) $f(x)f(y) = f((x+y)/2)^2$,
- (2) f(x) is strictly increasing on **R** if f(0) > 0, 0 < f(0) < f(1) = 0, 1 < a/f(0),
- (3) f is continuous function on \mathbf{R} .

At first we assume that the function f exists and, we highlight some properties of this function.

Proposition 1.

- (i) If there exists $x_0 \in \mathbf{R}$ such that $f(x_0) = 0$, then f(x) = 0 for any $x \in \mathbf{R}$.
- (ii) f(x)f(0) > 0, sgn f(x) = sgn f(0).

(iii)
$$f(nx) = f(0) \left(\frac{f(x)}{f(0)}\right)^n$$
, $f(-nx) = (f(0))^{-1} \left(\frac{f(x)}{f(0)}\right)^{-n}$ for any $n \in \mathbf{N}$,
 $f(kx) = f(0) \left(\frac{f(x)}{f(0)}\right)^k$, $k \in \mathbf{Z}$, $f(x/2^n) = f(0) \left(\frac{f(x)}{f(0)}\right)^{1/2^n}$, $f(0) > 0$.

(iv)
$$f(n) = f(0) \left(\frac{a}{f(0)}\right)^n$$
, $f(k) = f(0) \left(\frac{a}{f(0)}\right)^k$, $f\left(\frac{k}{2^n}\right) = f(0) \left(\frac{a}{f(0)}\right)^{1/2^n}$, $f(0) > 0$.

Proof. From (1) it follows $f(2x_0 - x)f(x) = f(x_0)^2 = 0$, i.e. (i). We have $f(x)f(0) = f(x/2)^2$, i.e. (ii).

- we have f(x)f(0) = f(x/2), 1
- (iii) follows by induction.

In what follows we consider f(0) > 0, which by (ii) implies f(x) > 0.

²⁰⁰⁰ Mathematics Subject Classification: 34K06

Keywords and Phrases: Lobacevsky functional equation.

Definition. [3] The function $f : I \subseteq \mathbf{R} \to \mathbf{R}$ (*I* - interval) is called strictly increasing (strictly decreasing) at $x_0 \in I$ if there exist $\delta(x_0) > 0$ so that

$$\operatorname{sgn} \frac{f(x) - f(x_0)}{x - x_0} = 1 \, (-1) \ for \ 0 < x < x_0 < \delta.$$

Proposition 2. [3] Let $f : I \subseteq \mathbf{R} \to \mathbf{R}$ be a function. It is strictly monotonic if and only if it is strictly monotonic at every point of I.

Proposition 3. The solution f, $f(0) \neq 0$ is strictly monotonic on \mathbf{R} iff it is strictly monotonic at zero.

Proof. Taking into account the Definition and Proposition 3 the implication \Rightarrow is obvious. From (1) we get

$$\frac{f(x-x_0) - f(0)}{x - x_0} = \frac{1}{2f(x_0)} \frac{f(x/2)^2 - f(x_0/2)^2}{\frac{x - x_0}{2}} \text{ for any } x, x_0 \in \mathbf{R}, \ x \neq x_0, \text{ i.e.}$$
$$\operatorname{sgn} \frac{f(x/2) - f(x_0/2)}{\frac{x - x_0}{2}} = \operatorname{sgn} \frac{f(x - x_0) - f(0)}{x - x_0},$$

since according to (i), sgn $\frac{2f(x_0)}{f(x/2) + f(x_0/2)} = 1.$

By the assumption, f is strictly increasing (strictly decreasing) at zero, then there exists $\delta(0) > 0$ such that $\operatorname{sgn} \frac{f(x - x_0)}{x - x_0} = 1 (-1)$ for $0 < |x - x_0| < \delta$.

Hence f(x) is a strictly increasing function on **R**.

Now, we shall use the assumption (2) to draw the function f. We choose $n_0 = 1, n_1 = 2, n_2 = 2^2, \ldots, n_k = 2^k$ and for given $k \in \mathbf{N}$, we find $m_k \in \mathbf{Z}$ such that

(4)
$$m_k \le n_k x < m_k + 1, \ \frac{m_k}{n_k} \le x < \frac{m_k + 1}{n_k}$$

and by (2), (iv) and (4), we have

(5)
$$f(0)\left(\frac{a}{f(0)}\right)^{m_k/n_k} \le f(x) < f(0)\left(\frac{a}{f(0)}\right)^{(m_k+1)/n_k}$$

We show that

(6)
$$\left(f(0)\left(\frac{a}{f(0)}\right)^{m_k/n_k}, f(0)\left(\frac{a}{f(0)}\right)^{(m_k+1)/n_k}\right)$$

 $\supset \left(f(0)\left(\frac{a}{f(0)}\right)^{m_{k+1}/n_{k+1}}, f(0)\left(\frac{a}{f(0)}\right)^{(m_{k+1}+1)/n_{k+1}}\right).$

From (4) results

(7)
$$2m_k \le 2n_k x = n_{k+1} x < 2(m_k + 1), \quad \frac{2m_k}{n_{k+1}} \le x < \frac{2(m_k + 1)}{n_{k+1}}, \quad \ell' = \frac{2}{n_{k+1}}$$

(8)
$$\frac{m_{k+1}}{n_{k+1}} \le x < \frac{m_{k+1}+1}{n_{k+1}}, \quad \ell'' = \frac{1}{n_{k+1}} = \frac{1}{2}\ell'$$

$$\frac{2m_k}{n_{k+1}} \qquad \frac{m_{k+1}}{n_{k+1}} \qquad x \qquad \frac{m_{k+1}+1}{n_{k+1}} \qquad \frac{2(m_k+1)}{n_{k+1}}$$

(9)
$$\frac{2m_k}{n_{k+1}} < \frac{m_{k+1}}{n_{k+1}} < \frac{m_{k+1}+1}{n_{k+1}} < \frac{2(m_k+1)}{n_{k+1}}$$

$$(10) \quad \frac{m_k}{n_k} = \frac{2m_k}{2n_k} = \frac{2m_k}{n_{k+1}} < \frac{m_{k+1}}{n_{k+1}} < \frac{m_{k+1}+1}{n_{k+1}} < \frac{2(m_k+1)}{n_{k+1}} = \frac{2(m_k+1)}{2n_k} = \frac{m_k+1}{n_k} \,.$$

Proposition 4. [3] Let b > 1, $r \in \mathbf{Q}$ and $g(r) = b^r$ be a function. Then g(r) is a strictly increasing and continuous function.

Taking into account (10) and Proposition 2 results (6). In this way, the intervals

$$\left(f(0)\left(\frac{a}{f(0)}\right)^{m_k/n_k}, f(0)\left(\frac{a}{f(0)}\right)^{(m_k+1)/n_k}\right)$$

form a sequence of close and inclusive intervals and, by CANTOR's principle, there exists a common point of all intervals and it is unique because the length $\rightarrow 0$ when $k \rightarrow \infty$, $n_k \rightarrow \infty$.

(11)
$$\lim_{k \to \infty} \ell_k = \lim f(0) \cdot a^{m_k/n_k} \left(a^{1/n_k} - 1 \right) = 0.$$

We choose for f(x) even the number which corresponds with this point.

In the following we show that the function f satisfies (1). For any $x, y \in \mathbf{R}$ and for given $k \in \mathbf{N}$ corresponds m_k and $p_k \in \mathbf{Z}$ such that

(12)
$$\frac{m_k}{n_k} \le x < \frac{m_k + 1}{n_k}, \quad \frac{p_k}{n_k} \le y < \frac{p_k + 1}{n_k}$$

and

(13)
$$-f(0)^{2} \cdot \left(\frac{a}{f(0)}\right)^{(m_{k}+p_{k})/n_{k}} \left(\left(\frac{a}{f(0)}\right)^{2/n_{k}}-1\right) \leq f(x)f(y) - f\left(\frac{x+y}{2}\right)^{2}$$
$$\leq f(0)^{2} \cdot \left(\frac{a}{f(0)}\right)^{(m_{k}+p_{k})/n_{k}} \left(\left(\frac{a}{f(0)}\right)^{2/n_{k}}-1\right),$$

 or

(14)
$$\left| f(x)f(y) - f\left(\frac{x+y}{2}\right)^2 \right| \le f(0)^2 \cdot \left(\frac{a}{f(0)}\right)^{(m_k+p_k)/n_k} \left(\left(\frac{a}{f(0)}\right)^{2/n_k} - 1 \right).$$

Taking into account Proposition 2 results $(k \to \infty, \, n_k \to \infty)$

$$f(x)f(y) - f\left(\frac{x+y}{2}\right)^2 = 0$$
, i.e. (1).

Now, we show that the function is strictly increasing on **R** if f(0) > 0. We assume that y > x. From (12) results $p_k/n_k > (m_k + 1)/n_k$ and

(15)
$$f(0)\left(\frac{a}{f(0)}\right)^{m_k/n_k} \le f(x) < f(0)\left(\frac{a}{f(0)}\right)^{(m_k+1)/n_k},$$
$$f(0)\left(\frac{a}{f(0)}\right)^{p_k/n_k} \le f(y) \le f(0)\left(\frac{a}{f(0)}\right)^{(p_k+1)/n_k}.$$

We have

(16)
$$0 < f(0) \left(\left(\frac{a}{f(0)} \right)^{p_k/n_k} - \left(\frac{a}{f(0)} \right)^{(m_k+1)/n_k} \right) < f(y) - f(x)$$
$$< f(0) \left(\left(\frac{a}{f(0)} \right)^{(p_k+1)/n_k} - \left(\frac{a}{f(0)} \right)^{m_k/n_k} \right),$$

hence 0 < f(y) - f(x) when y - x > 0, i.e. (2). Because

(17)
$$\frac{p_k - m_k - 1}{n_k} < y - x < \frac{p_k + 1 - m_k}{n_k} \text{ and } \lim_{k \to \infty} (y - x) = 0,$$

from Proposition 4 and (16), results

(18)
$$\lim_{k \to \infty} \left(f(y) - f(x) \right) = \lim_{y \to x} \left(f(y) - f(x) \right) = 0, \ \lim_{y \to x} f(y) = f(x), \text{ i.e.}$$

the function f is continuous on \mathbf{R} , (3).

Theorem 2. The function f is differentiable on \mathbf{R} and

(19)
$$f'(0) = \frac{f(0)}{x_0} \ln \frac{f(x_0)}{f(0)}, \quad x_0 \neq 0,$$

(20)
$$f'(x) = \frac{f'(0)}{f(0)} f(x),$$

(21)
$$f(x) = f(0) e^{x_0 f'(0)/f(0)}.$$

Proof. Taking into account (3) and

(22)
$$\lim_{n \to \infty} \frac{\left(\frac{f(x_0)}{f(0)}\right)^{1/2^n} - 1}{1/2^n} = \ln \frac{f(x_0)}{f(0)}, \ x_0 \neq 0$$

we have

$$f'(0) = \lim_{n \to \infty} \frac{f\left(\frac{x_0}{2^n}\right) - f(0)}{x_0/2^n} = \lim_{x_0/2^n \to 0} \frac{f(0)}{x_0} \cdot \frac{\left(\frac{f(x_0)}{f(0)}\right)^{1/2^n} - 1}{1/2^n} = \frac{f(0)}{x_0} \ln \frac{f(x_0)}{f(0)},$$

i.e. (19).

From

$$\frac{f(x-x_0) - f(0)}{x - x_0} = \frac{1}{f(x_0)} \frac{f(x/2) + f(x_0/2)}{2} \frac{f(x/2) - f(x_0/2)}{\frac{x - x_0}{2}}$$

we deduce

$$f'(x_0/2) = \lim_{x \to x_0} \frac{f(x/2) - f(x_0/2)}{\frac{x - x_0}{2}} = \frac{f'(0)}{f(x_0/2)} f(x_0) - \frac{f'(0)}{f(0)} f(x_0/2)$$

hence $f'(x) = \frac{f'(0)}{f(0)} f(x)$ i.e. (20).
From (19) results (21).

REMARK. The case f(0) < 0 results in f(x) < 0, $f : \mathbf{R} \to \mathbf{R} \setminus \{0\}$ and f is strictly decreasing and continuous on \mathbf{R} . The case f(0) = 0 results in f(x) = 0 for any $x \in \mathbf{R}$.

REFERENCES

- N. N. NEAMŢU: About some classical functional equation. Turkish Journal of Math., 22 (1) (1998), 119-126, Tübitak.
- 2. T. M. RASSIAS: *Functional equation and inequalities*. Kluver Academic Publishers, Dordrecht-Boston-London, 2000.
- 3. G. SIREŢCHI: *Calcul diferențial și integral*, I. Ed. Științificâ și Enciclopedicâ, București, 1985.

"Politehnica" University of Timişoara, Department of Mathematics, P-ţa. Regina Maria, 1, 1900 Timişoara, Romania (Received October 25, 2001)