# EXISTENCE AND UNIQUENESS OF THE SOLUTION FOR LOBACEVSKY'S FUNCTIONAL EQUATION 

Nicolae N. Neamtu<br>The purpose of this paper is to give a theorem for the existence and uniqueness of solution of LOBACEVSKY's functional equation and to effective find it.

Theorem 1. Let $f: \mathbf{R} \rightarrow \mathbf{R}, f(0)>0$ and strictly increasing at zero. Then there exists a unique function such that
(1) $\quad f(x) f(y)=f((x+y) / 2)^{2}$,
(2) $\quad f(x)$ is strictly increasing on $\mathbf{R}$ if $f(0)>0,0<f(0)<f(1)=0,1<a / f(0)$,
(3) $f$ is continuous function on $\mathbf{R}$.

At first we assume that the function $f$ exists and, we highlight some properties of this function.

## Proposition 1.

(i) If there exists $x_{0} \in \mathbf{R}$ such that $f\left(x_{0}\right)=0$, then $f(x)=0$ for any $x \in \mathbf{R}$.
(ii) $f(x) f(0)>0, \operatorname{sgn} f(x)=\operatorname{sgn} f(0)$.
(iii) $f(n x)=f(0)\left(\frac{f(x)}{f(0)}\right)^{n}, f(-n x)=(f(0))^{-1}\left(\frac{f(x)}{f(0)}\right)^{-n}$ for any $n \in \mathbf{N}$,
$f(k x)=f(0)\left(\frac{f(x)}{f(0)}\right)^{k}, k \in \mathbf{Z}, f\left(x / 2^{n}\right)=f(0)\left(\frac{f(x)}{f(0)}\right)^{1 / 2^{n}}, f(0)>0$.
(iv) $f(n)=f(0)\left(\frac{a}{f(0)}\right)^{n}, f(k)=f(0)\left(\frac{a}{f(0)}\right)^{k}, f\left(\frac{k}{2^{n}}\right)=f(0)\left(\frac{a}{f(0)}\right)^{1 / 2^{n}}, f(0)>0$.

Proof. From (1) it follows $f\left(2 x_{0}-x\right) f(x)=f\left(x_{0}\right)^{2}=0$, i.e. (i).
We have $f(x) f(0)=f(x / 2)^{2}$, i.e. (ii).
(iii) follows by induction.

In what follows we consider $f(0)>0$, which by (ii) implies $f(x)>0$.

[^0]Definition. [3] The function $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ (I - interval) is called strictly increasing (strictly decreasing) at $x_{0} \in I$ if there exist $\delta\left(x_{0}\right)>0$ so that

$$
\operatorname{sgn} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=1(-1) \text { for } 0<x<x_{0}<\delta
$$

Proposition 2. [3] Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a function. It is strictly monotonic if and only if it is strictly monotonic at every point of $I$.
Proposition 3. The solution $f, f(0) \neq 0$ is strictly monotonic on $\mathbf{R}$ iff it is strictly monotonic at zero.
Proof. Taking into account the Definition and Proposition 3 the implication $\Rightarrow$ is obvious. From (1) we get

$$
\begin{gathered}
\frac{f\left(x-x_{0}\right)-f(0)}{x-x_{0}}=\frac{1}{2 f\left(x_{0}\right)} \frac{f(x / 2)^{2}-f\left(x_{0} / 2\right)^{2}}{\frac{x-x_{0}}{2}} \text { for any } x, x_{0} \in \mathbf{R}, x \neq x_{0}, \text { i.e. } \\
\operatorname{sgn} \frac{f(x / 2)-f\left(x_{0} / 2\right)}{\frac{x-x_{0}}{2}}=\operatorname{sgn} \frac{f\left(x-x_{0}\right)-f(0)}{x-x_{0}}
\end{gathered}
$$

since according to (i), $\operatorname{sgn} \frac{2 f\left(x_{0}\right)}{f(x / 2)+f\left(x_{0} / 2\right)}=1$.
By the assumption, $f$ is strictly increasing (strictly decreasing) at zero, then there exists $\delta(0)>0$ such that $\operatorname{sgn} \frac{f\left(x-x_{0}\right)}{x-x_{0}}=1(-1)$ for $0<\left|x-x_{0}\right|<\delta$.

Hence $f(x)$ is a strictly increasing function on $\mathbf{R}$.
Now, we shall use the assumption (2) to draw the function $f$. We choose $n_{0}=1, n_{1}=2, n_{2}=2^{2}, \ldots, n_{k}=2^{k}$ and for given $k \in \mathbf{N}$, we find $m_{k} \in \mathbf{Z}$ such that

$$
\begin{equation*}
m_{k} \leq n_{k} x<m_{k}+1, \frac{m_{k}}{n_{k}} \leq x<\frac{m_{k}+1}{n_{k}} \tag{4}
\end{equation*}
$$

and by (2), (iv) and (4), we have

$$
\begin{equation*}
f(0)\left(\frac{a}{f(0)}\right)^{m_{k} / n_{k}} \leq f(x)<f(0)\left(\frac{a}{f(0)}\right)^{\left(m_{k}+1\right) / n_{k}} \tag{5}
\end{equation*}
$$

We show that

$$
\begin{align*}
\left(f(0)\left(\frac{a}{f(0)}\right)^{m_{k} / n_{k}}\right. & \left., f(0)\left(\frac{a}{f(0)}\right)^{\left(m_{k}+1\right) / n_{k}}\right)  \tag{6}\\
& \supset\left(f(0)\left(\frac{a}{f(0)}\right)^{m_{k+1} / n_{k+1}}, f(0)\left(\frac{a}{f(0)}\right)^{\left(m_{k+1}+1\right) / n_{k+1}}\right) .
\end{align*}
$$

From (4) results
(7) $2 m_{k} \leq 2 n_{k} x=n_{k+1} x<2\left(m_{k}+1\right), \quad \frac{2 m_{k}}{n_{k+1}} \leq x<\frac{2\left(m_{k}+1\right)}{n_{k+1}}, \quad \ell^{\prime}=\frac{2}{n_{k+1}}$,
(10) $\frac{m_{k}}{n_{k}}=\frac{2 m_{k}}{2 n_{k}}=\frac{2 m_{k}}{n_{k+1}}<\frac{m_{k+1}}{n_{k+1}}<\frac{m_{k+1}+1}{n_{k+1}}<\frac{2\left(m_{k}+1\right)}{n_{k+1}}=\frac{2\left(m_{k}+1\right)}{2 n_{k}}=\frac{m_{k}+1}{n_{k}}$.

Proposition 4. [3] Let $b>1, r \in \mathbf{Q}$ and $g(r)=b^{r}$ be a function. Then $g(r)$ is $a$ strictly increasing and continuous function.

Taking into account (10) and Proposition 2 results (6). In this way, the intervals

$$
\left(f(0)\left(\frac{a}{f(0)}\right)^{m_{k} / n_{k}}, f(0)\left(\frac{a}{f(0)}\right)^{\left(m_{k}+1\right) / n_{k}}\right)
$$

form a sequence of close and inclusive intervals and, by Cantor's principle, there exists a common point of all intervals and it is unique because the length $\rightarrow 0$ when $k \rightarrow \infty, n_{k} \rightarrow \infty$.

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \ell_{k}=\lim f(0) \cdot a^{m_{k} / n_{k}}\left(a^{1 / n_{k}}-1\right)=0 . \tag{11}
\end{equation*}
$$

We choose for $f(x)$ even the number which corresponds with this point.
In the following we show that the function $f$ satisfies (1). For any $x, y \in \mathbf{R}$ and for given $k \in \mathbf{N}$ corresponds $m_{k}$ and $p_{k} \in \mathbf{Z}$ such that

$$
\begin{equation*}
\frac{m_{k}}{n_{k}} \leq x<\frac{m_{k}+1}{n_{k}}, \quad \frac{p_{k}}{n_{k}} \leq y<\frac{p_{k}+1}{n_{k}} \tag{12}
\end{equation*}
$$

and

$$
\begin{gather*}
-f(0)^{2} \cdot\left(\frac{a}{f(0)}\right)^{\left(m_{k}+p_{k}\right) / n_{k}}\left(\left(\frac{a}{f(0)}\right)^{2 / n_{k}}-1\right) \leq f(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}  \tag{13}\\
\leq f(0)^{2} \cdot\left(\frac{a}{f(0)}\right)^{\left(m_{k}+p_{k}\right) / n_{k}}\left(\left(\frac{a}{f(0)}\right)^{2 / n_{k}}-1\right),
\end{gather*}
$$

or

$$
\begin{equation*}
\left|f(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}\right| \leq f(0)^{2} \cdot\left(\frac{a}{f(0)}\right)^{\left(m_{k}+p_{k}\right) / n_{k}}\left(\left(\frac{a}{f(0)}\right)^{2 / n_{k}}-1\right) . \tag{14}
\end{equation*}
$$

Taking into account Proposition 2 results $\left(k \rightarrow \infty, n_{k} \rightarrow \infty\right)$

$$
f(x) f(y)-f\left(\frac{x+y}{2}\right)^{2}=0, \text { i.e. }(1)
$$

Now, we show that the function is strictly increasing on $\mathbf{R}$ if $f(0)>0$. We assume that $y>x$. From (12) results $p_{k} / n_{k}>\left(m_{k}+1\right) / n_{k}$ and

$$
\begin{align*}
& f(0)\left(\frac{a}{f(0)}\right)^{m_{k} / n_{k}} \leq f(x)<f(0)\left(\frac{a}{f(0)}\right)^{\left(m_{k}+1\right) / n_{k}}  \tag{15}\\
& f(0)\left(\frac{a}{f(0)}\right)^{p_{k} / n_{k}} \leq f(y) \leq f(0)\left(\frac{a}{f(0)}\right)^{\left(p_{k}+1\right) / n_{k}}
\end{align*}
$$

We have

$$
\begin{align*}
0 & <f(0)\left(\left(\frac{a}{f(0)}\right)^{p_{k} / n_{k}}-\left(\frac{a}{f(0)}\right)^{\left(m_{k}+1\right) / n_{k}}\right)<f(y)-f(x)  \tag{16}\\
& <f(0)\left(\left(\frac{a}{f(0)}\right)^{\left(p_{k}+1\right) / n_{k}}-\left(\frac{a}{f(0)}\right)^{m_{k} / n_{k}}\right),
\end{align*}
$$

hence $0<f(y)-f(x)$ when $y-x>0$, i.e. (2).
Because

$$
\begin{equation*}
\frac{p_{k}-m_{k}-1}{n_{k}}<y-x<\frac{p_{k}+1-m_{k}}{n_{k}} \text { and } \lim _{k \rightarrow \infty}(y-x)=0 \tag{17}
\end{equation*}
$$

from Proposition 4 and (16), results

$$
\begin{equation*}
\lim _{k \rightarrow \infty}(f(y)-f(x))=\lim _{y \rightarrow x}(f(y)-f(x))=0, \lim _{y \rightarrow x} f(y)=f(x), \text { i.e. } \tag{18}
\end{equation*}
$$

the function $f$ is continuous on $\mathbf{R},(3)$.
Theorem 2. The function $f$ is differentiable on $\mathbf{R}$ and

$$
\begin{gather*}
f^{\prime}(0)=\frac{f(0)}{x_{0}} \ln \frac{f\left(x_{0}\right)}{f(0)}, \quad x_{0} \neq 0  \tag{19}\\
f^{\prime}(x)=\frac{f^{\prime}(0)}{f(0)} f(x)  \tag{20}\\
f(x)=f(0) e^{x_{0} f^{\prime}(0) / f(0)} \tag{21}
\end{gather*}
$$

Proof. Taking into account (3) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left(\frac{f\left(x_{0}\right)}{f(0)}\right)^{1 / 2^{n}}-1}{1 / 2^{n}}=\ln \frac{f\left(x_{0}\right)}{f(0)}, x_{0} \neq 0 \tag{22}
\end{equation*}
$$

we have

$$
f^{\prime}(0)=\lim _{n \rightarrow \infty} \frac{f\left(\frac{x_{0}}{2^{n}}\right)-f(0)}{x_{0} / 2^{n}}=\lim _{x_{0} / 2^{n} \rightarrow 0} \frac{f(0)}{x_{0}} \cdot \frac{\left(\frac{f\left(x_{0}\right)}{f(0)}\right)^{1 / 2^{n}}-1}{1 / 2^{n}}=\frac{f(0)}{x_{0}} \ln \frac{f\left(x_{0}\right)}{f(0)},
$$

i.e. (19).

From

$$
\frac{f\left(x-x_{0}\right)-f(0)}{x-x_{0}}=\frac{1}{f\left(x_{0}\right)} \frac{f(x / 2)+f\left(x_{0} / 2\right)}{2} \frac{f(x / 2)-f\left(x_{0} / 2\right)}{\frac{x-x_{0}}{2}}
$$

we deduce

$$
f^{\prime}\left(x_{0} / 2\right)=\lim _{x \rightarrow x_{0}} \frac{f(x / 2)-f\left(x_{0} / 2\right)}{\frac{x-x_{0}}{2}}=\frac{f^{\prime}(0)}{f\left(x_{0} / 2\right)} f\left(x_{0}\right)-\frac{f^{\prime}(0)}{f(0)} f\left(x_{0} / 2\right)
$$

hence $f^{\prime}(x)=\frac{f^{\prime}(0)}{f(0)} f(x)$ i.e. (20).
From (19) results (21).
Remark. The case $f(0)<0$ results in $f(x)<0, f: \mathbf{R} \rightarrow \mathbf{R} \backslash\{0\}$ and $f$ is strictly decreasing and continuous on $\mathbf{R}$. The case $f(0)=0$ results in $f(x)=0$ for any $x \in \mathbf{R}$.

## REFERENCES

1. N. N. Neamţu: About some classical functional equation. Turkish Journal of Math., 22 (1) (1998), 119 -126, Tübitak.
2. T. M. Rassias: Functional equation and inequalities. Kluver Academic Publishers, Dordrecht-Boston-London, 2000.
3. G. Sireţchi: Calcul diferenţial şi integral, I. Ed. Ştiinţificâ şi Enciclopedicâ, Bucureşti, 1985.
"Politehnica" University of Timişoara,

[^0]:    2000 Mathematics Subject Classification: 34K06
    Keywords and Phrases: Lobacevsky functional equation.

