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EXISTENCE AND UNIQUENESS
OF THE SOLUTION FOR LOBACEVSKY’S

FUNCTIONAL EQUATION

Nicolae N. Neamţu

The purpose of this paper is to give a theorem for the existence and unique-
ness of solution of Lobacevsky’s functional equation and to effective find
it.

Theorem 1. Let f : R → R, f(0) > 0 and strictly increasing at zero. Then there
exists a unique function such that

(1) f(x)f(y) = f
(
(x + y)/2

)2
,

(2) f(x) is strictly increasing on R if f(0) > 0, 0 < f(0) < f(1) = 0, 1 < a/f(0),

(3) f is continuous function on R.
At first we assume that the function f exists and, we highlight some properties

of this function.

Proposition 1.

(i) If there exists x0 ∈ R such that f(x0) = 0, then f(x) = 0 for any x ∈ R.

(ii) f(x)f(0) > 0, sgn f(x) = sgn f(0).

(iii) f(nx) = f(0)
(f(x)

f(0)

)n

, f(−nx) =
(
f(0)

)−1
(f(x)

f(0)

)−n

for any n ∈ N,

f(kx) = f(0)
(f(x)

f(0)

)k

, k ∈ Z, f(x/2n) = f(0)
(f(x)

f(0)

)1/2n

, f(0) > 0.

(iv) f(n)=f(0)
( a

f(0)

)n

, f(k)=f(0)
( a

f(0)

)k

, f
( k

2n

)
=f(0)

( a

f(0)

)1/2n

, f(0) > 0.

Proof. From (1) it follows f(2x0 − x)f(x) = f(x0)2 = 0, i.e. (i).
We have f(x)f(0) = f(x/2)2, i.e. (ii).
(iii) follows by induction.
In what follows we consider f(0) > 0, which by (ii) implies f(x) > 0.
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Definition. [3] The function f : I ⊆ R → R (I - interval) is called strictly
increasing (strictly decreasing) at x0 ∈ I if there exist δ(x0) > 0 so that

sgn
f(x)− f(x0)

x− x0
= 1 (−1) for 0 < x < x0 < δ.

Proposition 2. [3] Let f : I ⊆ R → R be a function. It is strictly monotonic if
and only if it is strictly monotonic at every point of I.

Proposition 3. The solution f, f(0) 6= 0 is strictly monotonic on R iff it is strictly
monotonic at zero.

Proof. Taking into account the Definition and Proposition 3 the implication ⇒
is obvious. From (1) we get

f(x− x0)− f(0)
x− x0

=
1

2f(x0)
f(x/2)2 − f(x0/2)2

x− x0

2

for any x, x0 ∈ R, x 6= x0, i.e.

sgn
f(x/2)− f(x0/2)

x− x0

2

= sgn
f(x− x0)− f(0)

x− x0
,

since according to (i), sgn
2f(x0)

f(x/2) + f(x0/2)
= 1.

By the assumption, f is strictly increasing (strictly decreasing) at zero, then

there exists δ(0) > 0 such that sgn
f(x− x0)

x− x0
= 1 (−1) for 0 < |x− x0| < δ.

Hence f(x) is a strictly increasing function on R.
Now, we shall use the assumption (2) to draw the function f. We choose

n0 = 1, n1 = 2, n2 = 22, . . . , nk = 2k and for given k ∈ N, we find mk ∈ Z such
that

(4) mk ≤ nkx < mk + 1,
mk

nk
≤ x <

mk + 1
nk

and by (2), (iv) and (4), we have

(5) f(0)
( a

f(0)

)mk/nk ≤ f(x) < f(0)
( a

f(0)

)(mk+1)/nk

.

We show that

(6)
(

f(0)
( a

f(0)

)mk/nk

, f(0)
( a

f(0)

)(mk+1)/nk
)

⊃
(

f(0)
( a

f(0)

)mk+1/nk+1

, f(0)
( a

f(0)

)(mk+1+1)/nk+1
)

.

From (4) results

(7) 2mk ≤ 2nkx = nk+1x < 2 (mk + 1),
2mk

nk+1
≤ x <

2 (mk + 1)
nk+1

, `′ =
2

nk+1
,



68 Nicolae N. Neamţu

(8)
mk+1

nk+1
≤ x <

mk+1 + 1
nk+1

, `′′ =
1

nk+1
=

1
2

`′

2mk

nk+1

mk+1

nk+1

mk+1 + 1

nk+1

2(mk + 1)

nk+1
x

(9)
2mk

nk+1
<

mk+1

nk+1
<

mk+1 + 1
nk+1

<
2 (mk + 1

nk+1

(10)
mk

nk
=

2mk

2nk
=

2mk

nk+1
<

mk+1

nk+1
<

mk+1 + 1

nk+1
<

2 (mk + 1)

nk+1
=

2 (mk + 1)

2nk
=

mk + 1

nk
.

Proposition 4. [3] Let b > 1, r ∈ Q and g(r) = br be a function. Then g(r) is a
strictly increasing and continuous function.

Taking into account (10) and Proposition 2 results (6). In this way, the
intervals (

f(0)
( a

f(0)

)mk/nk

, f(0)
( a

f(0)

)(mk+1)/nk
)

form a sequence of close and inclusive intervals and, by Cantor’s principle, there
exists a common point of all intervals and it is unique because the length → 0 when
k →∞, nk →∞.

(11) lim
k→∞

`k = lim f(0) · amk/nk
(
a1/nk − 1

)
= 0.

We choose for f(x) even the number which corresponds with this point.
In the following we show that the function f satisfies (1). For any x, y ∈ R

and for given k ∈ N corresponds mk and pk ∈ Z such that

(12)
mk

nk
≤ x <

mk + 1
nk

,
pk

nk
≤ y <

pk + 1
nk

and

(13) −f(0)2 ·
( a

f(0)

)(mk+pk)/nk
(( a

f(0)

)2/nk − 1
)
≤ f(x)f(y)− f

(x + y

2

)2

≤ f(0)2 ·
( a

f(0)

)(mk+pk)/nk
(( a

f(0)

)2/nk − 1
)

,

or

(14)
∣∣∣f(x)f(y)− f

(x + y

2

)2∣∣∣ ≤ f(0)2 ·
( a

f(0)

)(mk+pk)/nk
(( a

f(0)

)2/nk − 1
)

.
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Taking into account Proposition 2 results (k →∞, nk →∞)

f(x)f(y)− f
(x + y

2

)2

= 0, i.e. (1).

Now, we show that the function is strictly increasing on R if f(0) > 0. We
assume that y > x. From (12) results pk/nk > (mk + 1)/nk and

(15)
f(0)

( a

f(0)

)mk/nk ≤ f(x) < f(0)
( a

f(0)

)(mk+1)/nk

,

f(0)
( a

f(0)

)pk/nk ≤ f(y) ≤ f(0)
( a

f(0)

)(pk+1)/nk

.

We have

(16)
0 < f(0)

(( a

f(0)

)pk/nk −
( a

f(0)

)(mk+1)/nk
)

< f(y)− f(x)

< f(0)
(( a

f(0)

)(pk+1)/nk −
( a

f(0)

)mk/nk
)

,

hence 0 < f(y)− f(x) when y − x > 0, i.e. (2).
Because

(17)
pk −mk − 1

nk
< y − x <

pk + 1−mk

nk
and lim

k→∞
(y − x) = 0,

from Proposition 4 and (16), results

(18) lim
k→∞

(
f(y)− f(x)

)
= lim

y→x

(
f(y)− f(x)

)
= 0, lim

y→x
f(y) = f(x), i.e.

the function f is continuous on R, (3).

Theorem 2. The function f is differentiable on R and

(19) f ′(0) =
f(0)
x0

ln
f(x0)
f(0)

, x0 6= 0,

(20) f ′(x) =
f ′(0)
f(0)

f(x),

(21) f(x) = f(0) ex0f ′(0)/f(0).

Proof. Taking into account (3) and

(22) lim
n→∞

(f(x0)
f(0)

)1/2n

− 1

1/2n
= ln

f(x0)
f(0)

, x0 6= 0
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we have

f ′(0) = lim
n→∞

f
(x0

2n

)
− f(0)

x0/2n
= lim

x0/2n→0

f(0)
x0

·

(f(x0)
f(0)

)1/2n

− 1

1/2n
=

f(0)
x0

ln
f(x0)
f(0)

,

i.e. (19).
From

f(x− x0)− f(0)
x− x0

=
1

f(x0)
f(x/2) + f(x0/2)

2
f(x/2)− f(x0/2)

x− x0

2

we deduce

f ′(x0/2) = lim
x→x0

f(x/2)− f(x0/2)
x− x0

2

=
f ′(0)

f(x0/2)
f(x0)− f ′(0)

f(0)
f(x0/2)

hence f ′(x) =
f ′(0)
f(0)

f(x) i.e. (20).

From (19) results (21).

Remark. The case f(0) < 0 results in f(x) < 0, f : R → R \ {0} and f is strictly
decreasing and continuous on R. The case f(0) = 0 results in f(x) = 0 for any
x ∈ R.

REFERENCES
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