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SOME RELATIONS AND SUBSETS
GENERATED BY PRINCIPAL CONSISTENT

SUBSET OF SEMIGROUP WITH APARTNESS

Daniel Abraham Romano

The investigation is in the Constructive algebra in the sense of E. Bishop,
F. Richman, W. Ruitenburg, D. van Dalen and A. S. Troelstra. Al-
gebraic structures with apartness the first were defined and studied by A.
Heyting. After that, some authors studied algebraic structures in con-
structive mathematics as for example: D. van Dalen, E. Bishop, P. T.
Johnstone, A. Heyting, R. Mines, J. C. Mulvey, F. Richman, D. A.
Romano, W. Ruitenburg and A. Troelstra. This paper is one of articles
in their the author tries to investigate semugroups with apartnesses. Relation
q on S is a coequality relation on S if it is consistent, symmetric and cotran-
sitive; coequality relation is generalization of apatness. The main subject of
this consideration are characterizations of some coequality relations on semi-
group S with apartness by means od special ideals J(a) = {x ∈ S : a # SxS},
principal consistent subsets C(a) = {x ∈ S : x # SaS} (a ∈ S) of S and by
filled product of relations on S.

Let S = (S, =, 6=, ·, 1) be a semigroup with apartness. As preliminaries
we will introduce some special notions, notations and results in set theory,
commutative ring theory and semigroup theory in constructive mathematics
and we will give proofs of several general theorems in semigroup theory. In
the next section we will introduce relation s on S by (x, y) ∈ s iff y ∈ C(x)

and we will describe internal filfulments c(s ∪ s−1) and c(s ∩ s−1) and their
classes A(a) = ∩An(a) and K(a) = ∩Kn(a) respectively. We will give the
proof that the set K(a) is maximal strongly extensional consistent ideal of
S for every a in S. Before that, we will analyze semigroup S with relation
q = c(s ∪ s−1) in two special cases: (i) the relation q is a band coequality
relation on S : (ii) q is left zero band coequality relation on S. Beside that,
we will introduce several compatible equality and coequality relations on S
by sets A(a), An(a), K(a) and Kn(a).
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0. INTRODUCTION

There are several books on algebraic structures in constructive mathematics
in the sense of Bishop, van Dalen, Richman and Ruitenburg as for example:

(i) Intuitionistic algebra by W. Ruitenburg (University of Utrecht, 1982);
(ii) Constructive mathematics by F. Richman (editor) (Springer lecture notes

in mathematics, 873);
(iii) A course on constructive algebra by R. Mines, F. Richman and W.

Ruitenburg (Springer, 1988);
(iv) Constructivism in mathematics, An introduction: Volume II (Chapter

VIII: Algebra) by A. S. Troelstra and D. van Dalen (North-Holand, 1988).
This author studied constructive set theory ([3], [5], [9], [10], [14], [15] and

others), constructive commutative ring theory ([9], [11], [12], [13] and others) and
constructive semigroup theory ([6], [16] and several articles forthcoming). This
paper is one of articles in it the author tries to investigate semigroup with apartness.

Let S = (S, =, 6=) be a set with apartness. Relation q on S is a coequality
relation if it consistent, symmetric and cotransitive. Coequality relation is generali-
zation of apartness. In the part 1.1 of preliminaries we will give several assertions
on coequality relation. Besides, we will describe some properties of filled product
of relations as for example internel filfullment c(r) of given relation r on S. Filled
product of relations the first was defined and studied by the author (1996). We
will recall the theorem on existence of maximal coequality relation compatible with
given equality relation. Examples I contained some examples of coequality rela-
tions. In the part 1.2 we will describe some properties of commutative ring S with
apartness. Coideals of commutative ring with apartness the first were defined and
studied by W. Ruitenburg (1982). This author proved in his paper [9], if T is a
coideal of S, then relation q on S, defined by (x, y) ∈ q ⇔ x−y ∈ T, is a coequality
relation on S compatible with the ring operations. In the Examples II we will show
several examples of coideals. Part 1.3 of preliminaries contained notions, notations
and some general results on semigroup with apartness: we will introduce notion
of cocongruence on semigroup as coequality relation compatible with semigroup
operation and we will give several theorems on anticongruence in semigroup with
apartness as for example on construction of factor-semigroup. Beside that, we give
a construction of anticongruence q∗ on semigroup S by given coequality relation q.
This anticongruence q∗ is minimal extension of q. Finally, we will give proof that
the set C(a) = {x ∈ S : x# SaS} is a consistent subset of S generated by element
a of S such that a#C(a) and we will describe its basic properties.

Section 2 contained the main results of this paper. In the part 2.1 we will
describe (Theorem 7 and Theorem 8 and their corollaries) relation c(s ∪ s−1),
its classes A(a) (s ∈ S) and semigroup S in two special cases (Theorem 9 and
Theorem 10). In the part 2.2 we will describe relation q2 = c(s ∩ s−1) and its
classes K(a) (a ∈ S) : (i) relation q is anticongruence on S such that the factor-
semigroup S/(q, q) is semilattice (Theorem 12); (ii) the set K(a) is a maximal
strongly extensional consistent ideal of S such that a#K(a) (Theorem 13 and
Corollary 13.0). The section 3 are references.
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1. PRELIMINARIES

1.1. Equality and coequality on set with apartness

Let (X, =, 6=) be a set in the sense of Bishop ([1]), Mines ([6]), Troelstra
and van Dalen ([17]), where 6= is a binary relation on X which satisfies the
following properties

¬(x 6= x), x 6= y ⇒ y 6= x, x 6= z ⇒ x 6= y ∨ y 6= z, x 6= y ∧ y = z ⇒ x 6= z

called apartness (A. Heyting). Let Y be a subset of X and x ∈ X. By x#Y we
denote (∀y ∈ Y ) (y 6= x) and by Y we denote subset {x ∈ X : x#Y } ([9], [14]).
The subset X of Y is strongly extensional in X if and only if y ∈ Y ⇒ y 6= x∨x ∈ Y.
Let f : X → Y be a function of sets with apartnesses. f is strongly extensional ([1],
17]) if f(x) 6= f(y) implies x 6= y and f is an embedding ([16], 17], [18]) if x 6= y
implies f(x) 6= f(y). A relation q on X is a coequality relation on X ([3], [14]) if
and only if
(1) (∀x ∈ X)

(
(x, x)#q

) (
consistent ([7])

)
,

(2) (∀x, y ∈ X)
(
(x, y) ∈ q ⇒ (x, y) ∈ q

)
(symmetric),

(3) (∀x, y, z ∈ X)
(
(x, z) ∈ q ⇒ (y, z) ∈ q ∨ (y, z) ∈ q

)
(cotransitive

(
[7])

)
.

Examples I:

(1) The relation ¬(=) is an apartness on the set Z of integers.

(2) ([7], Theorem II, 3.2). The relation q, defined on the set QN by

(f, g) ∈ q ⇔ (∃k ∈ N)(∃n ∈ N)(m ≥ n ⇒ |f(m)− g(m)| > k−1),

is a coequality relation.

(3) ([7], page 98–99) A ring R is a local ring if for each r ∈ R, either r or 1− r is a unit,
and let M be a module over R. The relation q on M, defined by (x, x) ∈ q if there exists
a homomorphism f : M → R such that f(x− y) is a unit, is a coequality relation on M.

(4) ([10], Theorem 4) Let T be a set and J be a subfamily of P (T ) such that ∅ ∈ J , A ⊆
B ∧ B ∈ J ⇒ A ∈ J , A ∩ B ∈ J ⇒ A ∈ J ∨ B ∈ J . If (Xt)t∈T is a family of sets, then
the relation q on ΠXt, defined by (f, g) ∈ q ⇔ {s ∈ T : f(s) = g(s)} ∈ J , is a coequality
relation on the Cartesian product ΠXt.

(5) Let f : R3×R3×R3 → R be defined by f(a,b, c) = det (a,b, c). Then the relation
q, defined by

(a,b, c) q(x,y, z) ⇔ f(a,b, c)f(x,y, z) < 0,

as a coequality relation on the set of linearly independent vectors.

(6) If a and b are coequality relations on a set X, then the relation a ∪ b is a coequality

relation on X.

Coequality relation was first defined and studied by M. Božić and D. A.
Romano (1985) in their paper [3] as generalization of apartness. After that, co-
equality relation on set with apartness was studied by the author on several his
papers ([5], [10], [14], [15]). The first we recall the following theorems:
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Theorem 0.1. ([3], [14]) Let q be a coequality relation on a set X. Then there the
subfamily X/q = {aq : a ∈ X} of P (X) such that

(4) (∀a ∈ X)(∃A ∈ X/q)(a#A),

(5) (∀B ∈ X/q)(∃b ∈ X)(b#B),

(6) (∀A,B ∈ X/q)(∃A 6= B ⇒ A ∪B = X).

Corollary 0.1.1. Let q be a coequality relation on a set X and let a be an element
of X. The set aq is a strongly extensional subset of X such that a#aq.

Proof. Let q be a coequality relation, x be an element of aq and let y be an arbitrary
element of X. (a, x) ∈ q implies (a, y) ∈ q ∨ (y, x) ∈ q. Thus y ∈ aq ∨ y 6= x by (1),
i.e. the set aq is a strongly extensional subset of X and, by (4), holds a#aq. ut

Theorem 0.2. ([3], [14]) Let V be a subfamily of P (X) such that it satisfies the
conditions (4)− (6) of the theorem 0.1. Then the relation q(V ) on X, defined by

(x, y) ∈ q(V ) ⇔ (∃Y ∈ V )(x ∈ Y ∧ y#Y ),

is a coequality on X.

A family V of subsets of X is an antipartition on X if and only if V satisfies
the conditions (4)–(6). The next theorem shows that if we generate an antipartition
by means of a coequality relation q, then the coequality relation generated by the
antipartition is simply q again; and similarly if we begin with the coequality relation
generated by an antipartition, this relation generates the given antipartition.

Theorem 0.3 ([15]) Let C(X) = {c : c is a coequality relation on X} and P (X) =
{Z : Z is an antipartition on X}. Then q(X/c) = c for every c ∈ C(X) and
X/q(P ) = P for every P ∈ P (X).

Let X be a set with apartness and let f, g be relations on X. The filled ([5],
[13], [14]) product of the relation f and the relation g is the relation g ∗ f defined
by

g ∗ f = {(x, z) ∈ X ×X : (∀y ∈ X)((x, y) ∈ f ∨ (y, z) ∈ g)}.
The filled product is associative. The product g ∗ f is nonempty if and only if
D(g) ∪ R(f) = X. For n (≥ 2) let nf = f ∗ · · · ∗ f (n factors). Put 1f = f. By
c(f) we denote the intersection

⋃
n∈N

n
f. In the following theorem we give a very

important property of this intersection.

Theorem 0.4. ([14]). Let f be a relation on a set X with apartness. Then the
relation c(f) is a cotransitive relation on X.

It is easily to see that two following lemmas hold.

Lemma 0.4.1. c (f−1) = c (f)−1.
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Proof. (i) Assume that (x, y) ∈ n(f−1) ⇒ (y, x) ∈ nf for every x, z in X. Then

(x, y) ∈ n+1(f−1) ⇔ (∀t ∈ S)((x, t) ∈ n(f−1) ∨ (t, y) ∈ f−1)
⇔ (∀t ∈ S)((y, t) ∈ f ∨ (t, x) ∈ nf)
⇔ (y, x) ∈ n+1f.

Therefore, by induction, we have (x, y) ∈ c (f−1) ⇒ (x, y) ∈ c (f)−1.

(ii) Let (x, y) ∈ c (f)−1, i.e. let (y, x) ∈ c (f). Then (y, x) ∈ c ((f−1)−1) ⊆
c (f−1)−1 by (i), and (x, y) ∈ c (f−1). So, c (f)−1 ⊆ c (f−1). ut

Lemma 0.4.2. f ⊆ g ⇒ c (f) ⊆ c (g).

Proof. It is clear that (x, y) ∈ c (f) ⇒ (x, y) ∈ g. Suppose that (x, y) ∈ c (f) ⊆ nf
implies (x, y) ∈ ng for every x, y in X. If (x, y) ∈ c (f), then (x, y) ∈ n+1f, i.e. then
(∀t ∈ X)((x, t) ∈ nf ∨ (t, y) ∈ f). Thus (x, t) ∈ ng or (t, y) ∈ g for every t in X by
hypothesis. So, (x, y) ∈ n+1g. By induction, we have (x, y) ∈ c (g). ut

If f is a relation on a set X, the relation c (f) is called internal filfullment of
f. As corollaries of above theorem we have the following results:

Theorem 0.5. ([14]) Let f be a relations on set X. Then the relations a =
c ((f ∪ f−1)∩ 6=) and b = c (f ∩ f−1∩ 6=) are coequality relations on X and holds
b ⊆ a.

Corollary 0.5.1. ([5], [14]) Let e be an equality relation on a set X with apartness.
Then the relation c (e) is a maximal coequality relation on X such that

(∀x, y, z ∈ X)((x, y) ∈ e ∧ (y, z) ∈ c (e) ⇒ (x, z) ∈ c (e)).

Some more on coequality relations on sets with apartness readers can fined
in author’s survey paper [14].

1.2. Ideals and coideals of ring with apartness

Previous contemplation are motivated by the following facts.
Let (R, =, 6=,+, 0, ·, 1) be a commutative ring with apartness. A subset Q of

R is a coideal of R if

0#Q, −x ∈ Q ⇒ x ∈ Q, x + y ∈ Q ⇒ x ∈ Q ∨ y ∈ Q, xy ∈ Q ⇒ x ∈ Q ∧ y ∈ Q.

Coideals of commutative ring with apartness were first defined and studied
by W. Ruitenburg 1982 ([17]). After that, coideals (anti-ideals) studied by A.
S. Troelstra and D. van Dalen in their monograph [18]. The author proved,
in his paper [9], if Q is a coideal of a ring R, then the relation q on R, defined by
(x, z) ∈ q ⇔ x− y ∈ Q, satisfies the following properties:
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Theorem 0.6. ([9], Proposition 2.5)
(7) q is a coequality relation on R,
(8) (∀x, y, u, v ∈ R)((x + u, y + v) ∈ q ∨ (u, v) ∈ q),
(9) (∀x, y, u, v ∈ R)((xu, yv) ⇒ (x, y) ∈ q ∨ (u, v) ∈ q).

A relation q on R which satisfies the properties (7)–(9) is called anticongru-
ence on R (9]). If q is an anticongruence on a ring R, then the set {x ∈ R : (x, 0) ∈
q} is coideal of R ([9]). Let J be an ideal of R and Q is coideal of R Wim Ruiten-
burg, in his dissertation ([17], page 33) first stated a demand that J ⊆ ¬Q. This
condition is equivalent with the following condition

(10) (∀x, y ∈ R)(x ∈ J ∧ y ∈ Q ⇒ x + y ∈ Q).

In this case we say that they are compatible ([9]) and we can construct the
quotient-ring R/(J,Q). Wim Ruitenburg, in his dissertation, first stated question
on existence an ideal J or R compatible with given coideal Q and question on
existence of a coideal Q of R compatible with given ideal J. If e is a congruence on
R, determined by the ideal J, and if q is an anticongruence on R, determined by
the coideal Q, then J and Q are compatible if and only if

(11) (∀x, y, z ∈ R)((x, y) ∈ e ∧ (y, z) ∈ q ⇒ (x, z) ∈ q).

In this case we say that e and q are compatible ([9]).
More on constructive commutative ring theory the reader can find in the book

[7] and in the Johnstone’s paper [4] and the author’s papers [9], [11], [12] and
[13].

Examples II:

(1) Let R = (R, =, 6=, +, 0, ·, 1) be a commutative ring with apartness. Then the sets ∅
and R0 = {x ∈ R : x 6= 0} are coideals of R. Let a be an element of the ring R. Then the
sets Ann (a) and Cann (a) = {x ∈ R : ax 6= 0} are compatible an ideal and coideal of R.

(2) Let m and i ∈ {1, 2, . . . , n} be integers. We set mZ + i = {mz + i : z ∈ Z}. Then the
set ∪{mZ + i : i ∈ {1, . . . , m− 1}} is a coideal of the ring Z.

(3) Let K be a Richman field and x be an unknown variable under K. Then the set
C = {f ∈ K[x] : f(0) 6= 0} is a coideal of the ring K[x].

(4) Let R be a commutative ring with apartness. Then the set B = Rn be a commutative
ring with apartness. For n ∈ N, the set Mn = {f ∈ B : f(n) 6= 0} is a coideal of B.

(5) ([9]) Let R be a local ring. Then the set M = {a ∈ R : (∃x ∈ R)(ax = 1)} is a coideal
of R.

(6) ([11]) Let S be a coideal of a ring and let X be a subset of R. Then the set [S : X] =
{a ∈ R : (∃x ∈ X)(ax ∈ S)} is a coideal of R.

(7) ([12]) Let H be a nonempty family of inhabited subsets of T. Then the set S(H) =
{r ∈ ΠRt : (∃A ∈H)(A ∩ Z(r) 6= ∅}, where Z(r) = {t ∈ T : r(t) 6= 0}, is a coideal of the
product ΠRt.
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(8) ([11]) Let Q be a coideal of a ring R. Then the set cr (Q) = {a ∈ R : (∀n ∈ N)(an ∈
Q)} is a coideal of R. If J is an ideal of R compatible with Q, then cr (Q) is compatible
with the radical r(J).

(9) If S and T are coideals of a ring R, then the set S ∪ T is a coideal of R.

1.3. Equality and coequality relations on semigroup

Let S = (S, =, 6=, ·, 1) be a semigroup with apartness and where the semigroup
operation is strongly extensional in the next sense

(12) (∀a, b, x, y ∈ S)(ay 6= by ⇒ a 6= b ∧ xa 6= xb ⇒ a 6= b).

It is equivalent with the following condition

(13) (∀a, b, x, y ∈ S)(ax 6= by ⇒ a 6= b ∧ x 6= y).

A subset T of S is a consistent subset of S ([2]) (or a coideal of S) if and only
if

(14) (∀x, y ∈ S)(xy ∈ T ⇒ x ∈ T ∧ y ∈ T ).

A subset T of S is completely semiprime ([2]) subset of S if x2 ∈ T ⇒ x ∈
T (x ∈ S), and the T is completely prime ([2]) subset of S if xy ∈ T ⇒ x ∈ T ∨y ∈
T (x, y ∈ S). The ideal is completely semiprime (completely prime) ideal of S ([2])
if it is completely semiprime (completely prime) subset of S. Let T be a consistent
subset (coideal) of a semigroup S. T is a filter of S if T is a subsemigroup of S ([2]);
T is a semifilter of S if and only if (∀x ∈ S)(x ∈ T ⇒ x2 ∈ T ).

Examples III ([16]): Let e be an idempotent of a semigroup S with apartness. Then

(1) A(e) = {a ∈ S : ae 6= a} is a strongly extensional right consistent subset of S.

(2) B(e) = {b ∈ S : eb 6= b} is a strongly extensional left consistent subset of S.

(3) X(e) = {a ∈ S : e#Sa} is a strongly extensional left ideal of S.

(4) Y (e) = {b ∈ S : e#bS} is a strongly extensional right ideal of S.

(5) Z(e) = {x ∈ S : e#SxS} is a strongly extensional ideal of S.

(6) The set M(e) = A(e)∪B(e)∪X(e)∪Y (e) is a strongly extensional completely prime

subset of S.

Examples IV: (1) Let R be a set of reals. Then the set S = [0, 1] is a semigroup with
apartness under the usual multiplication. Further, the set J = [0, 1/2〉 is an ideal of S
and the sets Q = [1/2, 1] and T = 〈0, 1] are consistent subsets of S, and the set T is a
filter of S.

(2) Let S = (S, =, 6=, ·, 1) be a semigroup with apartness and let a be an element of S.
Then the set I(a) = {x ∈ S : a ∈ SxS} is consistent subset of S. This immediately follows
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from the inclusion SxyS ⊆ SxS ∩ SyS. Besides, the following a ∈ I(b) ⇔ b ∈ J(a) holds.
The relation t on S, defined by (a, b) ∈ t ⇔ b ∈ I(a), is a reflexive and transitive relation
on S.

(3) The set J(a) = {x ∈ S : a#SxS} (a ∈ S) is an ideal of a semigroup S with apartness
such that a#J(a).

(4) Let S = (N, =, ·, 1). Then: (a) J(n) = nN; (b) J(n) = {n + 1, n + 2, . . .}; (c)

C(n) = N \ nN; (d) I(n) = {x ∈ N : (∃y ∈ N)(n = xy)}.
A coequality relation q on a semigroup S with apartness is called anticongru-

ence or coequality relation compatible with the semigroup operation on S if and
only if

(15) (∀a, b, x, y ∈ S)((ax, by) ∈ q ⇒ (a, b) ∈ q ∨ (x, y) ∈ q).

We start with the following theorem in which we give a very important pro-
perty of anticongruence q on a semigroup S.

Theorem 1. Let q be an anticongruence on a semigroup S with apartness. Then
the relation q is a congruence on S compatible with q.

Proof. It is true that =⊆ q and that q is symmetric. We need to prove that is
transitive. Let (x, y)#q and (y, z)#q and let (u, v) be an arbitrary element of q.
Then (u, x) ∈ q ∨ (x, y) ∈ q ∨ (y, z) ∈ q ∨ (z, v) ∈ q. From here follows u 6= x or
z 6= v. So, (u, v) 6= (x, z) and (x, z)#q.

Suppose that (a, b)#q and (x, y)#q. Let (u, v) be an arbitrary element of q.
Then (u, ax) ∈ q∨(ax, by) ∈ q∨(by, v) ∈ q. Thus we have u 6= ax or by 6= v because
(ax, by) ∈ q implies (a, b) ∈ q or (x, y) ∈ q what is impossible. So, (ax, by)#q. ut

As corollary of above theorem we can construct the quotient-semigroup S/(q, q) =
{aq : a ∈ S}
Theorem 2. If q is an anticongruence on a semigroup S with apartness, then the
set S/(q, q) is a semigroup with

aq = bq ⇔ (a, b)#q, aq ⇔ (a, b) ∈ q, aq · bq = abq.

Proof. Let aq = xq and bq = yq, i.e. let (a, x)#q and (b, y)#q. Let (u, v) be
an arbitrary element of q. Then (u, ab) ∈ q or (ab, xy) ∈ q or (xy, v) ∈ q. Thence
u 6= ab ∨ (a, x) ∈ q ∨ (b, y) ∈ q ∨ xy 6= v and, by hypothesis, (u, v) 6= (ab, xy). So,
(ab, xy)#q.

Suppose that abq 6= xyq, i.e. suppose that (ab, xy) ∈ q. Then (a, x) ∈ q ∨
(b, y) ∈ q. Therefore, aq 6= xq or bq 6= yq. So, the semigroup operation is strongly
extensional.

Finally, we have aq · (bq · cq) = aq · bcq = a(bc)q = (ab)cq = abq · cq =
(aq · bq) · cq. ut

Beside that, we have the statement that the family S/q = {aq : a ∈ S} is a
semigroup.
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Theorem 3. Let q be an anticongruence on a semigroup S with apartness. Then
the set S/q is a semigroup with

aq = bq ⇔ (a, b)#q, aq 6= bq ⇔ (a, b) ∈ q, aq · bq = abq.

Proof. Let aq = xq and bq = yq. Suppose that s ∈ qbq, i.e. suppose that
(ab, s) ∈ q. Then (ab, xy) ∈ q or (xy, s) ∈ q. Thus, by compatibility of q with the
semigroup operation, we have (a, x) ∈ q∨(by) ∈ q∨(xy, s) ∈ q. So, s ∈ xyq because
x#xq = aq and y#yq = bq. Therefore, we have abq ⊆ xyq. Similarly xyq ⊆ abq.

Let abq 6= xyq. Then (ab, xy) ∈ q. Thus (a, x) ∈ q ∨ (b, y) ∈ q. So, aq 6= xq or
bq 6= yq.

Finally, we have xq · (yq · zq) = xq · (yzq) = x(yz)q = (xy)zq = xyq · zq =
(xq · yq) · zq. ut

Corollary 3.0. Let q be an anticongruence on a semigroup S with apartness.
There exists a strongly extensional and embedding isomorphism θ : S/(q, q) → S/q.

Proof. From (i) aq = bq ⇔ (a, b)#q ⇔ aq = bq; (ii) aq 6= bq ⇔ (a, b) ∈ q ⇔ aq 6=
bq; (iii) θ(aq · bq) = θ(abq) = abq = aq · bq. We conclude that the map θ is strongly
extensional and embedding isomorphism of semigroups. ut

Theorem 3 implies very interesting corollary:

Corollary 3.1. Let q be an anticongruence on a semigroup S with apartness.
Then the map p : S → S/q, defined by p(x) = xq (x ∈ S), is a strongly extensional
epimorphism of semigroups.

Opposite, we have the following theorem which proof is technically

Theorem 4. If f : S → P is a strongly extensional homomorphism of semigroups
with apartnesses, then the set q = {(x, y) ∈ S × S : f(x) 6= f(y)} is an anticon-
gruence on S (called cokernel of f and we denote it by Coker (f)) such that q ⊆6= .
Further, the relations Ker (f) and Coker (f) are compatible.

As corollary of above theorem we have an interesting corollary.

Corollary 4.1. Let e and q be compatible a congruence and an anticongruence on
an semigroup S with apartness. Then there exists a strongly extensional and em-
bedding epimorphism g : S/(e, q) → S/(q, q) and there exists a strongly extensional
and embedding isomorphism (S/(e, q))(Ker (g),Coker (g)) ∼= S/(q, q).

This section we will finish with the following two results. By the first we
will give a construction of anticongruence on semigroup based on given coequality
relation.

Theorem 5. Let q be a coequality relation on a semigroup S with apartness. Then
the relation q∗ = {(x, y) ∈ S×S : (∃a, b ∈ S)((axb, ayb) ∈ q)} is an anticongruence
on S such that q ⊆ q∗ If s is an anticongruence on S such that q ⊆ s, then q∗ ⊆ s.
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Proof.

(1) (x, y) ∈ q ∗ ⇔ (∃a, b ∈ S)((axb, ayb) ∈ q)
⇒ (∃a, b ∈ S)(∀u ∈ S)((axb, ayb) 6= (aub, aub))
⇔ (∃a, b ∈ S)(∀u ∈ S)(axb 6= aub ∨ ayb 6= aub)
⇒ (∀u ∈ S)(x 6= u ∨ y 6= u) (by (13))
⇔ (∀u ∈ S)((x, y) 6= (u, u)).

(x, y) ∈ q∗ ⇔ (∃a, b ∈ S)((axb, ayb) ∈ q)
⇔ (∃a, b ∈ S)((ayb, axb) ∈ q) (by (2)))
⇔ (y, x) ∈ q∗.

(x, z) ∈ q∗ ⇔ (∀a, b ∈ S)((axb, azb) ∈ q)
⇒ (∀y ∈ S)(∃a, b ∈ S)((axb, ayb) ∈ q ∨ (ayb, azb) ∈ q)
⇒ (∀y ∈ S)((x, y) ∈ q∗ ∨ (y, z) ∈ q∗).

(xu, yv) ∈ q∗ ⇔ (∃a, b ∈ S)((axub, ayvb) ∈ q)
⇒ (∃a, b ∈ S)((axub, ayub) ∈ q ∨ (ayub, ayvb) ∈ q)
⇒ (∃a, ub ∈ S)((ax(u, b), ay(ub)) ∈ q)

∨ (∃ay, b ∈ S)(((ay)ub), (ay)vb) ∈ q)
⇒ (x, y) ∈ q∗ ∨ (u, v) ∈ q∗.

(2) (x, y) ∈ q ⇒ (∃1 ∈ S)((1x1, 1y1) ∈ q)
⇒ (x, y) ∈ q∗.

(3) Let s be a cocongruence on S such that q ⊆ s. Then

(x, y) ∈ q∗ ⇔ (∃a, b ∈ S)((axb, ayb) ∈ q)
⇒ (∃a, b ∈ S)((axb, ayb) ∈ s)
⇒ (x, y) ∈ s (by (13)). ut

Therefore, the relation q∗ is the minimal extension of q.

Semigroup with apartness the first was defined and studied by Heyting.
After that, several authors have worked on this important topic as for example
Ruitenburg ([17]), Troelstra and van Dalen ([18]), Johnstone ([4]), Mul-
vey ([8]) and the author of this paper ([6], [16]).

Let S = (S, =, 6=, ·, 1) be a semigroup with apartness. As preliminaries we will
introduce some special notions, notations and results in set theory, commutative
ring theory and semigroup theory in constructive mathematics and we will give
proofs of several general theorems in semigroup theory. In the next section we
will introduce relation s on S by (x, y) ∈ s iff y ∈ C(x) and we will describe
internal fulfilments c (s ∪ s−1) and c (s ∩ s−1) and their classes A(a) = ∩An(a)
and K(a) = ∩Kn(a) respectively. We will give the proof that the set K(a) is a
maximal strongly extensional consistent ideal of S for every a in S. Before that,
we will analyze semigroup S with relation q = c (s ∪ s−1) in two special cases:
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(i) the relation q is a band coequality relation on S; (ii) q is a left zero band
coequality relation on S. Beside that, we will introduce several compatible equality
and coequality relations on S by sets A(a), An(a), K(a) and Kn(a).

For undefined notions we refer to [1], [2], [7], [9], [14], [16], [17], [18].

1.4. Principal consistent subset

Let S be a semigroup with apartness. We introduce notion of principal con-
sistent subset of S and we introduce some relations defined by these sets. We start
with the following theorem:

Theorem 6. Let a and b be elements of S. The the set C(a) = {x ∈ S : x#SaS}
is a consistent subset of S such that :
(i) a#C(a);
(ii) C(a) 6= ∅ ⇒ 1 ∈ C(a);
(iii) Let a be an invertible element of S. Then C(a) = ∅;
(iv) (∀x, y ∈ S)(C(a) ⊆ C(xay);
(v) C(a) ∪ C(b) ⊆ C(ab).

Proof.
(0) xy ∈ C(a) ⇔ xy#SaS ⇒ xy#SaSy ∧ xy#xSaS

⇒ y#SaS ∧ x#SaS ⇔ y ∈ C(a) ∧ x ∈ C(a).

(1) Let x be an arbitrary element of C(a). Then x#SaS, and thus x 6= a.

(2) Suppose that C(a) 6= ∅. Then there exists the element x of S such that x ∈ C(a).
Thus, x · 1 ∈ C(a) and, by (0), we have 1 ∈ C(a).

(3) Let a be an invertible element of S. Then there exists the element b of S such
that ab = 1. If C(a) 6= ∅, then, by (2), 1 ∈ C(a). Therefore, a ∈ C(a)∧ b ∈ C(a), what
is impossible. So, C(a) = ∅.
(4) Let x, y be arbitrary element of S and let u#SaS. Then u#SxayS. Therefore,
C(a) ⊆ C(xay).

(5) From (4) immediately follows C(a) ⊆ C(ab) ∧ C(b) ⊆ C(ab) ⇒ C(a) ∪ C(b) ⊆
C(ab). ut

If by G1 we will denote the subgroup of all invertible elements of S, we will
have:

Corollary 6.1. Let a be an element of a semigroup S with apartness such that
C(a) 6= ∅. Then G1 ⊆ C(a).

Proof. x ∈ G1 ⇒ (∃y ∈ S)(xy = 1 ∈ C(a)) ⇒ x ∈ C(a). ut
Corollary 6.2. Let a and b be elements of a semigroup S with apartness such that
C(a) 6= ∅ and C(b) 6= ∅. Then C(a) ∩ C(b) 6= ∅.

Let a be an arbitrary element of a semigroup S with apartness. The consistent
subset (coideal) C(a) is called a principal consistent subset (principal coideal) of S
generated by a such that a#C(a).
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Note. Note that if we get (a, b) ∈ q if and only if C(a) ∪ C(b) = S, then we will have

C(a) 6= C(b) ⇔ (∃x ∈ C(a))(x#C(b)) ∨ (∃y ∈ C(b))(y#C(a))

and

xy ∈ S = C(a) ∪ C(b) ⇒ xy ∈ C(a) ∨ xy ∈ C(b)

⇒ (x ∈ C(a) ∧ y ∈ C(a)) ∨ (x ∈ C(a) ∧ y ∈ C(b))

what is impossible. So, it is not correct definition of a coequality relation.

Examples V: (1) The relation α on S, defined by (a, b) ∈ α ⇔ C(a) = C(b) is an equality
on S and the relation c(α) is a coequality relation on S compatible with α.

(2) Let β be the Green relation on S, defined by (a, b) ∈ β ⇔ SaS = SbS. Then the
relation c (β) is a coequality relation on S compatible with β. Clearly that hold β ⊆ α
and, by lema 0.4.2, c (α) ⊂ c (β).

(3) Let a and b be elements of a semigroup S with apartness. Then the set J(a) = {x ∈
S : a#SxS} is an ideal of S such that a#J(a) and J(ab) ⊆ J(a) ∩ J(b). The relation γ on
S, defined by (a, b) ∈ γ ⇔ J(a) = J(b), is an equality relation on S compatible with the
coequality relation c (γ).

(4) If we define (a, b) ∈ δ by I(a) = I(b), then δ is an equality relation c (δ) is a maximal

coequality relation on S compatible with δ. We do not know what kind of interrelation

exists between relations δ and γ.

2. COEQUALITY RELATIONS GENERATED BY C(a)

2.1. Relation c (s ∪ s−1)

In this section we introduce relation s, defined by

(a, b) ∈ s ⇔ b ∈ C(a)

and we will describe some properties of relations s, s ∪ s−1 and q = c (s ∪ s−1). It
is clear that (a, b) ∈ s ⇔ a ∈ J(b). We start with some descriptions of relation s.

Theorem 7. The relation s has the following properties :

(vi) s is a consistent relation ;

(vii) (a, b) ∈ s ⇒ (∀x, y ∈ S)((xay, b) ∈ s);

(viii) (a, b) ∈ s ⇒ (∀n ∈ N)((an, b) ∈ s);

(ix) (∀x, y ∈ S)((a, xby) ∈ s ⇒ (a, b) ∈ s);

(x) (∀x, y ∈ S)¬((a, xay) ∈ s).

Proof. (7) Let (a, b) ∈ s, i.e. let b ∈ C(a) and let x, y be arbitrary elements of S.
Then b ∈ C(xay) by (iv). So, by definition of s, we have (xay, b) ∈ s.
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(9) Let (a, xby) ∈ s for some a, b, x, y in S. Then xby ∈ C(a) and, by (0), b ∈ C(a),
i.e. (a, b) ∈ s.

(10) Suppose that (a, xay) ∈ s. Then, by (vii), we have (xay, xay) ∈ s what is
impossible by (0). So, for every elements x and y of S¬((a, xay) ∈ s) holds. ut
Corollary 7.1. The relation s ∪ s−1 is a consistent and symmetric relation on S.

By Theorem 0.4 we can construct, symmetric and cotransitive relation (s ∪
s−1). As corollary of this theorem we have the following results:

Corollary 7.2. The relation c (s ∪ s−1) is a coequality relation on S.

Corollary 7.3. The relation c (s) is a consistent and cotransitive relation on a
semigroup S with apartness and the set q = c (s) ∪ c (s)−1 is a coequality relation
on S and c (s) ∪ c (s)−1 ⊆ c (s ∪ s−1) holds.

For an element a of a semigroup S and for n ∈ N we introduce the following
notations

An(a) = {x ∈ S : (a, x) ∈n(s ∪ s−1)}, A(a) = {x ∈ S : (a, x) ∈ c (s ∪ s−1)}.

By the following results we will present some basic characteristics of these
sets.

Theorem 8. Let a and b be elements of a semigroup S. Then :

(xi) A1(a) = {x ∈ S : x#SaS ∨ a#SxS} = C(a) ∪ J(a);

(xii) An+1(a) ⊆ An(a);

(xiii) An+1(a) = {x ∈ S : S = An(a) ∪A1(x)};
(xiv) A(a) =

⋂
n∈N

An(a);

(xv) a#A(a);

(xvi) The set A(a) is a strongly extensional subset of S such that a#A(a).

Proof. Put h = s ∪ s−1.

(12)–(14) Let x be an arbitrary element of An+1(a). Then for every t ∈ S we have
(a, t) ∈nh∨ (t, x) ∈ h. So, t ∈ An(a)∪A1(x), i.e. S = An(a)∪A1(x). As (x, x)#h,
we have (a, x) ∈nh, i.e. x ∈ An(a).

(15) If x is an element of A(a), then (a, x) ∈ c (h). Thus (a, x) 6= (a, a) because
the relation c (h) is consistent. Therefore, x 6= a. ut
Corollary 8.1. Let n ∈ N. The relation βm on a semigroup S with apartness,
defined by (a, b) ∈ βn ⇔ An(a) = An(b) is an equality relation on S and the
relation c (βn) is a coequality relation on S compatible with βn.

Corollary 8.2. (∀n ∈ N)(βn ⊆ βn+1).

Proof. Let (x, y) ∈ βn, i.e. let An(x) = An(y). Suppose that v ∈ An+1(x). Then
S = An(x) ∪ A1(v) = An(y) ∪ A1(v). So, v ∈ An+1(y). Therefore An+1(x) ⊆
An+1(y). Analogously, we have An+1(y) ⊆ An+1(x). Hence (x, y) ∈ βn+1. ut
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Corollary 8.3. (∀n ∈ N)(c (βn+1) ⊆ c (βn)).

Corollary 8.4. The relation β∞ on a semigroup S with apartness, defined by
(a, b) ∈ β∞ ⇔ A(a) = A(b), is an equality relation on S and the relation c (β∞) is
a coequality relation on S compatible with β∞, and

⋂
n∈N

βn ⊆ β∞ holds.

Corollary 8.5. Let a be an element of S. The relation q(a) on S, defined by
(x, y) ∈ q(a) iff x 6= y ∧ (x ∈ A(a) ∨ y ∈ A(a)) is a coequality relation on S such
that

x ∈ A(a) ⇒ xq = {y ∈ S : y 6= x}, x#A(a) ⇒ xq = A(a).

Proof. (i) It is clear that q(a) is consistent and symmetric relation. Let (x, z) ∈
q(a), i.e. let x 6= z and x ∈ A(a) ∨ z ∈ A(a). If y is an element of S, we have, for
example:

x 6= z ∧ x ∈ A(a) ⇒ (x 6= y ∨ y 6= z) ∧ x ∈ A(a)
⇒ (x 6= y ∧ x ∈ A(a)) ∨ (y 6= z ∧ x ∈ A(a) ∧ (x 6= y ∨ y ∈ A(a))
⇒ (x, y) ∈ q(a) ∨ (y, x) ∈ q(a).

(ii) If x ∈ A(a), then it is clearly that xq(a) = {y ∈ S : y 6= x} Let x#A(a), i.e.
let x 6= y for every y ∈ A(a). Then xq(a) = A(a). ut

For coequality relation q on a semigroup S with apartness we say that it is a
band coequality relation iff (∀a ∈ S)((a, a2)#q). In the following theorems we will
describe semigroup S in which q is a band coequality relation.

Theorem 9. Let S be a semigroup with apartness. Then the following conditions
are equivalent :

(9.1) relation q is a band coequality relation on S;
(9.2) for every a in S the set A(a) is a completely semiprime subset of S such that
x ∈ A(a) ⇒ x2 ∈ A(a);
(9.3) for every a in S A(a) = A(a2) holds.

Proof. (1) ⇒ (3). Let q be a band coequality relation on S. If x ∈ A(a), i.e. if
(a, x) ∈ q we have (a, a2) ∈ q ∨ (a2, x) ∈ q and x ∈ A(a2) because (a, a2)#q. So,
A(a) ⊆ A(a2). Opposite inclusion we prove analogously. Therefore, A(a) = A(a2).

(3) ⇒ (2). Let x2 ∈ A(a), i.e. let (a, x2) ∈ q. Then (a, x) ∈ q ∨ (x, x2) ∈ q.
Thus x ∈ A(a), because (x, x2) ∈ q give x2 ∈ A(x) = A(x2) what is impossible
by (xv). At the other hand, we have sequence implications x ∈ A(a) ⇔ (a, x) ∈
q ⇒ (a, x2) ∈ q ∨ (x2, x) ∈ q ⇒ x2 ∈ A(a) because x ∈ A(x2) = A(x) is
impossible. Therefore, the set A(a) is a completely semiprime subset of S such
that x ∈ A(a) ⇒ x2 ∈ A(a) for every a ∈ S.

(2) ⇒ (1). Let (u, v) be an arbitrary element of q and let a be an element of
S. Then (u, a) ∈ q∨(a, a2) ∈ q∨(a2, v) ∈ q. Thus, u 6= a∨a 6= v∨a2 ∈ A(a) = A(a2).
Hence (u, v) 6= (a, a2). So, the relation q is a band coequality relation on S. ut



Some relations and subsets generated by principal consistent subset . . . 21

For coequality relation c on S we say that it is left zero band coequality
relation iff (a, ab)#c for every elements a and b of S. In the following theorem we
will describe semigroup S when the relation q is that relation.

Theorem 10. Let S be a semigroup with apartness. Then the following conditions
are equivalent :
(10.1) for every element a in S A(a) = A(ab) holds;
(10.2) (a, ab)#q for every elements a, b in S;
(10.3) for every element a in S the set A(a) is a left consistent right ideal of S.

Proof. (1) ⇒ (2). Let (u, v) be an arbitrary element of q and let a, b be elements of
S. Then (u, a) ∈ q∨(a, ab) ∈ q∨(ab, v) ∈ q. Thus u 6= a∨ab 6= v∨ab ∈ A(a) = A(ab).
Hence (u, v) 6= (a, ab) because ab#A(ab). So, (a, ab)#q.

(2) ⇒ (3). Let xy ∈ A(a), i.e. let (a, xy) ∈ q. Then (a, x) ∈ q ∨ (x, xy) ∈ q
and x ∈ A(a) because (x, xy)#q. So, the set A(a) is a left consistent subset of S.
Further, if x ∈ A(a), i.e. if (a, x) ∈ q, we have (a, xy) ∈ q∨(xy, x). Thus xy ∈ A(a).
Therefore, the set A(a) is a right ideal of S.

(3) ⇒ (1). x ∈ A(a) ⇔ a ∈ A(x)
⇒ ab ∈ A(x)
⇔ x ∈ A(ab).

y ∈ A(ab) ⇔ ab ∈ A(y)
⇒ a ∈ A(y)
⇔ y ∈ A(a).

So, we have A(ab) = A(a). ut

2.2. Relation c(s ∩ s−1)

In this section we will describe relations s ∩ s−1 and c (s ∩ s−1).

Theorem 11. The relation h = s ∩ s−1 has the following properties :
(xvii) h is a consistent relation on S;
(xviii) h is a symmetric relation on S;

(xix) (∀a, x ∈ S)
(
¬(

(a, xa) ∈ h
) ∧ ¬(

(xa, a) ∈ h
))

;

(xx) (∀a, y ∈ S)
(
¬(

(ay, a) ∈ h
) ∧ ¬(

(a, ay) ∈ h
))

;

(xxi) (∀a ∈ S)(∀n ∈ N)
(
¬(

(an, a) ∈ h
) ∧ ¬(

(a, an) ∈ h
))

.

Proof. (17) and (18) implies immediately by definition of h and because s is a
consistent relation.
(19)–(20) Let x and a be elements of a semigroup S such that (a, xa) ∈ s ∩ s−1.
Then (xa, a) ∈ s∧ (a, xa) ∈ s, what is impossible by (x). Assertion (20) we proved
analogously.
(21) This assertion follows immediately from (xix). ut
Theorem 12. The relation c (h) is an anticongruence on S such that
(xxii) (∀a, b, x, y ∈ S)

(
(a, b) ∈ c (h) ⇔ (xay, xby) ∈ c (h)

)
.

(xxiii) (∀a ∈ S)(∀n ∈ N)
(
(a, an)#c (h) ∧ (an, a)#c (h)

)
.
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(xxiv) (∀a, b ∈ S)
(
(ab, ba)#c (h)

)
.

Proof. It is clearly that c (h) is a coequality relation on S.

(xa, xb) ∈ c (h) ⇒ (xa, a) ∈ c (h) ∨ (a, b) ∈ c (h) ∨ (b, xb) ∈ c (h)
⇒ (a, b) ∈ c (h) by (xix) and (xx))
⇒ (a, xa) ∈ c (h) ∨ (xa, xb) ∈ (xb, b) ∈ c (h)
⇒ (xa, xb) ∈ c (h).

The equivalency (ay, by) ∈ c (h) ⇔ (a, b) is proved analogously.
Therefore, the relation c (h) is an anticongruence on semigroup S.

Let a, b be elements of S such that (a, b) ∈ c (h) and let x, y be elements
of S. Then (a, xa) ∈ c (h) ∨ (xa, xay) ∈ c (h) ∨ (xay, xby) ∈ c (h) ∨ (xby, xb) ∈
c (h) ∨ (xb, b) ∈ c (h). Thus, by (xix) and (xx), we have (xay, xby) ∈ c (h).

Let (u, v) be an arbitrary element of c (h), a, b ∈ S and n ∈ N. We have

(u, v) ∈ c (h) ⇒ (u, an) ∈ c (h) ∨ (an, a) ∈ c (h) ∨ (a, v) ∈ c (h)
⇒ u 6= an ∨ a 6= v

⇒ (u, v) 6= (an, a).

Besides, we have

(u, v) ∈ c (h) ⇒ (u, ab) ∈ c (h) ∨ (ab, a) ∈ c (h) ∨ (a, ba) ∈ c (h) ∨ (ba, v) ∈ c (h)
⇒ u 6= ab ∨ ba 6= v

⇔ (u, v) 6= (ab, ba). ut

Corollary 12.1. The semigroup S/
(
c (h), c (h)

)
is a semilattice.

Let us introduce the following notations, for a ∈ S and n ∈ N,

Kn(a) = {x ∈ S : (a, x) ∈n (s ∩ s−1)}, K(a) = {x ∈ S : (a, x) ∈ c (s ∩ s)}.

For these sets we have:

Theorem 13. Let a be an element of a semigroup S and n ∈ N. Then :
(xxiv) K1(a) = {x ∈ S : x#SaS ∧ a#SxS} = C(a) ∩ J(a);
(xxv) Kn+1(a) ⊆ Kn(a);
(xxvi) Kn+1(a) = {x ∈ S : S = Kn(a) ∪K1(x)};
(xxvii) K(a) =

⋂
Kn(a);

(xxviii) a#K(a);
(xxix) The set K(a) is a strongly extensional consistent ideal of S;
(xxx) K(an) = K(a).

Proof. We proof only the assertions (xxix).
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Clearly is that the set K(a) is a strongly extensional subset of S. Further, we
have:

xy ∈ K(a) ⇒ (a, xy) ∈ c (h)
⇒ (

(a, x)∈c (h) ∨ (x, xy)∈c (h)
)∧(

(a, y)∈c (h)∨(y, xy)∈c (h)
)

⇒ x ∈ K(a) ∧ y ∈ K(a);

x∈K(a) ∧ u, v∈S ⇒ (a, x)∈c (h) ∧ u, v ∈ S

⇒ (a, uxv) ∈ c (h) ∨ (uxv, ux) ∈ c (h) ∨ (ux, x) ∈ c (h)
⇒ uxv ∈ K(a).

So, the set K(a) is a strongly extensional consistent ideal of S such that a#K(a). ut
Corollary 13.0. The set K(a) is a maximal strongly extensional ideal of S such
that a#K(a).

Proof. Let T be a strongly extensional consistent ideal of S such that a#T, let
t be an arbitrary element of T. Then a#StS and t 6= uav ∨ uav ∈ T for every
u, v ∈ S because T is strongly extensional subset of S. Thus uav ∈ S implies
that a ∈ T what is impossible. So, t#SaS. Therefore, T ⊆ K1(a). Assume that
T ⊆ Kn(a). Let t be an arbitrary element of T, z be an arbitrary element of S.
Thus t 6= uzv ∨ uzv ∈ T and xty 6= z ∨ z ∈ T for every u, v, x, y ∈ S. Hence
t#SzS ∨ z ∈ T and z#StS ∨ z ∈ T. This means that z ∈ K(t) or z ∈ T ⊆ Kn(a).
So, S = K1(t) ∪Kn(a), i.e. t ∈ Kn+1(a). So, T ⊆ Kn+1(a). By induction we have
that T ⊆ Kn(a) for every n ∈ N. Thus T ⊆ ⋂

n∈N

Kn(a) = K(a). ut

Corollary 13.1. The relation c (h) is a maximal semilattice anticongruence on S.

Corollary 13.2. Let a ∈ S be an element of a semigroup S. Then the relation
q(a), defined by

(x, y) ∈ q(a) ⇔ x 6= y ∧ (
x ∈ K(a) ∨ y ∈ K(a)

)
,

is an anticongruence on S such that

x ∈ K(a) ⇒ xq(a) = {y ∈ S : y 6= x}, x#K(a) ⇒ xq(a) = K(a).

Corollary 13.3. Let a be an element of a semigroup S. Then the relation e(a),
defined by

(x, y) ∈ e(a) ⇔ x = y ∨ (
x ∈ K(a) ∧ y ∈ K(a)

)
,

is a congruence on S such that

x ∈ K(a) ⇒ xe(a) = K(a), x#K(a) ⇒ xe(a) = {x}

compatible with q(a).
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Corollary 13.4. The relation rn on S, defined by (a, b) ∈ rn ⇔ Kn(a) = Kn(b),
is an equality relation on S and the relation c (rn) is a coequality relation on S
compatible with rn.

Corollary 13.5 The relation r∞ on S, defined by (a, b) ∈ r∞ ⇔ K(a) = K(b),
is an equality relation on S and the relation c (r∞) is a coequality relation on S
compatible with r∞ and

⋂
n∈N

rn ⊆ r∞ holds.
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