DETERMINANTS OF MATRICES ON PARTIALLY ORDERED SETS*

Zhou Bo

This note extends the results on determinants of greatest common divisor matrices to partially ordered sets.

1. INTRODUCTION

Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of distinct positive integers. The matrix (S) having the greatest common divisor $\left(x_{i}, x_{j}\right)$ of x_{i} and x_{j} as its (i, j)-entry is called the greatest common divisor (GCD for short) matrix on S. The study of GCD matrix was motivated by the work of Smith, Beslin and Ligh. Smith [2] showed that the determinant of GCD matrix (S) on a factor-closed set is the product $\phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right)$, where ϕ is Euler's totient function. The set S is factor-closed if it contains every divisor of x for any $x \in S$. Beslin and Ligh [1] showed that every GCD matrix is positive definite, and in fact, is the product of a specified matrix and its transpose. It follows from these results that (S) is invertible. Bourque and Ligh [3] have recently obtained a formula for the inverse of GCD matrix on a factor-closed set.

Our aim in this paper is to extend the above results to partially ordered sets. We first establish a formula for a determinant of a matrix on a partially ordered set, then provide a formula for the inverse of this matrix if it is invertible. As an immediate consequence, the determinant of GCD matrix (S) on a nearly factorclosed set can be easily calculated. The set S is nearly factor-closed if it is not factor-closed but we can add exactly one element, say x_{0}, to S such that $S \cup\left\{x_{0}\right\}$ is factor-closed.

[^0]
2. DETERMINANTS OF MATRIX ON A PARTIALLY ORDERED SET

Let (S, \leq) be a finite partially ordered set, and $f(x)$ be any function on S. Define the $n \times n$ matrices $F=\left(f_{i j}\right)$ and $G=\left(g_{i j}\right)$ as follows:

$$
f_{i j}= \begin{cases}f\left(x_{i}\right) & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
g_{i j}=\sum_{\substack{x_{k} \leq x_{i} \\ x_{k} \leq x_{j}}} f\left(x_{k}\right) .
$$

Theorem 1. $\operatorname{det} G=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right)$.
Proof. Define the Zeta function of the partial order \leq as the $n \times n$ matrix $Z=\left(z_{i j}\right)$, where

$$
z_{i j}= \begin{cases}1 & \text { if } x_{i} \leq x_{j} \\ 0 & \text { otherwise }\end{cases}
$$

It follows that

$$
g_{i j}=\sum_{\substack{x_{k} \leq x_{i} \\ x_{k} \leq x_{j}}} f\left(x_{k}\right)=\sum_{k=1}^{n} z_{k i} f_{k k} z_{k j}=\sum_{k=1}^{n} \sum_{s=1}^{n} z_{k i} f_{k s} z_{s j},
$$

i.e., $G=Z^{T} F Z$.

Note that the rearrangement of the elements in S doesn't influence on the determinants of Z and G. We can choose an order of $x_{1}, x_{2}, \ldots, x_{n}$ such that Z is a triangular matrix and the entries on the main diagonal are all 1's. Hence we have $\operatorname{det} Z=1$, and

$$
\operatorname{det} G=\operatorname{det}\left(Z^{T} F Z\right)=(\operatorname{det} Z)^{2} \operatorname{det} F=\operatorname{det} F=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right)
$$

Theorem 2. Suppose that $f\left(x_{i}\right) \neq 0$ for all $i=1,2, \ldots, n$. Then G is invertible and if we denote the inverse of G by $A=\left(a_{i j}\right)$, we have

$$
a_{i j}=\sum_{\substack{x_{i} \leq x_{k} \\ x_{j} \leq x_{k}}} \frac{\mu\left(x_{i}, x_{k}\right) \mu\left(x_{j}, x_{k}\right)}{f\left(x_{k}\right)}
$$

where $\mu(x, y)$ is the MöBIUS function.
Proof. It follows from Theorem 1 that $\operatorname{det} G=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \neq 0$. Hence G is invertible. Let $U=\left(u_{i j}\right)$ be the $n \times n$ matrix with $u_{i j}=\mu\left(x_{i}, x_{j}\right)$. It is a routine exercise to show that $Z^{-1}=U$, which implies that

$$
G^{-1}=\left(Z^{T} F Z\right)^{-1}=Z^{-1} F^{-1}\left(Z^{-1}\right)^{T}=U F^{-1} U^{T},
$$

i.e.,

$$
a_{i j}=\sum_{\substack{x_{i} \leq x_{k} \\ x_{j} \leq x_{k}}} \frac{\mu\left(x_{i}, x_{k}\right) \mu\left(x_{j}, x_{k}\right)}{f\left(x_{k}\right)} .
$$

Theorem 3. Suppose that $f\left(x_{i}\right) \neq 0$ for all $i=1,2, \ldots, n$. Let $G_{i, j}$ be the matrix obtained by deleting row i and column j of G. Then

$$
\operatorname{det} G_{j, i}=(-1)^{i+j} f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \sum_{\substack{x_{i} \leq x_{k} \\ x_{j} \leq x_{k}}} \frac{\mu\left(x_{i}, x_{k}\right) \mu\left(x_{j}, x_{k}\right)}{f\left(x_{k}\right)} .
$$

In particular, we have

$$
\operatorname{det} G_{i, i}=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \sum_{k=1}^{n} \frac{\mu^{2}\left(x_{i}, x_{k}\right)}{f\left(x_{k}\right)}
$$

Proof. By Theorem 2, G^{-1} exists. So we get that the (i, j)-entry of G^{-1} is equal to

$$
(-1)^{i+j} \frac{\operatorname{det} G_{j, i}}{\operatorname{det} G}
$$

By Theorem 2 again, this entry is also equal to

$$
\sum_{\substack{x_{i} \leq x_{k} \\ x_{j} \leq x_{k}}} \frac{\mu\left(x_{i}, x_{k}\right) \mu\left(x_{j}, x_{k}\right)}{f\left(x_{k}\right)}
$$

Note that $\operatorname{det} G=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right)$ by Theorem 1. We have

$$
\operatorname{det} G_{j, i}=(-1)^{i+j} f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \sum_{\substack{x_{i} \leq x_{k} \\ x_{j} \leq x_{k}}} \frac{\mu\left(x_{i}, x_{k}\right) \mu\left(x_{j}, x_{k}\right)}{f\left(x_{k}\right)} .
$$

In particular, since $\mu\left(x_{i}, x_{k}\right)=0$ if x_{i} is not $\leq x_{k}$, we have

$$
\operatorname{det} G_{i, i}=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right) \sum_{i=1}^{n} \frac{\mu^{2}\left(x_{i}, x_{k}\right)}{f\left(x_{k}\right)}
$$

3. DETERMINANT OF GCD MATRIX

Now we turn to consider the determinant of a GCD matrix (S). We have
Corollary 4. [1,2]. If S is factor-closed, then

$$
\operatorname{det}(S)=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right)
$$

Proof. Define the partial order \leq as follows: for $x_{i}, x_{j} \in S, x_{i} \leq x_{j}$ means that $x_{i} \mid x_{j}$. Take $f(x)=\phi(x)$. By the definition of G, we have

$$
g_{i j}=\sum_{\substack{x_{k} \leq x_{i} \\ x_{k} \leq x_{j}}} f\left(x_{k}\right)=\sum_{x_{k} \mid\left(x_{i}, x_{j}\right)} \phi\left(x_{k}\right)=\sum_{d \mid\left(x_{i}, x_{j}\right)} \phi(d)=\left(x_{i}, x_{j}\right)
$$

where $\sum_{x_{k} \mid\left(x_{i}, x_{j}\right)} \phi\left(x_{k}\right)=\sum_{d \mid\left(x_{i}, x_{j}\right)} \phi(d)$ holds because S is factor-closed. Hence $G=$ (S). By Theorem 1, we have $\operatorname{det}(S)=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right)$.

Define the same partial order as in Corollary 4. By Theorems 2 and 3, we have Corollaries 5 and 6 respectively.
Corollary 5. [3]. If S is factor-closed, then (S) is invertible, and if we denote the (i, j)-entry of the inverse of (S) by $a_{i j}$, then

$$
a_{i j}=\sum_{\substack{x_{i}\left|x_{k} \\ x_{j}\right| x_{k}}} \frac{\mu\left(x_{k} / x_{i}\right) \mu\left(x_{k} / x_{j}\right)}{\phi\left(x_{k}\right)} .
$$

Corollary 6. If S is factor-closed, $S_{t}=S \backslash\left\{x_{t}\right\}$ with $x_{t} \in S$, then

$$
\operatorname{det}\left(S_{t}\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right) \sum_{k=1}^{n} \frac{\mu^{2}\left(x_{k} / x_{t}\right)}{\phi\left(x_{k}\right)}
$$

In order to investigate the determinant of GCD matrix on a nearly factorclosed set, we express Corollary 6 in another version.
Corollary 7. If S is nearly factor-closed, and $S \cup\left\{x_{0}\right\}$ is factor-closed, then

$$
\operatorname{det}(S)=\phi\left(x_{0}\right) \phi\left(x_{1}\right) \phi\left(x_{2}\right) \cdots \phi\left(x_{n}\right) \sum_{k=0}^{n} \frac{\mu^{2}\left(x_{k} / x_{t}\right)}{\phi\left(x_{k}\right)}
$$

Example 1. Let $S=\left\{p, p^{2}, \ldots, p^{n}\right\}$, where p is prime. It is easy to see that S is nearly factor-closed and $S \cup\{1\}$ is factor-closed. By Corollary 7, we have

$$
\operatorname{det}(S)=\phi(1) \phi(p) \phi\left(p^{2}\right) \cdots \phi\left(p^{n}\right) \sum_{k=0}^{n} \frac{\mu^{2}\left(p^{k}\right)}{\phi\left(p^{k}\right)}
$$

Since $\mu\left(p^{k}\right)=0$ if k is greater than 1 , we have

$$
\begin{aligned}
\operatorname{det}(S) & =p^{0} p^{1} \cdots p^{n-1}\left(\mu^{2}(1)+\frac{\mu^{2}(p)}{\phi(p)}\right) \\
& =p^{0} p^{1} \cdots p^{n-1 n-1}\left(1+\frac{(-1)^{2}}{p-1}\right) \\
& =p^{\left(n^{2}-n+2\right) / 2} /(p-1)
\end{aligned}
$$

Let $D(s, d, n)=\{s, s+d, s+2 d, \ldots, s+(n-1) d\}$, where $(s, d)=1$. Beslin and Ligh [1] asked what the value of the determinant of GCD matrix defined on $D(s, d, n)$ is. This question may be very difficult in general, here we make some discussion in some special cases.
Example 2. $D(2,1, n)$ is nearly factor-closed, and $\{1\} \cup D(2,1, n)$ is factor-closed. It follows from Corollary 7 that

$$
\operatorname{det}(D(2,1, n))=\phi(1) \phi(2) \phi(3) \cdots \phi(n+1) \sum_{k=1}^{n} \frac{\mu^{2}(k)}{\phi(k)} .
$$

Similarly,

$$
\operatorname{det}(D(3,2, n))=\phi(1) \phi(3) \phi(5) \cdots \phi(2 n+1) \sum_{k=1}^{n+1} \frac{\mu^{2}(2 k-1)}{\phi(2 k-1)}
$$

Example 3. $D(s, d, n)$ is a progression of primes $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ with $n \leq p_{1}+1$, e.g., $\{37,73,109\}$. Clearly $D(s, d, n)$ is nearly factor-closed and $\{1\} \cup D(s, d, n)$ is factor-closed. By Corollary 7, we have

$$
\begin{aligned}
\operatorname{det}(D(s, d, n)) & =\phi(1) \phi\left(p_{1}\right) \phi\left(p_{2}\right) \cdots \phi\left(p_{n}\right)\left(1+\sum_{k=1}^{n} \frac{\mu^{2}\left(p_{k}\right)}{\phi\left(p_{k}\right)}\right) \\
& =\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{n}-1\right)\left(1+\sum_{k=1}^{n} \frac{1}{p_{k}-1}\right)
\end{aligned}
$$

Note that

$$
D(s, d, n)=\left(\begin{array}{cccc}
p_{1} & 1 & \cdots & 1 \\
1 & p_{2} & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & p_{n}
\end{array}\right)
$$

As a verification, it is easy to see that

$$
\begin{aligned}
\operatorname{det}(D(s, d, n)) & =\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & & \cdots & 1 \\
0 & & & & \\
\vdots & & D(S, d, n) & \\
0 & & & 1 & \cdots
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
-1 & p_{1}-1 & 0 & \cdots & \vdots \\
-1 & 0 & p_{2}-1 & \cdots & \\
\vdots & \vdots & \cdots & \ddots & 0 \\
-1 & 0 & \cdots & 0 & p_{n}-1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{ccccc}
1+\sum_{k=1}^{n} \frac{1}{p_{k}-1} & 1 & 1 & \cdots & 1 \\
0 & p_{1}-1 & 0 & \cdots & 0 \\
0 & 0 & p_{2}-1 & \cdots & \vdots \\
\vdots & \vdots & \cdots & \ddots & 0 \\
0 & 0 & \cdots & 0 & p_{n}-1
\end{array}\right) \\
& =\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{n}-1\right)\left(1+\sum_{k=1}^{n} \frac{1}{p_{k}-1}\right)
\end{aligned}
$$

as desired.

REFERENCES

1. S. Beslin, S. Ligh: Greatest common divisor matrices. Linear Algebra Appl., 118 (1989), 67-76.
2. H. J. S. Smith: On the value of a certain arithmetical determinant. Proc. London Math. Soc., 7 (1875/76), 208-212.
3. K. Bourque, S. Ligh: On $G C D$ and LCM matrices. Linear Algebra Appl., 174 (1992), 65-74.
4. H. S. Wilf: Hadamard determinants, Möbius functions, and the chromatic numbers of a graph. Bull. Amer. Math. Soc., 74 (1968), 960-964.
5. T. M. Apostal: Arithmetical properties of generalized Ramanujan sums. Pacific J. Math., 41 (1972), 281-293.

Department of Mathematics,
South China Normal University,
Guangzhou 510631,
P.R. China

E-mail: zhoubo@scnu.edu.cn

[^0]: ${ }^{*}$ This work was supported by National Natural Science Foundation (Grant No. 10201009) and Guangdong Provincial Natural Science Foundation (Grant No. 021072) of China.

 2000 Mathematics Subject Classification: 06A11, 15A33
 Keywords and Phrases: Determinant, partially ordered set, great common divisor matrix (GCD matrix)

