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AN APPLICATION OF A GENERALIZED

KKM PRINCIPLE ON THE EXISTENCE OF

AN EQUILIBRIUM POINT

Zoran D. Mitrović

Using some results by S. Park we derive a new sufficient condition for the exi-
stence of an equilibrium point in the economic model of supply and demand.

1. INTRODUCTION

The classical Knaster–Kuratowski–Mazurkiewicz theorem has numer-
ous applications in various fields of mathematics. Ky Fan generalized the KKM
theorem to subsets of any topological vector space. Since then, various applica-
tions and generalizations of Fan’s result have been obtained. This research area is
now called KKM theory. The KKM theory is the study of KKM maps and their
applications, [4].

In this paper, using some results by S. Park, [3] we present results on exis-
tence of an equilibrium point for a convex space.

2. PRELIMINARIES

Let A be a subset of a topological vector space X. Let P (A) be the family of
all nonempty subsets of A. If A is nonempty set, co (A) denotes the convex hull of
A. Let

(1) ∆0 = {p = (p1, . . . , pn) ∈ Rn :
n∑

i=1

pi = 0},

(2) ∆1 = {p = (p1, . . . , pn) ∈ Rn : pi ≥ 0,
n∑

i=1

pi = 1},

(3) Jp = {k : pk 6= 0}, p ∈ ∆1 .
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The following economic model of supply and demand is given in [2]:
Let D,S : Rn

+\{0} → Rn
+, where

Rn
+ = {x = (x1, . . . , x2) ∈ Rn : xi ≥ 0, i = 1, . . . , n}.

The function of supply and demand ξ : Rn
+\{0} → Rn is defined as ξ(p) =

D(p)− S(p) for each p ∈ Rn
+\{0}.

The economic interpretation is as follows: x is a vector of available goods
in an economy, D is a vector of demand, S is a vector of supply. An equilibrium
means that the demand equals supply. A point p is called an equilibrium point if
ξ(p) = 0.

In this paper we present a result which holds in a general convex space, not
necessarily finite dimensional. A convex space X is a nonempty convex set X (in a
vector space) with any topology which induce the Euclidean topology on the convex
hulls of its finite subsets.

For the subset A of a topological space Y we say that it is compactly closed
(compactly open) in Y if A∩K is closed (open) in K, for each compact set K ⊂ Y .
By C(X, Y ) we denote the family of all continuous mappings from X to Y . For
a family of sets {Ai : i ∈ I} we say that it has the finite intersection property if⋂
{Aj : j ∈ J} 6= ∅, for each finite set J ⊂ I. Let E be a vector space and X ⊂ E

an arbitrary subset. A map G : X → P (E) is called a Knaster-Kuratowski-
Mazurkiewicz map or simply a KKM-map provided

co{x1, . . . , xn} ⊂
n⋃

i=1

G(xi)

for each finite subset {x1, . . . , xn} of X.

Proposition 1. [3] Let X be a convex space and D ⊂ X a nonempty set. Further,
let be a F : D → P (Y ), where Y is a topological space, and let s ∈ C(X, Y ). Suppose
that the following conditions hold :
(i) for each x ∈ D,F (x) is compactly closed in Y , or
(i′) for each x ∈ D,F (x) is compactly open in Y ,

(ii) for each finite subset {x1, . . . , xn} of D, s(co{x1, . . . , xn}) ⊂
n⋃

i=1

F (xi).

Then the family {F (x) : x ∈ D} has the finite intersection property.

3. MAIN RESULTS

The following theorem is a generalization of Theorem 1 from [2].

Theorem 1. Let ξ ∈ C(∆1,∆0) and s ∈ C(∆1). Suppose that

(∀ p ∈ ∆1) (∀ k ∈ {1, . . . , n}) pk = 0 ⇒ ξk(s(p)) ≥ 0.

Then there exists a p̂ ∈ ∆1, such that ξ(p̂) = 0.
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Proof. For each i ∈ I = {1, . . . , n} let us define a set Fi ⊂ ∆1 by

Fi = {p ∈ ∆1 : ξi(p) ≤ 0}.

We shall prove that all the conditions of Proposition 1 (with condition (i))
are satisfied. Since ξi is continuous and ξ(p) ∈ ∆0 for all p ∈ ∆1, Fi is closed and
nonempty subset of ∆1 for each i ∈ I. For each nonempty subset J ∈ I we have to
prove that

s(co{ej : j ∈ J}) ⊂
⋃

j∈J

Fj .

This means that if y ∈ s(co{ej : j ∈ J}) then there is a p ∈ ∆1 such that y = s(p),
i.e. p =

∑
j∈J

λjej for some 0 ≤ λj ≤ 1 for all j ∈ J . Let s(p) /∈ Fj for each j ∈ J .

Then ξj(s(p)) > 0 for each j ∈ J and
n∑

j=1

ξj(s(p)) > 0 because ξj(s(p)) ≥ 0 for each

j /∈ J . This is a contradiction since ξ(s(p)) ∈ ∆0. Hence, y ∈
⋃

j∈J

Fj . Because of

Proposition 1,
⋂
i∈I

Fi 6= ∅ , i.e. there exists p ∈ ∆1, such that ξi(s(p)) ≤ 0 for each

i ∈ I and
∑
i∈I

ξi(s(p)) = 0. Therefore ξi(s(p)) = 0 for each i ∈ I. Now it is enough

to put p̂ = s(p).

Corollary 1. [2] Let ξ ∈ C(∆1,∆0). Suppose that

(∀ p ∈ ∆1) (∀ k ∈ {1, . . . , n}) pk = 0 ⇒ ξk(p) ≥ 0.

Then there exists a p̂ ∈ ∆1 such that ξ(p̂) = 0.

Proof. The proof follows from Theorem 1, if we put s = id∆1 . 2

The following example shows that Theorem 1 is not a consequence of the
results by W. K. Kim and D. I. Rim [2].

Example. Let

∆1 = {(p1, p2) : p1, p2 ≥ 0, p1 + p2 = 1},
∆0 = {(p1, p2) : p1 + p2 = 0},

ξ ∈ C(∆1,∆0), ξ(p1, p2) = ( 1
2 + p1 − p2,− 1

2 − p1 + p2).
Then the Corollary 1 can not be applied, (ξ1(0, 1) = − 1

2 ≤ 0), but we can
apply the Theorem 1 with s(p1, p2) = (0, 1).

Theorem 2. Let ξ1 : ∆1 → Rn be a continuous mapping and for some s ∈ C(∆1)
and some ε > 0 that the following conditions holds:
(i) (∀ i ∈ {1, . . . , n}) (∃p ∈ ∆1), so that ξi(s(p)) < ε,
(ii)(∀ p ∈ ∆1) (∃ i0 ∈ Jp), so that ξi0(s(p)) < ε,

(iii) if 1
n

n∑
i=1

ξk(s(p)) < ε then ξ(s(p)) = 0.

Then there exists p̂ ∈ ∆1, so that ξ(p̂) = 0.
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Proof. For each i ∈ I = {1, . . . , n} let us define set Gi ⊂ ∆1 by

Gi = {p ∈ ∆1 : ξi(s(p)) < ε}.

Because of (i) each Gi is nonempty. Using the continuity of ξ and s, we
conclude that each Gi is open.

Let J be nonempty subset of I. For each p ∈ co{ej : j ∈ J} there exists λj

with 0 ≤ λj ≤ 1 for each j ∈ J , so that p =
∑
j∈J

λjej . Because of (ii)

s(co{ej : j ∈ J}) ⊂
⋃

j∈J

Gj .

Now because of Proposition 1 (with condition (ii)) we have that
n⋂

i=1

Gi 6= ∅, so

there exists p ∈
n⋂

i=1

Gi , and ξi(s(p)) < ε for all i ∈ {1, . . . , n}. Since
n∑

i=1

ξi(s(p)) <

nε, because of (iii) we have ξ(s(p)) = 0. Now if we put p̂ = s(p) the proof is
finished. 2

Corollary.2. Let ξ : ∆1 → Rn be a continuous mapping and let there exists ε > 0,
so that the following conditions holds :
(i) (∀ i ∈ {1, ..., n}) (∃p ∈ ∆1), so that ξi(p) < ε,
(ii)(∀ p ∈ ∆1) (∃ i0 ∈ Jp), so that ξi0(p) < ε,
(iii) if 1

n

∑n
i=1 ξk(p) < ε, then ξ(p) = 0.

Then there exists p̂ ∈ ∆1, so that ξ(p̂) = 0.

Proof. The proof follows from Theorem 2 with s = id∆1 . 2
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