ON THE CONVERGENCE OF THE SERIES

$$
\sum a_{n}^{1-x_{n} / n}
$$

Gergely Pataki

We show that, for any sequence $\left(a_{n}\right)$ of positive numbers and any bounded sequence $\left(x_{n}\right)$ of real numbers, the series $\sum a_{n}$ and $\sum a_{n}^{1-x_{n} / n}$ either both converge or both diverge.

Throughout this paper, the letters \mathbf{N} and \mathbf{R} will stand for the sets of all natural and real numbers, respectively. We start with a useful inequality.
Lemma. If $a, x, \delta \in \mathbf{R}$ and $n \in \mathbf{N}$ such that $0<a \leq 1$ and $|x| \leq \delta \leq n$, then

$$
a^{1-x / n}<\left(a+2^{-n}\right) 2^{\delta} .
$$

Proof. If $x<0$, then $1<1-x / n$. Hence, since $0<a \leq 1$ and $0 \leq \delta$, it follows that

$$
a^{1-x / n} \leq a \leq a 2^{\delta}
$$

Suppose now that $0 \leq x$. If $a<2^{-n}$, then since $0 \leq 1-x / n$ and $x \leq \delta$ it is clear that

$$
a^{1-x / n} \leq\left(2^{-n}\right)^{1-x / n}=2^{-n} 2^{x} \leq 2^{-n} 2^{\delta}
$$

While, if $2^{-n} \leq a$, then $a^{-1 / n} \leq 2$. Hence, since $0 \leq x \leq \delta$ and $0<a$, it follows that

$$
a^{1-x / n}=a\left(a^{-1 / n}\right)^{x} \leq a 2^{x} \leq a 2^{\delta} .
$$

Therefore, the required inequality is also true.
Now, by using the above lemma, we can easily prove the following
Theorem. Let $\left(a_{n}\right)$ be a sequence in \mathbf{R} such that $a_{n}>0$ for all $n \in \mathbf{N}$. Then the following assertions are equivalent:
(1) the series $\sum a_{n}$ converges;

[^0](2) the series $\sum a_{n}^{1-x_{n} / n}$ converges for all bounded sequence $\left(x_{n}\right)$ in \mathbf{N};
(3) the series $\sum a_{n}^{1-x_{n} / n}$ converges for some bounded sequence $\left(x_{n}\right)$ in \mathbf{R}.

Proof. Suppose that the assertion (1) holds and $\left(x_{n}\right)$ is a bounded sequence in \mathbf{R}. Then $\left(a_{n}\right) \rightarrow 0$ and $\delta=\sup _{n \in \mathbf{N}}\left|x_{n}\right|<+\infty$. Therefore, there exists $n_{0} \geq \delta$ such that $a_{n} \leq 1$ for all $n \geq n_{0}$. Now, by the above lemma, it is clear that

$$
a_{n}^{1-x_{n} / n} \leq\left(a_{n}+2^{-n}\right) 2^{\delta}
$$

for all $n \geq n_{0}$. Hence, since the series $\sum a_{n}$ and $\sum 2^{-n}$ converge, it follows that the series $\sum a_{n}^{1-x_{n} / n}$ also converges.

Since the implication $(2) \Rightarrow(3)$ is trivially true, suppose now that the assertion (3) holds. Define $\delta=\sup _{n \in \mathbf{N}}\left|x_{n}\right|$ and choose $n_{0} \in \mathbf{R}$ such that $1+\delta \leq n_{0}$. Then, for all $n \geq n_{0}$, we have

$$
1 \leq n_{0}-\delta \leq n-\delta \leq n-\left|x_{n}\right| \leq n-x_{n} \leq\left|n-x_{n}\right|
$$

Therefore, we may define a sequence (y_{n}) in \mathbf{R} such that

$$
y_{n}=n x_{n} /\left(x_{n}-n\right)
$$

for all $n \geq n_{0}$. Then, by the triangle inequality, it is clear that

$$
\left|y_{n}\right|=\left|x_{n}-x_{n}^{2} /\left(n-x_{n}\right)\right| \leq\left|x_{n}\right|+\left|x_{n}\right|^{2} /\left|n-x_{n}\right| \leq \delta+\delta^{2}
$$

for all $n \geq n_{0}$. Therefore, the sequence $\left(y_{n}\right)$ is bounded. Hence, by the implication $(1) \Rightarrow(2)$, it follows that the series $\sum\left(a_{n}^{1-x_{n} / n}\right)^{1-y_{n} / n}$ converges. Now, since

$$
a_{n}=\left(a_{n}^{1-x_{n} / n}\right)^{1-y_{n} / n}
$$

for all $n \geq n_{0}$, it is clear that the assertion (1) also holds.
The following example shows that the assumption that the sequence $\left(x_{n}\right)$ is bounded cannot be dropped or even weakened to the assumption that $\left(x_{n} / n\right)$ is a null sequence.
Example. Let $\left(a_{n}\right)$ and $\left(x_{n}\right)$ be sequences in \mathbf{R} such that $a_{1}>0$ and

$$
a_{n}=\frac{1}{n(\log (n))^{2}} \quad \text { and } \quad x_{n}=\frac{n}{1+\sqrt{\log (n \log (n))}}
$$

for all $n \geq 2$. Then the series $\sum a_{n}$ converges, but the series $\sum a_{n}^{1-x_{n} / n}$ diverges despite that $\left(x_{n} / n\right) \rightarrow 0$.

By using Cauchy's condensation test, it can be easily shown that the series $\sum a_{n}$ converges, but the series $\sum a_{n} \log (n)$ diverges [2, p. 399]. Therefore, to prove the divergence of the series $\sum a_{n}^{1-x_{n} / n}$, it is enough to show only that

$$
a_{n} \log (n) \leq a_{n}^{1-x_{n} / n}
$$

for all $n \geq 3$. For this, assume that $n \geq 3$ and define

$$
q_{n}=\sqrt{\log (n \log (n))}
$$

Then, by using that $e \leq n$ and the functions \log and sqrt are increasing, we can easily see that $1 \leq \log (n), \log (n) \leq \log (n \log (n))$, and hence $\sqrt{\log (n)} \leq q_{n}$. Hence, since $\log (x) \leq \sqrt{x}$ for all $x>0$, we can infer that

$$
\log (\log (n)) \leq q_{n}
$$

This implies that $q_{n} \log (\log (n)) \leq q_{n}^{2}$. Therefore, we also have

$$
(\log (n))^{q_{n}}=e^{q_{n} \log (\log (n))} \leq e^{q_{n}^{2}}=e^{\log (n \log (n))}=n \log (n) .
$$

This implies that $(\log (n))^{1+q_{n}} \leq n(\log (n))^{2}=a_{n}^{-1}$. Therefore, we also have

$$
\log (n) \leq\left(a_{n}^{-1}\right)^{1 /\left(1+q_{n}\right)}=a_{n}^{-1 /\left(1+q_{n}\right)}
$$

Hence, it follows that

$$
a_{n} \log (n) \leq a_{n}^{1-1 /\left(1+q_{n}\right)}=a_{n}^{1-x_{n} / n}
$$

Acknowledgement. The author whish to express his gratitude to Zsolt Páles for bringing a problem to his attention which inspired the present investigations.

Moreover, the author would also like to thank ÁrpÁD SzÁz for many helpful conversations and valuable suggestions which led to the present form of this paper.

REFERENCES

1. K. Knopp: Theory and Application of Infinite Series. Blackie and Son Limited, London, 1951.
2. K. R. Stromberg: An Introduction to Classical Real Analysis. Wadsworth, Inc., Belmont, California, 1981.

Institute of Mathematics and Informatics,
(Received August 6, 2001)
University of Debrecen,
H-4010 Debrecen, Pf. 12,
Hungary
E-mail: pataki@math.klte.hu

[^0]: 2000 Mathematics Subject Classification: 40A05.
 Keywords and Phrases: Series, convergence

