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Lp–APPROXIMATION OF SOLUTIONS OF
STOCHASTIC INTEGRODIFFERENTIAL

EQUATIONS

Dejan Ilić, Svetlana Janković ∗

This paper is concerned with the construction of the approximate solution of
the general stochastic integrodifferential equation of the Ito type, defined on
a partition of the time-interval. The closeness of the original and approximate
solutions is measured in the sense of the Lp-norm.

1. INTRODUCTION

In many fields of science and engineering there is a large number of prob-
lems which are intrinsically nonlinear and complex in nature, involving stochastic
excitations of a Gaussian white noise type. Having in mind that a Gaussian white
noise is an abstraction and not a physical process, mathematically described as a
formal derivative of a Brownian motion process, all such problems are mathemati-
cally modelled by stochastic differential equations, or in more complicated cases, by
stochastic integrodifferential equations of the Ito type [5]. Since these equations
are not solvable in most cases, it is important to find their approximate solutions
in an explicit form, or in a form suitable for applications of numerical methods.

Throughout the paper let (Ω,F ,P) be a complete probability space on which
all random variables and processes are defined. For notational simplicity reason,
we shall omit ω ∈ Ω in all random functions and we shall restrict ourselves to
one-dimensional case – the multidimensional case is analogous and is not difficult
in itself.

We consider a stochastic process x = (xt, t ∈ [0, 1]), defined as a solution of
the following stochastic integrodifferential equation of the Ito type

(1) dxt = F
(
t, xt,

t∫
0

f1(t, s, xs) ds,
t∫
0

f2(t, s, xs) dws

)
dt

+G
(
t, xt,

t∫
0

g1(t, s, xs) ds,
t∫
0

g2(t, s, xs) dws

)
dwt, t ∈ [0, 1],
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x0 = x(0). a.s.,

in which w = (wt, t ≥ 0) is a normalized Brownian motion with a natural filtration
{Ft, t ≥ 0} (i.e. Ft = σ{ws, 0 ≤ s ≤ t}), and x0 is a random variable independent
of w. The random functions fi : J × R × Ω → R, gi : J × R × Ω → R, i = 1, 2,
F : [0, 1] × R3 × Ω → R and G : [0, 1] × R3 × Ω → R, where J = {(t, s) : 0 ≤
s ≤ t ≤ 1}, are Borel measurable on their domains, fi(t, s, x) and gi(t, s, x) are
Fs-measurable for each s ≤ t, x ∈ R, F (t, x, y, z) and G(t, x, y, z) are Ft-measurable
for each (x, y, z) ∈ R3. The stochastic process x is a strong solution of Eq. (1), i.e.
it is adapted to {Ft, t ≥ 0}, xo = x(0) a.s., all Lebesgue’s and Ito’s integrals in
the integral form of Eq. (1) are well defined, and Eq. (1) is satisfied almost surely
for all t ∈ [0, 1].

Note that Eq. (1) contains the more general stochastic differential and inte-
gral equations as special cases, earlier studied by many authors in the literature, in
many papers by Murge and Pachpatte [8], for example. On the basis of the clas-
sical theory of stochastic differential equations of the Ito type, one can prove the
basic existence and uniqueness theorem, based on the Picard method of iterations:
Let E|x0|2 < ∞ and the random functions fi, gi, F and G be globally Lipschitzian
and satisfy the usual linear growth condition, i.e. let there exist a constant L > 0
such that, for all (t, s) ∈ J and (x, y, z), (x′, y′, z′) ∈ R3, with probability one,

(2) |F (t, x, y, z)− F (t, x′, y′, z′)| ≤ L (|x− x′|+ |y − y′|+ |z − z′|),

|fi(t, s, x)− fi(t, s, x′)| ≤ L |x− x′|, i = 1, 2,

(3) |F (t, x, y, z)|2 ≤ L2(1 + |x|2 + |y|2 + |z|2),

|fi(t, s, x)|2 ≤ L2(1 + |x|2), i = 1, 2,

and analogously for G, g1, g2. Then Eq. (1) has a unique a.s. continuous strong
solution x satisfying E{ sup

t∈[0,1]

|xt|2} < ∞. Moreover, by applying the procedure

used in [7], one can prove that if E|x0|p < ∞ for any number p > 0, then
E{ sup

t∈[0,1]

|xt|p} < ∞.

There is a number of papers in which the solution of the stochastic differential
equation dxt = a(t, xt) dt + b(t, xt) dwt, t ∈ [0, 1], x0 = x(0), is approximated on
partitions Γn, n ∈ N

(4) 0 = t0 < t1 < · · · < tn = 1, δn = max
0≤k≤n−1

(tk+1 − tk),

of the interval [0, 1]. For example, in paper [6] the solution x is approximated by
the solutions xn, n ∈ N of the equations dxn

t = a(tk, xn
tk

) dt + b(tk, xn
tk

) dwt, t ∈
[tk, tk+1), 0 ≤ k ≤ n − 1, xn

0 = x0, in the sense of the Lp-norm, p ≥ 2. The rate
of this closeness is O

(
δ
1/2
n

)
when n → ∞. This result has earlier been obtained

in [3] for p = 2. In the present paper we shall compare in the Lp-norm, under
more general conditions than in [6], the solution of Eq. (1) by the solutions of the
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corresponding equations of the same type, defined on a partitions (4) of the interval
[0, 1]. The treatment used in our analysis is partially inspired by the treatment used
earlier in paper [1] for stochastic differential equations of the Ito type.

2. MAIN RESULTS

Let (4) be a partition Γn of the interval [0, 1] and xn be the solution of the
equation

(5) dxn
t = F

(
t, xn

tk
,

t∫
tk

f1(t, s, xn
tk

) ds,
t∫

tk

f2(t, s, xn
tk

) dws

)
dt

+G
(
t, xn

tk
,

t∫
tk

g1(t, s, xn
tk

) ds,
t∫

tk

g2(t, s, xn
tk

) dws

)
dwt,

t ∈ [tk, tk+1), 0 ≤ k ≤ n− 1,

xn
t0 = x0 a.s., xn

tk
= xn(tk − 0) a.s., 1 ≤ k ≤ n− 1.

In fact, the solution xn = (xn
t , t ∈ [0, 1]) is constructed as an a.s. continuous

process, by attaching successively processes (xn
t , t ∈ [tk, tk+1]), 0 ≤ k ≤ n − 1, on

the points tk, 1 ≤ k ≤ n− 1 of the partition Γn.
The main goal of this paper is to show that xn is an approximate solution to

the solution x of Eq. (1), in the sense of the Lp-norm, p ≥ 2.
For notational simplicity reason, let us denote that

(Fxk)(t) = F
(
t, xt,

t∫
tk

f1(t, s, xs) ds,
t∫

tk

f2(t, s, xs) dws

)
(Gxk)(t) = G

(
t, xt,

t∫
tk

g1(t, s, xs) ds,
t∫

tk

g2(t, s, xs) dws

)
(Fxn

k )(t) = F
(
t, xn

tk
,
∫ t

tk
f1(t, s, xn

tk
) ds,

t∫
tk

f2(t, s, xn
tk

) dws

)
(Gxn

k )(t) = G
(
t, xn

tk
,

t∫
tk

g1(t, s, xn
tk

) ds,
t∫

tk

g2(t, s, xn
tk

) dws

)
In connection with the introduced notations, the equations (1) and (5) can be
expressed in the shorter integral forms,

(6) xt = x0 +
t∫
0

(Fx0)(s) ds +
t∫
0

(Gx0)(s) dws, t ∈ [0, 1],

(7) xn
t = xn

tk
+

t∫
tk

(Fxn
k )(s) ds +

t∫
tk

(Gxn
k )(s) dws, t ∈ [tk, tk+1].

First, let us prove some auxiliary results.
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Proposition 1. Let E|x0|p < ∞ for p ≥ 2, the conditions (2) and (3) be satisfied
and xn be the solution of Eq. (5). Then,

E|xn
t − xn

tk
|p ≤ Q · δp/2

n , t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1,

where Q is a generic constant independent of n and k.

Proof. Let us note that by virtue of the earlier cited existence and uniqueness
theorem, one can prove that E supt∈[0,1] |xn

t |p < M for any constant M > 0, inde-
pendent of n and k.

In order to estimate E|xn
t − xn

tk
|p, we shall first apply the elementary inequ-

ality |a + b|r ≤ (2r−1 ∨ 1)( |a|r + |b|r ), r ≥ 0, to Eq.(5) in integral form, Jensen’s
inequality and after that Hölder’s inequality to Lebesgue’s integral, as well as
Burkholder-Davis-Gundy inequality [4], [7] to Ito’s integral: For any l > 0,

there exists a constant cl > 0, such that E sup
s∈[t0,t]

∣∣∣ s∫
t0

fu dwu

∣∣∣l ≤ cl E
( t∫

t0

|fu|2 du
)l/2

,

for any measurable Ft-adapted process (ft, t ∈ [0, T ]) such that
T∫

t0

|ft|2 dt < ∞ a.s.

In fact, in our case we use this inequality in which the left hand side is minorized
by omitting supremum. Therefore, for all t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1, we obtain

(8) E|xn
t − xn

tk
|p ≤ 2p−1

(
E

∣∣∣ t∫
tk

(Fxn
k )(s) ds

∣∣∣p + E
∣∣∣ t∫
tk

(Gxn
k )(s) dws

∣∣∣p)

≤ 2p−1
(
(t− tk)p−1

t∫
tk

E
∣∣(Fxn

k )(s)
∣∣p ds + cp(t− tk)p/2−1

t∫
tk

E
∣∣(Gxn

k )(s)
∣∣p ds

)
≡ 2p−1

(
(t− tk)p−1 · J1(t) + cp(t− tk)p/2−1 · J2(t)

)
,

To estimate J1(t), we shall apply the linear growth condition to the random
functions F, f1 and f2 and the previously cited inequalities. Hence,

(9) J1(t) ≤ Lp
t∫

tk

E
(
1 + |xn

tk
|2 +

∣∣∣ s∫
tk

f1(s, r, xn
tk

) dr
∣∣∣2 +

∣∣∣ s∫
tk

f2(s, r, xn
tk

)dwr

∣∣∣2)p/2

ds

≤ 4p/2−1Lp
t∫

tk

(
1 + E|xn

tk
|p + E

∣∣∣ s∫
tk

f1(s, r, xn
tk

)dr
∣∣∣p + E

∣∣∣ s∫
tk

f2(s, r, xn
tk

)dwr

∣∣∣p)ds

≤ 4p/2−1Lp

∫ t

tk

[
1 + E|xn

tk
|p

+Lp
(
(s− tk)p−1 + cp(s− tk)p/2−1

) ∫ s

tk

E(1 + |xn
tk
|2)p/2dr

]
ds

≤ 4p/2−1Lp(1 + M)
∫ t

tk

[
1 + 2p/2−1Lp

(
(s− tk)p + cp(s− tk)p/2

)]
ds

≤ C1(L,M, cp, p) · (t− tk),
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where C1(L,M, cp, p) is a generic constant. Similarly, by repeating completely the
previous procedure, we find

(10) J2(t) ≤ C2(L,M, cp, p) · (t− tk),

where C2(L,M, cp, p) is also a generic constant. Now, the relation (8) together with
(9) and (10) implies that, for all t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1,

E|xn
t − xn

tk
|p ≤ Q · (t− tk)p/2 ≤ Q · δp/2

n ,

where Q is a constant independent of n and k. 2

Proposition 2. Let E|x0|p < ∞ for p ≥ 2, the conditions (2) and (3) be satisfied,
and x and xn be the solutions of the equations (6) and (7) respectively. Then,

sup
t∈[0,1]

E|xt − xn
t |p ≤ H · δp/2

n ,

where H is a generic constant independent of n and k.

Proof. Let p > 2 and t ∈ [tk, tk+1]. If we subtract Eq. (6) and (7) and after that
apply Itô’s differential formula to |xt − xn

t |p, we get

E|xt − xn
t |p ≤ E|xtk

− xn
tk
|p + p · I1(t) +

p(p− 1)
2

· I2(t) + p · I3(t),

where

I1(t) = E
t∫

tk

(
(Fxk)(s)− (Fxn

k )(s)
)
|xs − xn

s |p−1 ds

I2(t) = E
t∫

tk

(
(Gxk)(s)− (Gxn

k )(s)
)2 |xs − xn

s |p−2 ds

I3(t) = E
t∫

tk

(
(Gxk)(s)− (Gxn

k )(s)
)
|xs − xn

s |p−1 dws.

Let us denote that φt = E|xt − xn
t |p. Since I3(t) = 0, we have

(11) φt = φtk
+ p · I1(t) +

p(p− 1)
2

· I2(t), t ∈ [tk, tk+1].

First, let us estimate I1(t). Since F satisfies the Lipschitz condition (2), it
follows that

(12) I1(t) ≤ L
t∫

tk

φs ds + L
t∫

tk

E
(
|xn

s − xn
tk
|+

∣∣∣ s∫
tk

(
f1(s, r, xr)− f1(s, r, xn

tk
)
)
dr

∣∣∣
+

∣∣∣ s∫
tk

(
f2(s, r, xr)− f2(s, r, xn

tk
)
)
dwr

∣∣∣ )
|xs − xn

s |p−1ds.
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By applying Hölder’s inequality for ν = p, µ = p/(p−1), to the second term
in (12), after that the elementary inequality |a|r|b|1−r ≤ r|a|+(1− r)|b|, 0 ≤ r ≤ 1
and Proposition 1, we obtain

(13)
t∫

tk

E|xn
s − xn

tk
| |xs − xn

s |p−1ds ≤
t∫

tk

(
E|xn

s − xn
tk
|p

)1/p
φ(p−1)/p

s ds

≤ 1
p

Q δp/2
n (t− tk) +

p− 1
p

t∫
tk

φs ds.

Since f1 satisfies the Lipschitz condition (2), it follows that

(14)
t∫

tk

E
∣∣∣ s∫
tk

(
f1(s, r, xr)− f1(s, r, xn

tk
)
)
dr

∣∣∣ · |xs − xn
s |p−1ds

≤ L
t∫

tk

E
s∫

tk

(
|xr − xn

r |+ |xn
r − xn

tk
|
)
dr · |xs − xn

s |p−1ds

≤ L

∫ t

tk

((
E

∣∣∣ s∫
tk

|xr − xn
r |dr

∣∣∣p)1/p

+
(
E

∣∣∣ s∫
tk

|xn
r − xn

tk
| dr

∣∣∣p)1/p
)

φ(p−1)/p
s ds

≤ L
(1

p

t∫
tk

(s− tk)p−1
s∫

tk

(
φr + E|xn

r − xn
tk
|p

)
dr ds +

2(p− 1)
p

t∫
tk

φs ds
)

≤ L
( (t− tk)p

p2

t∫
tk

φs ds + Qδp/2
n

(t− tk)p+1

p(p + 1)
+

2(p− 1)
p

t∫
tk

φs ds
)
.

Similarly,

(15)
∫ t

tk
E

∣∣∣ s∫
tk

(
f2(s, r, xr)− f2(s, r, xn

tk
)
)
dwr

∣∣∣ · |xs − xn
s |p−1ds

≤
∫ t

tk

((
E

∣∣∣ s∫
tk

(
f2(s, r, xr)− f2(s, r, xn

r )
)
dwr

∣∣∣p)1/p

+
∫ t

tk

(
E

∣∣∣ s∫
tk

(
f2(s, r, xn

r )− f2(s, r, xn
tk

)
)
dwr

∣∣∣p)1/p
)

φ(p−1)/p
s ds

≤ L
(
cp

(t− tk)p/2

p2

t∫
tk

φs ds + Qδp/2
n

(t− tk)p/2+1

p(p/2 + 1)
+

2(p− 1)
p

t∫
tk

φs ds
)
.

Now, by taking (13), (14) and (15) to (12), we deduce that, for t ∈ [tk, tk+1],

I1(t) ≤ α1(L,Q, cp, p) · δp/2
n (t− tk) + β1(L, cp, p)

t∫
tk

φs ds,

where α1 and β1 are generic constants.
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Analogously, in order to estimate I2(t), we shall employ Hölder’s inequality
for ν = p/2, µ = p/(p− 2) and the above used procedure. Finally,

I2(t) ≤ α2(L,Q, cp, p) · δp/2
n (t− tk) + β2(L, cp, p)

t∫
tk

φs ds.

So, from (11) and the estimated values I1(t) and I2(t) we conclude that

φt ≤ φtk
+ α δp/2

n (t− tk) + β
t∫

tk

φs ds, t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1,

where α = α(L,Q, cp, p) and β = β(L,Q, cp, p) are generic constants. An applica-
tion of the well-known Gronwall-Bellman’s inequality [2] yields

(16) φt ≤
(
φtk

+ α δp/2
n (t− tk)

)
· eβ(t−tk), t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1.

By taking t = tk+1 in (16), we come to the following recurrence relation:

φtk+1 ≤
[
φtk

+ α δp/2
n (tk+1 − tk)

]
· eβ(tk+1−tk), 0 ≤ k ≤ n− 1.

Since φt0 = E|x0 − xn
0 |p = 0, we easily deduce

(17) φtk
≤ α δp/2

n

k−1∑
i=0

(ti+1 − ti) eβ(tk−ti) ≤ α eβ · δp/2
n , 0 ≤ k ≤ n− 1.

Finally, from (16) it follows that φt is uniformly bounded on [tk, tk+1], i.e.
there exists a constant H > 0, that is

φt ≤ H · δp/2
n , t ∈ [tk, tk+1], 0 ≤ k ≤ n− 1,

and, therefore, sup
t∈[0,1]

φt ≤ H · δp/2
n .

The case p = 2 can be treated similarly. We estimate I1(t) by applying
Cauchy–Schwarz inequality, while the estimation for I2(t) goes directly in the
sense of the L2–stochastic integral isometry. Finally, we come again to the relation
(16). Thus the proof becomes complete. 2

In view of the preceding result, it is logical to expect that the sequence of the
approximate solutions {xn, n ∈ N} tends to the solution x as δn → 0, n → ∞, in
the Lp-norm. This assertion, as the main goal of the present paper, immediately
follows from the next theorem, which gives an estimation of the speed of this
convergence.

Theorem 1. Let E|x0|p < ∞ for p ≥ 2, the conditions (2) and (3) be satisfied,
and x and xn be the solutions of the equations (6) and (7) respectively. Then,

E sup
t∈[0,1]

|xt − xn
t |p = O

(
δp/2
n

)
, δn → 0, n →∞.



Lp–approximation of solutions of stochastic integrodifferential equations 59

Proof. To prove this assertion, without emphasizing any steps, we shall apply the
previous treatment. Therefore,

E sup
t∈[0,1]

|xt − xn
t |p ≤ 2p−1

(
E sup

t∈[0,1]

∣∣∣ t∫
0

(
(Fx0)(s)− (Fxn

0 )(s)
)
ds

∣∣∣p
+E sup

t∈[0,1]

∣∣∣ t∫
0

(
(Gx0)(s)− (Gxn

0 )(s)
)
dws

∣∣∣p)
≤ 2p−1

(
E

∣∣∣ 1∫
0

(
(Fx0)(s)− (Fxn

0 )(s)
)
ds

∣∣∣p
+cp E

∣∣∣ 1∫
0

∣∣(Gx0)(s)− (Gxn
0 )(s)

∣∣2 ds
∣∣∣p/2)

≤ 2p−1
( 1∫

0

E
∣∣(Fx0)(s)− (Fxn

0 )(s)
∣∣pds

+cp

1∫
0

E
∣∣(Gx0)(s)− (Gxn

0 )(s)
∣∣pds

)
≤ 6p−1Lp(1 + cp)

∫ 1

0

E
(
|xs − xn

s |p +
∣∣∣ s∫
0

(
f1(s, r, xr)− f1(s, r, xn

r )
)
dr

∣∣∣p
+

∣∣∣ s∫
0

(
f2(s, r, xr)− f2(s, r, xn

r )
)
dwr

∣∣∣p) ds

≤ 6p−1Lp(1 + cp)
∫ 1

0

(
E|xs − xn

s |p

+Lp
(
sp−1 + cps

p/2−1
) s∫
0

E|xr − xn
r |p dr

)
ds.

This, in view of Proposition 2, yields

E sup
t∈[0,1]

|xt − xn
t |p ≤ 6p−1Lp(1 + cp)

(
1 + Lp

( 1
p + 1

+
cp

p/2 + 1

))
·H δp/2

n

= O
(
δp/2
n

)
, δn → 0, n →∞,

which establishes the theorem. 2

Therefore, xn Lp

−→ x as δn → 0, n →∞.
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