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LP—~APPROXIMATION OF SOLUTIONS OF
STOCHASTIC INTEGRODIFFERENTIAL
EQUATIONS

Dejan 1lié, Svetlana Jankovicé*

This paper is concerned with the construction of the approximate solution of
the general stochastic integrodifferential equation of the ITO type, defined on
a partition of the time-interval. The closeness of the original and approximate
solutions is measured in the sense of the L”-norm.

1. INTRODUCTION

In many fields of science and engineering there is a large number of prob-
lems which are intrinsically nonlinear and complex in nature, involving stochastic
excitations of a Gaussian white noise type. Having in mind that a Gaussian white
noise is an abstraction and not a physical process, mathematically described as a
formal derivative of a Brownian motion process, all such problems are mathemati-
cally modelled by stochastic differential equations, or in more complicated cases, by
stochastic integrodifferential equations of the ITO type [5]. Since these equations
are not solvable in most cases, it is important to find their approximate solutions
in an explicit form, or in a form suitable for applications of numerical methods.

Throughout the paper let (Q, F,P) be a complete probability space on which
all random variables and processes are defined. For notational simplicity reason,
we shall omit w €  in all random functions and we shall restrict ourselves to
one-dimensional case — the multidimensional case is analogous and is not difficult
in itself.

We consider a stochastic process © = (z¢,t € [0,1]), defined as a solution of
the following stochastic integrodifferential equation of the ITO type

¢ ¢
(1) dxy = F(t,:rt,ffl(t7s7:rs) ds, [ fa(t, s, xs) dws> dt
0 0

t t
+G<t,xt,fgl(t,s,ms)ds,fgg(t,s,ms)dws) dwy, t €10,1],
0 0
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xg = z(0). a.s.,

in which w = (wy, t > 0) is a normalized Brownian motion with a natural filtration
{Fi,t > 0} (ie. Fr =o0f{ws,0<s<t}), and zg is a random variable independent
of w. The random functions f; : I X RxQ - R, ¢g;: J X RxQ — R, i =1,2,
F:0,1]xRxQ— Rand G :[0,1] x R?* x Q — R, where J = {(t,s) : 0 <
s <t < 1}, are BOREL measurable on their domains, f;(¢,s,z) and g;(¢, s, x) are
Fs-measurable for each s < ¢,z € R, F(t,z,y,2) and G(t, z,y, z) are F;-measurable
for each (w,y, z) € R®. The stochastic process z is a strong solution of Eq. (1), i.e.
it is adapted to {F;,t > 0}, z, = x(0) a.s., all LEBESGUE’s and ITO’s integrals in
the integral form of Eq. (1) are well defined, and Eq. (1) is satisfied almost surely
for all t € [0,1].

Note that Eq. (1) contains the more general stochastic differential and inte-
gral equations as special cases, earlier studied by many authors in the literature, in
many papers by MURGE and PACHPATTE [8], for example. On the basis of the clas-
sical theory of stochastic differential equations of the ITO type, one can prove the
basic existence and uniqueness theorem, based on the PICARD method of iterations:
Let E|xg|? < oo and the random functions f;, g;, F' and G be globally Lipschitzian
and satisfy the usual linear growth condition, i.e. let there exist a constant L > 0
such that, for all (¢,s) € J and (z,v, 2), (2,9, 2') € R3, with probability one,

(2) |F(t,x,y,z) - F(taxlvylvz/” < L(|I’ - ‘T,| + ‘y - y/| =+ |Z - Z/‘)v
|fi(t757x)_fi(ta5ax/)| SL|‘/E—$/|7 i:1727

(3) |E(t,z,y, )P < L2(1+ 2 + [y + [2[%),
|f¢(t,5,$)|2§L2(1+|1'|2), 7;:1,27

and analogously for G, g1, g2. Then Eq. (1) has a unique a.s. continuous strong
solution z satisfying F{ sup |2} < oo. Moreover, by applying the procedure
t€(0,1]
used in [7], one can prove that if Flzg|? < oo for any number p > 0, then
E{ sup |zP} < o0.
te[0,1]

There is a number of papers in which the solution of the stochastic differential
equation dx; = a(t,z;) dt + b(t, z;) dwy, t € [0,1], xg = x(0), is approximated on
partitions I';,,n € N

(4) O=to<t1 <---<t,=1, 0,= Ogrlglgffl(tk+l — tk),

of the interval [0, 1]. For example, in paper [6] the solution z is approximated by
the solutions x",n € N of the equations dz} = a(ty,x} ) dt + b(ty, x} ) dwy, t €
[thytrt1), 0 < k <mn—1, 2} = xo, in the sense of the LP-norm, p > 2. The rate
of this closeness is 0(5,1/ 2) when n — oo. This result has earlier been obtained
in [3] for p = 2. In the present paper we shall compare in the LP-norm, under
more general conditions than in [6], the solution of Eq. (1) by the solutions of the
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corresponding equations of the same type, defined on a partitions (4) of the interval
[0,1]. The treatment used in our analysis is partially inspired by the treatment used
earlier in paper [1] for stochastic differential equations of the ITO type.

2. MAIN RESULTS

Let (4) be a partition T';, of the interval [0,1] and 2™ be the solution of the
equation

t t
(5) dz} = F(t,xfk, J At s, xf ) ds, [ fa(t,s, i) dws> dt
¢ ¢
¢ ¢
—|—G<t,x;'fk, Jo1(t s,z )ds, [g2(t, s, 2F,) dws) dwy,
tr tr

tE [thtrg), 0<k<n-—1,

xy =2"(tr,—0) as., 1<k<n-—-1.

J— n
L =1Tp a.s., Iy

k

In fact, the solution ™ = (z}, t € [0,1]) is constructed as an a.s. continuous
process, by attaching successively processes (z7,t € [tk,tk+1]), 0 <k <n—1, on
the points t;,1 < k < mn — 1 of the partition I',.

The main goal of this paper is to show that z” is an approximate solution to
the solution z of Eq. (1), in the sense of the LP-norm, p > 2.

For notational simplicity reason, let us denote that

(Fap)(t) = F(t,xt, Jfi(t, s, xs)ds, ffg(t,s,xs)dws>
tr tr
t t
(Gap)(t) = G(t,xt, Ja1(t,s,xs)ds, [ga2(t, s, 24) dws)
(Fz)(t) = F(t,x?k,fttkfl(t, s,xp. ) ds, [ fa(t, 5,27, dws>
tr

t t
(Ga)(t) = G (et fon(tos,a2,) ds, [t s,02, ) du,)
T tr

In connection with the introduced notations, the equations (1) and (5) can be
expressed in the shorter integral forms,

(6) Ty = To + j(Fmo)(s) ds + Oft(Gxo)(s) dws, te€]0,1],
(7) ry =y +tft(FxZ)(s) ds —l—tft(G;UZ)(s) dws, t € [tk tht1)-

First, let us prove some auxiliary results.
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Proposition 1. Let E|zg|P < oo for p > 2, the conditions (2) and (3) be satisfied
and x™ be the solution of Eq. (5). Then,

Bl —al [P <Q-0%2 t€ [ty ty], 0<k<n-—1,

where ) is a generic constant independent of n and k.

Proof. Let us note that by virtue of the earlier cited existence and uniqueness
theorem, one can prove that E'sup,¢joq) |27 [P < M for any constant M > 0, inde-
pendent of n and k.

In order to estimate E|z} — xf. |P, we shall first apply the elementary inequ-
ality |a +b]" < (277t v 1)(Ja|" +1b|"), 7 > 0, to Eq.(5) in integral form, JENSEN’s
inequality and after that HOLDER’s inequality to LEBESGUE’s integral, as well as
BURKHOLDER-DAVIS-GUNDY inequality [4], [7] to ITO’s integral: For any [ > 0,
s 1 t 1/2
Jhodw,| <er(fif2aw)"”,

to

to

there exists a constant ¢; > 0, such that £ sup
Ss€E[to,t]

T
for any measurable F;-adapted process (ft,t € [0,77]) such that [|f;|*dt < oo aus.
t

0
In fact, in our case we use this inequality in which the left hand side is minorized
by omitting supremum. Therefore, for all ¢ € [tg, tk1+1],0 < k < n — 1, we obtain

)

< gr1 ((t _ tk)P—ltftE|(FxZ)(8)\p ds + cp(t — tk)P/Q_ltftE|(GxZ)(s)|p ds)

t

J(Gap)(s) dws

123

j(FmZ)(s) ds‘p +E

(8) Bla} —ap [P <20 (E
tr

=207 ((t— )Pt Ji(t) + et — )PP (1)),

To estimate Ji(t), we shall apply the linear growth condition to the random
functions F, fi and f; and the previously cited inequalities. Hence,

2

¢ s 2\ p/2
9) Jl(t)SLpr(1+|x?k|2+‘ffl(s,r,x?k)dr n ) ds
tr Tk

tffg(s,r, zy )dw,

t S P S p
<2 [ (14 Blag, 1+ B[ [ fu(s, g )ar| 4 B| [ fa(s 77, )dw, | ) ds
Ly th i

t
§4P/2—1LP/ [1+ Blag,p

ti

S
FLP((s — )P+ ep(s — t)?27Y) [ B+ |2, |2)p/2dr} ds

ty

t

< 4P/27pp(1 4 M)/ [142P/272LP (5 — )P + cp(s — tr)?/?)] ds
tr

S Cl(LaMa Cp7p) : (t - tk)?
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where C1(L, M, ¢,,p) is a generic constant. Similarly, by repeating completely the
previous procedure, we find

(10) Jo(t) < Co(L, M, cp,p) - (t = t1),

where Co(L, M, ¢p, p) is also a generic constant. Now, the relation (8) together with
(9) and (10) implies that, for all ¢ € [tg, trt1], 0 <k <n-—1,

Elz} —a}, [P < Q- (t —t,)"? < Q- 88/%,
where () is a constant independent of n and k. O

Proposition 2. Let E|xglP < oo for p > 2, the conditions (2) and (3) be satisfied,
and x and ™ be the solutions of the equations (6) and (7) respectively. Then,

sup BElzy — xP|P < H - 62/2,
teo,1]
where H is a generic constant independent of n and k.

Proof. Let p > 2 and t € [tg, tg+1]- If we subtract Eq. (6) and (7) and after that
apply Itd’s differential formula to |z — z}|P, we get

Blay 2317 < Blay, i, +p- 10 + P22 1) 49 10,
where
= Ef((Fa)(s) = (Fe})(5)) b, = a2 d
f( (Gax)(s) = (Gap)(s))” |wy — 222 ds
EJ ((@00(6) = (Go)(2) los = a2 ds

Let us denote that ¢, = El|z; — «}|P. Since I5(t) = 0, we have

-1
(11) bt = P, +p'11(t)+1%-12(t), t € [tg, tkt1)-
First, let us estimate I;(t). Since F satisfies the LIPSCHITZ condition (2), it
follows that

(12) 5 < Lfouds+ L] E(la? — o)+ | [ (Filsrm) - fi(s.ra)) )

23

S

f(f2(57’r7 IT) - f2(57r7 x;nk)) dwr

tr

+

) |xs — x?|p71ds.
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By applying HOLDER'’s inequality for v = p, u = p/(p—1), to the second term
in (12), after that the elementary inequality |a|"[b]*~" < r|a|+ (1 —7)[b], 0 <r <1
and Proposition 1, we obtain

t t
(13) JEl? =} | oy — 2P Nds < [ (Ela? — 2} |?) /P gD/ Pds
tr tr

1 -1t
< Qa2 (t—ty) + 2= ¢, ds.
p 2
Since f; satisfies the LIPSCHITZ condition (2), it follows that

)

f(fl s, xr) — f1(s, 1, x?k)) dr‘ s — 2P ds

hd
t S
SLfEf(|$T—mf\+|mf—:I:?k|)dr-|m8—x2|p_1ds

tr tg
1/ 1/
) 4 (B[ flep - aplar]) ”) S0/ g

<) (e

< L(1 Fs— tk)l’*lfs(cbr + Elay — i, |[P) drds + # I ds)
ty

tr

(t—tx) o (E—t)Pt 2(p—1)
L|——— [ ¢psds or sds].
= ( p? M +Q p(p+1) " p t{(b S)
Similarly,

S

f(f2(577"7 zr) — fa(s,r, x?k)) dw,

ty
f(fQ(Sara xr) - fQ(SaTa Cﬂ:})) dwr

t
<, (=]
fs(fg(s,r, ) — fa(s,r, x?k)) dw,

t 1/
+ / (e ") p) o-V/7 g
tr Tk

(t —t)P/? ¢ oo (E— )P/ 2(p—1) ¢
ifmdswa o Dt t{¢sds)_

(15) LB

as — 2P ds

p)l/p

S

< L(cp
Now, by taking (13), (14) and (15) to (12), we deduce that, for ¢ € [tg, tip+1],

L(t) < a1(L,Q,cp,p) - O/ (t —t3.) + Bu(L, ¢y, p f(bsds

where a7 and [, are generic constants.
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Analogously, in order to estimate I5(t), we shall employ HOLDER’s inequality
for v =p/2,u = p/(p — 2) and the above used procedure. Finally,

t
IQ(t) S a2(L7 QJ cpap) : 55)1/2 (t - tk) + ﬁQ(L7Cpap)f¢s dS-
ty
So, from (11) and the estimated values I (t) and I5(t) we conclude that

t
bt < Pop + OBt — ) + B[ psds, tE [thtps], 0<k<n—1,

ty

where a = a(L, Q, ¢p,p) and 8 = B(L,Q, ¢p, p) are generic constants. An applica-
tion of the well-known GRONWALL-BELLMAN’s inequality [2] yields

(16) b1 < (e, + a0t —ty)) - Pt €ty tyya), 0< k<n— L.
By taking ¢ = tx41 in (16), we come to the following recurrence relation:

Gtrsy < [ D1, + @08 P (tpyr —ty) ] P07 0 <k <n— 1.
Since ¢, = Elxg — z{|P = 0, we easily deduce

k-1
(17) o1, < adﬁ/z Z (tiv1 — t;) eBle—ti) < b §fL/2, 0<k<n-1.
i=0

Finally, from (16) it follows that ¢; is uniformly bounded on [tx,txt1], i.e.
there exists a constant H > 0, that is

Gy <H-0P% teltptrn], 0<k<n-—1,

and, therefore, sup ¢; < H - §ﬁ/2.
t€(0,1]

The case p = 2 can be treated similarly. We estimate I(¢) by applying
CAUCHY—SCHWARZ inequality, while the estimation for I»(t) goes directly in the
sense of the L2-stochastic integral isometry. Finally, we come again to the relation
(16). Thus the proof becomes complete. O

In view of the preceding result, it is logical to expect that the sequence of the
approximate solutions {z™,n € N} tends to the solution z as d,, — 0, n — oo, in
the LP-norm. This assertion, as the main goal of the present paper, immediately
follows from the next theorem, which gives an estimation of the speed of this
convergence.

Theorem 1. Let E|xgP < oo for p > 2, the conditions (2) and (3) be satisfied,
and x and =™ be the solutions of the equations (6) and (7) respectively. Then,

E sup |zy —ap|P = O(éﬁ/z), Op, — 0, B — o0.
t€0,1]
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Proof. To prove this assertion, without emphasizing any steps, we shall apply the
previous treatment. Therefore,

p

¢
E sup |z —z}|P < 2”71(E sup ‘f((Fxo)(s) — (Fzg)(s)) ds
t€(0,1] telo,1] '0
¢ p>

J((Gzo)(s) = (Gzg)(s)) duw,

0

+FE sup
tel0,1]

<2 (B|J((Faa)o) ~ (P (o) ds

p

+ep E‘Of1|(Gx0)(s) — (Gap)(s)| ds‘p/z)
1
<2 JE|(Feo)(s) = (Fof)(s)]"ds

+ep JE|(G$0)(3) - (Ga;g)(s)y”ds)

p

1 s
<6PTILP(1 + cp)/ E(|x5 —z2|P 4+ f(fl(s,r, ) — fi1(s,r, xf)) dr
0 0

p) ds

H [ (Fals,rp) = fols,r o)) du,
0
1
<6 1IP(1 + cp)/o (E|a;3 — P
+LP (P + ps?/* ) [Elz, — 2P dr) ds.
0

This, in view of Proposition 2, yields

1 c
FE sup |z — 2P <6P P11+ ¢ (1—|—Lp<7—|— P ))-Hdﬁﬂ
te[o’l]l ¢t =y (1+¢p) iy e

= 0(%%), 5, =0, n— o,

which establishes the theorem. O

LP
Therefore, z" — z as d,, — 0, n — oo.
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