ON A CONVERSE OF JENSEN'S INEQUALITY

S. S. Dragomir

The main aim of this paper is to point out a refinement of the reverse of Jensen's inequality obtained in 1994 by Dragomir and Ionescu.

1. INTRODUCTION

In 1994, S. S. Dragomir and N. M. Ionescu [2], obtained the following reverse of JENSEN's inequality for convex functions:

$$
\begin{equation*}
0 \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq \sum_{i=1}^{n} p_{i} x_{i} f\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} x_{i} \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \tag{1.1}
\end{equation*}
$$

provided that $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ is differentiable convex on $\stackrel{\circ}{I}$ ($\stackrel{\circ}{I}$ is the interior of the interval $I), x_{i} \in \stackrel{\circ}{I}, p_{i}>0(i=1, \ldots, n)$ and $\sum_{i=1}^{n} p_{i}=1$. If f is strictly convex on $\stackrel{\circ}{I}$, then the case of equality holds in (1.1) iff $x_{1}=\cdots=x_{n}$.

For some applications of this result see for example the recent papers [3] and [4].

The main aim of this paper is to point out a refinement of the reverse of Jensen's inequality stated in (1.1).

THE RESULTS

The following inequality holds.
Lemma 1. Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable convex function on $\stackrel{\circ}{I}, x_{i} \in \stackrel{\circ}{I}$, $p_{i}>0\left(i=1, \ldots, n\right.$ with $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leq \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)+\inf _{\substack{0 \\ x \in I}}\left(f(x)-x \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right) . \tag{2.1}
\end{equation*}
$$

Proof. As f is differentiable convex on $\stackrel{\circ}{I}$, then for all $x, y \in \stackrel{\circ}{I}$ we have the inequality:

$$
\begin{equation*}
f(x)-f(y) \geq f^{\prime}(y)(x-y) \tag{2.2}
\end{equation*}
$$

If we choose in (2.2) $y=x_{i}(i=1, \ldots, n)$, multiply with $p_{i}>0$ and sum over i from 1 up to n, we get

$$
f(x)-\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq x \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)
$$

which is clearly equivalent to

$$
\begin{equation*}
f(x)-x \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)+\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right) \geq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in \stackrel{\circ}{I}$.
Taking the infimum over $x \in \stackrel{\circ}{I}$, we deduce (2.1).
The following result concerning a refinement of the Dragomir-Ionescu (1.1) holds.

Theorem 1. With the assumptions of Lemma 1 for f, x_{i}, p_{i}, we have the inequality:

$$
\begin{align*}
0 & \leq \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \tag{2.4}\\
& \leq \inf _{\substack{0 \\
x \in I}}\left(f(x)-x \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right)+\sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \\
& \leq \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} x_{i} \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) .
\end{align*}
$$

Proof. The second inequality in (2.4) follows by the first one in (2.1).
It is obvious that

$$
\inf _{\substack{\circ \\ x \in I}}\left(f(x)-x \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right) \leq f(\bar{x})-\bar{x} \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right),
$$

where $\bar{x}:=\sum_{i=1}^{n} p_{i} x_{i} \in \stackrel{\circ}{I}$, and then the last part of (2.4) is proved.
For applications we may use the following result.
Lemma 2. Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a differentiable, strictly convex function on $\stackrel{\circ}{I}$, $x_{i} \in \stackrel{\circ}{I}, p_{i}>0$ and $\sum_{i=1}^{n} p_{i}=1$. Then we have the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leq \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)+f\left(\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right)\right) \tag{2.5}
\end{equation*}
$$

$$
-\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right) \cdot \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)
$$

where $\left(f^{\prime}\right)^{-1}$ denotes the inverse function of the derivative f^{\prime} defined on $f^{\prime}(I)$.
The case of equality holds in (2.5) iff $x_{1}=\cdots=x_{n}$.
Proof. Define the function $g: \stackrel{\circ}{I} \rightarrow \mathbf{R}, g(x)=f(x)-x \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)$. Obviously, g is differentiable on $\stackrel{\circ}{I}$ and

$$
\begin{equation*}
g^{\prime}(x)=f^{\prime}(x)-\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \tag{2.6}
\end{equation*}
$$

The equation $g^{\prime}(x)=0, x \in \stackrel{\circ}{I}$ is equivalent to

$$
\begin{equation*}
f^{\prime}(x)=\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \tag{2.7}
\end{equation*}
$$

and since $\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \in f^{\prime}(I), f^{\prime}$ is one-to-one, being strictly increasing on $\stackrel{\circ}{I}$, it follows that the equation (2.7) has a unique solution $x_{0} \in \stackrel{\circ}{I}$ which is given by

$$
\begin{equation*}
x_{0}:=\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}(x)\right) \in \stackrel{\circ}{I} \tag{2.8}
\end{equation*}
$$

where $\left(f^{\prime}\right)^{-1}$ is the inverse function of the derivative f^{\prime} defined on $f^{\prime}(I)$.
Taking into account that $g^{\prime}(x)<0$ if $x<x_{0}, x \in \stackrel{\circ}{I}$ and $g^{\prime}(x)>0$ if $x>x_{0}$, $x \in \stackrel{\circ}{I}$, it follows that

$$
\inf _{x \in I}^{x \in I}<g(x)=g\left(x_{0}\right)=f\left(\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right)\right)-\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right) \cdot \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) .
$$

Using (1.1) we deduce (2.5).
The case of equality follows by the strict convexity of $\stackrel{\circ}{I}$ and we omit the details.

We can now state the following refinement of the Dragomir-Ionescu result (1.1).

Theorem 2. Let f, x_{i}, p_{i} be as in Lemma 2. Then we have the inequality

$$
\begin{align*}
0 \leq & \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \tag{2.9}\\
\leq & \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)+f\left(\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right)\right) \\
& \quad-\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right) \cdot \sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \\
\leq & \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)-\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \sum_{i=1}^{n} p_{i} x_{i} .
\end{align*}
$$

The equality holds in (2.9) iff $x_{1}=\cdots=x_{n}$.
The proof is obvious by Theorem 1 Lemma 2.
Remark. We note that with the assumptions in Lemma 2, we have the double inequality

$$
\begin{align*}
f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq & \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leq \sum_{i=1}^{n} p_{i} x_{i} f^{\prime}\left(x_{i}\right)+f\left(\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right)\right) \tag{2.10}\\
& -\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right) \cdot\left(f^{\prime}\right)^{-1}\left(\sum_{i=1}^{n} p_{i} f^{\prime}\left(x_{i}\right)\right.
\end{align*}
$$

with equality iff $x_{1}=\cdots=x_{n}$.
If g is differentiable and strictly concave, then

$$
\begin{align*}
g\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \geq & \sum_{i=1}^{n} p_{i} g\left(x_{i}\right) \geq \sum_{i=1}^{n} p_{i} x_{i} g^{\prime}\left(x_{i}\right)+g\left(-\left(g^{\prime}\right)^{-1}\left(-\sum_{i=1}^{n} p_{i} g^{\prime}\left(x_{i}\right)\right)\right) \tag{2.11}\\
& +\sum_{i=1}^{n} p_{i} g^{\prime}\left(x_{i}\right) \cdot\left(g^{\prime}\right)^{-1}\left(-\sum_{i=1}^{n} p_{i} g^{\prime}\left(x_{i}\right)\right)
\end{align*}
$$

with equality iff $x_{1}=\cdots=x_{n}$.
The proof of (2.11) follows by (2.10) choosing $f=-g$.

REFERENCES

1. P. S. Bullen, D. S. Mitrinović, P. M. Vasić: Means and their Inequalities. Kluwer Academic Publishers, 1988.
2. S. S. Dragomir, N. M. Ionescu: Some converse of Jensen's inequality and applications. Anal. Num. Theor. Approx., 23 (1994), 71-78.
3. S. S. Dragomir, C. J. Goh: A counterpart of Jensen's discrete inequality for differentiable convex mappings and applications in information theory. Math. Comput. Modelling, 24(2) (1996), 1-11.
4. S. S. Dragomir, C. J. Goh: A counterpart of Hölders inequality. Mitt. Math. Ges. Hamburg, 16 (1997), 99-106.

School of Communications and Informatics,
(Received January 20, 2001)
Victoria University of Technology,
PO Box 14428,
Melbourne City MC,
Victoria 8001, Australia.
sever@matilda.vu.edu.au
http:rgmia.vu.edu.au/SSDragomirWeb.html

