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SOME PROPERTIES OF TWO LINEAR

OPERATORS

Emil C. Popa

In this paper we study - by means of the “umbral calculus” (see [3], [4],
[5]) and the Tchebicheff polynomials - some properties of the linear ope-
rators Pt = Et sin (

√
1− t2 D), Qt = Et cos (

√
1− t2 D), where Et is the

shift-operator and D-the derivative, for example the relation between Abel
operator A = DEa and the operators Pt and Qt. The author thanks prof.
dr. Alexandru Lupaş for his generous suggestions.

1. INTRODUCTION

Let us denote by Π the (complex) linear space of all polynomials with real
coefficients. Let us put in evidence some operators Π → Π. For instance, I is the
identity, D-the derivative, Ea is the shift-operator (Eaf)(x) = f(x + a).

It is known that (see [3])

(1.1)
(
e(t+i

√
1−t2 )Df

)
(x0) = f(x0 + t + i

√
1− t2 ),

where f ∈ Π, x0, t ∈ R, |t| < 1.

We have

(1.2) f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )

=
(
etD(cos

√
1− x2 D + i sin

√
1− t2 D)f

)
(x0)

−
(
etD(cos

√
1− x2 D − i sin

√
1− t2 D)f

)
(x0)

= 2i
(
(etD sin

√
1− t2 D)f

)
(x0)

and

(1.3) f(x0 + t+ i
√

1− t2 )+ f(x0 + t− i
√

1− t2 ) = 2
(
(etD cos

√
1− t2 D)f

)
(x0).
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Now, it is natural to consider the delta-operator Pt = Et sin (
√

1− t2 D) and
the linear operator Qt = Et cos (

√
1− t2 D).

In the following we study some properties of the linear operators Pt and Qt.

2. THE DELTA–OPERATOR Pt

We consider the Taylor expansion f(x) =
∑
k≥0

ak(x− x0)k with ak =

f (k)(x0)
k!

.

We observe that

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

=
∑
k≥1

ak
(t + i

√
1− t2 )k − (t− i

√
1− t2 )k

2

and noting ϕ̃ = arccos t, ϕ̃ ∈ (0, π), we obtain

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

= i
∑
k≥1

ak sin kϕ̃.

Further, let Uk denotes Tchebicheff polynomials of the second kind

Uk =
sin

(
(k + 1) arccos t

)
(k + 1) sin (arccos t)

, k ∈ N, |t| < 1.

We have

f(x0 + t + i
√

1− t2 )− (x0 + t− i
√

1− t2 )
2

= i
∑
k≥1

kak(sin ϕ̃)Uk−1(t)

= i
√

1− t2
∑
k≥0

(k + 1)ak+1Uk(t).

Taking account that
1∫
−1

Uk(t)Uj(t)
√

1− t2 dt = 0 for k 6= j, we get

1∫
−1

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

Uj(t) dt = i (j + 1)aj+1
1
δj

,

where

δ−1
j =

1∫
−1

U 2
j (t)

√
1− t2 dt =

π

2 (j + 1)2
.
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Hence

(j + 1) aj+1 =
1
i

1∫
−1

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

δjUj(t) dt.

Now, according to f ′(x) =
∑
k≥0

(k + 1)ak+1(x− x0)k we have

f ′(x) =
1
i

1∫
−1

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

( ∑
k≥0

δk(x−x0)kUk(t)
)

dt.

Using next the generating relation

2
π

1− x2

(1− 2tx + x2)2
=

∞∑
k=0

δkUk(t)xk (|x| < 1, |t| < 1)

we obtain

f ′(t) =
2
iπ

1∫
−1

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

· 1− (x− x0)2(
1− 2t (x− x0) + (x− x0)2

)2 dt.

Hence

(2.1) f ′(x0 + z) =
2
iπ

1∫
−1

f(x0 + t + i
√

1− t2 )− f(x0 + t− i
√

1− t2 )
2

· 1− z2

(1− 2tz + z2)2
dt.

Further, it is know that the Abel operator A = DEa is a delta-operator and the
basic set for this operator p

(a)
n = x(x − na)n−1, (see [4]). Regarding the relation

between the operators A and Pt, we have

Theorem 1. Suppose that |a| < 1, and f ∈ Π. Then

(2.2) (Af)(x) =
2(1− a2)

π

1∫
−1

(Ptf)(x)
dt

(1− 2ta + a2)2
, so

(2.3) A =
2(1− a2)

π

1∫
−1

1
(1− 2ta + a2)2

Pt dt.
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Proof. It is easy to observe that (2.2) follows from (1.2) and (2.1), with z = a and
x0 = x.

Let us observe that for the Abel polynomials we have

(2.4) p(a)
n (x) =

2(1− a2)
(n + 1)π

1∫
−1

(Ptp
(a)
n+1)(x)

dt

(1− 2ta + a2)2
, |a| < 1.

Corollary. We have

(2.5) (Df)(x) =
2
π

1∫
−1

(Ptf)(x) dt, so

(2.6) D =
2
π

1∫
−1

Pt dt.

Because Pt is a delta-operator we will try to find an expression for the inverse
of this Pincherle derivative.

Theorem 2. If t = cos ϕ̃, ϕ̃ ∈ (0, π), then P ′ −1
t = e−tDcosec

(
ϕ̃I + (sin ϕ̃)D

)
.

Proof. We consider h(t, z) = etz sin (
√

1− t2 z) whence h′z(t, z) = etz sin
(
ϕ̃ +

(sin ϕ̃)z
)
. We find P ′ −1

t = e−tDcosec
(
ϕ̃I + (sin ϕ̃)D

)
.

3. THE LINEAR OPERATOR Qt

It is not difficult to obtain

(3.1)
f(x0 + t + i

√
1− t2 ) + f(x0 + t− i

√
1− t2 )

2

=
∑
k≥0

ak
(t + i

√
1− t2 )k + (t− i

√
1− t2 )k

2
=

∑
k≥0

akTk(t),

where Tn(t) = cos (n arccos t), n ∈ N, |t| < 1, is the Tchebicheff polynomials
of the first kind.

Because
1∫

−1

Tn(t)Tm(t)√
1− t2

dt =

 0 (m 6= n),
π/2 (m = n 6= 0),
π (m = n = 0),

we get from (3.1)

1∫
−1

f(x0 + t + i
√

1− t2 ) + f(x0 + t− i
√

1− t2 )
2

Tj(t)
dt√

1− t2
=

1
γj

aj ,
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where γj = 1/π (j 6= 0) and γj = 2/π (j ≥ 1).
We have

f(x) =

1∫
−1

f(x0 + t + i
√

1− t2 ) + f(x0 + t− i
√

1− t2 )

2

( ∑
k≥0

γk(x− x0)
kTk(t)

)
dt√

1− t2

and using the generating relation

1
π

1− x2

1− 2tx + x2
=

∞∑
k=0

γkTk(t)xk, |x| < 1, |t| < 1

we obtain

(3.2) f(x) =
1
π

1∫
−1

f(x0 + t + i
√

1− t2 ) + f(x0 + t− i
√

1− t2 )
2

· 1− (x− x0)2

1− 2t(x− x0) + (x− x0)2
· dt√

1− t2
.

Hence

(3.3) f(x0 + z) =
1− z2

π

1∫
−1

f(x0 + t + i
√

1− t2 ) + f(x0 + t− i
√

1− t2 )

2 (1− 2tz + z2)
· dt√

1− t2
.

Theorem 3. For |a| < 1 and f ∈ Π, we have

(3.4) (Eaf)(x) =
1− a2

π

1∫
−1

(Qtf)(x)
dt

(1− 2ta + a2)
√

1− t2
, so

(3.5) Ea =
1− a2

π

1∫
−1

1
(1− 2ta + a2)

√
1− t2

Qt dt.

Proof. Immediate from (1.3) and (3.3).

Corollary. If f ∈ Π, then

(3.6) f(x) =
1
π

1∫
−1

(Qtf)(x)
dt√

1− t2
, so

(3.7) I =
1
π

1∫
−1

1√
1− t2

Qt dt.
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Since Qt is an invertible shift-invariant operator, we can consider the delta-
operator Rt = DQt.

Regarding the relation between the Abel operator A = DEa and Rt we have

Theorem 4. For |a| < 1,

(3.8) (Af)(x) =
1− a2

π

1∫
−1

(Rtf)(x)
dt

(1− 2ta + a2)
√

1− t2
.

Proof. Immediate from Theorem 3.

Theorem 5. For f ∈ Π, we have

(3.9)

1∫
−1

(Rtf)(x)
dt√

1− t2
= 2

1∫
−1

(Ptf)(x) dt.

Proof. Immediate from (2.5) and (3.6).

Theorem 6. If t = cos ϕ̃, ϕ̃ ∈ (0, π), then R′ −1
t = g(D), where

g(z) =
e−tz

cos (
√

1− t2 z) + z cos (ϕ̃ +
√

1− t2 z)
.

Proof. We consider h(t, z) = zetz cos (
√

1− t2 z) and hence

h′z(t, z) = etz
(
cos (

√
1− t2 z) + z cos (ϕ̃ +

√
1− t2 z)

)
.

We note with g(z) the formal series

g(z) =
e−tz

cos (
√

1− t2 z) + z cos (ϕ̃ +
√

1− t2 z)

and we have R′ −1
t = g(D).

Theorem 7. For any f ∈ Π, we have

(3.10)

1∫
−1

Pt

( 1∫
−1

(Qtf)(x)
dt√

1− t2

)
(x) dt =

1∫
−1

Qt

( 1∫
−1

(Ptf)(x) dt

)
(x)

dt√
1− t2

.

Proof. Using (2.5) and (3.6) we obtain

1∫
−1

Pt

( 1∫
−1

(Qtf)(x)
dt√

1− t2

)
(x) dt = π

1∫
−1

(Ptf)(x) dt =
π2

2
f ′(x)

=
π

2

1∫
−1

(Qtf
′)(x)

dt√
1− t2

=

1∫
−1

Qt

( 1∫
−1

Ptf(x) dt

)
(x)

dt√
1− t2

Q.E.D.
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Regarding the operator differential equation satisfied by the linear operators
Pt and Qt we have

Theorem 8. The delta-operator Pt and the linear operator Qt satisfies the operator
differential equation in the Pincherle derivative Y ′′ − 2tY ′ + Y = 0.

Proof. We have

P ′t = tPt +
√

1− t2 Qt, Q′t = −
√

1− t2 Pt + tQt

and

P ′′t = tP ′t +
√

1− t2 Q′t = (2t2 − 1)Pt + 2t
√

1− t2 Qt,

Q′′t = −
√

1− t2 P ′t + tQ′t = −2t
√

1− t2 Pt + (2t2 − 1) Qt.

Whence we obtain −2tP ′t + P ′′t = −Pt, −2tQ′t + Q′′t = −Qt.

Hence P ′′t − 2tPt + Pt = 0, Q′′t − 2tQt + Qt = 0.
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