SOME PROPERTIES OF TWO LINEAR OPERATORS

Emil C. Popa

In this paper we study - by means of the "umbral calculus" (see [3], [4], [5]) and the Tchebicheff polynomials - some properties of the linear operators $P_{t}=E^{t} \sin \left(\sqrt{1-t^{2}} D\right), Q_{t}=E^{t} \cos \left(\sqrt{1-t^{2}} D\right)$, where E^{t} is the shift-operator and D-the derivative, for example the relation between AbEL operator $A=D E^{a}$ and the operators P_{t} and Q_{t}. The author thanks prof. dr. Alexandru Lupaş for his generous suggestions.

1. INTRODUCTION

Let us denote by Π the (complex) linear space of all polynomials with real coefficients. Let us put in evidence some operators $\Pi \rightarrow \Pi$. For instance, I is the identity, D-the derivative, E^{a} is the shift-operator $\left(E^{a} f\right)(x)=f(x+a)$.

It is known that (see [3])

$$
\begin{equation*}
\left(e^{\left(t+i \sqrt{1-t^{2}}\right) D} f\right)\left(x_{0}\right)=f\left(x_{0}+t+i \sqrt{1-t^{2}}\right) \tag{1.1}
\end{equation*}
$$

where $f \in \Pi, x_{0}, t \in \mathbf{R},|t|<1$.
We have

$$
\begin{align*}
f\left(x_{0}+t+\right. & \left.i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right) \tag{1.2}\\
= & \left(e^{t D}\left(\cos \sqrt{1-x^{2}} D+i \sin \sqrt{1-t^{2}} D\right) f\right)\left(x_{0}\right) \\
& \quad-\left(e^{t D}\left(\cos \sqrt{1-x^{2}} D-i \sin \sqrt{1-t^{2}} D\right) f\right)\left(x_{0}\right) \\
= & 2 i\left(\left(e^{t D} \sin \sqrt{1-t^{2}} D\right) f\right)\left(x_{0}\right)
\end{align*}
$$

and
(1.3) $f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)+f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)=2\left(\left(e^{t D} \cos \sqrt{1-t^{2}} D\right) f\right)\left(x_{0}\right)$.

[^0]Now, it is natural to consider the delta-operator $P_{t}=E^{t} \sin \left(\sqrt{1-t^{2}} D\right)$ and the linear operator $Q_{t}=E^{t} \cos \left(\sqrt{1-t^{2}} D\right)$.

In the following we study some properties of the linear operators P_{t} and Q_{t}.

2. THE DELTA-OPERATOR P_{t}

We consider the TAYLOR expansion $f(x)=\sum_{k \geq 0} a_{k}\left(x-x_{0}\right)^{k}$ with $a_{k}=$ $\frac{f^{(k)}\left(x_{0}\right)}{k!}$.

We observe that

$$
\begin{aligned}
& \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} \\
& =\sum_{k \geq 1} a_{k} \frac{\left(t+i \sqrt{1-t^{2}}\right)^{k}-\left(t-i \sqrt{1-t^{2}}\right)^{k}}{2}
\end{aligned}
$$

and noting $\widetilde{\varphi}=\arccos t, \widetilde{\varphi} \in(0, \pi)$, we obtain

$$
\frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2}=i \sum_{k \geq 1} a_{k} \sin k \widetilde{\varphi} .
$$

Further, let U_{k} denotes Tchebicheff polynomials of the second kind

$$
U_{k}=\frac{\sin ((k+1) \arccos t)}{(k+1) \sin (\arccos t)}, \quad k \in \mathbf{N}, \quad|t|<1
$$

We have

$$
\begin{aligned}
\frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} & =i \sum_{k \geq 1} k a_{k}(\sin \widetilde{\varphi}) U_{k-1}(t) \\
& =i \sqrt{1-t^{2}} \sum_{k \geq 0}(k+1) a_{k+1} U_{k}(t)
\end{aligned}
$$

Taking account that $\int_{-1}^{1} U_{k}(t) U_{j}(t) \sqrt{1-t^{2}} \mathrm{~d} t=0$ for $k \neq j$, we get

$$
\int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} U_{j}(t) \mathrm{d} t=i(j+1) a_{j+1} \frac{1}{\delta_{j}},
$$

where

$$
\delta_{j}^{-1}=\int_{-1}^{1} U_{j}^{2}(t) \sqrt{1-t^{2}} \mathrm{~d} t=\frac{\pi}{2(j+1)^{2}} .
$$

Hence

$$
(j+1) a_{j+1}=\frac{1}{i} \int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} \delta_{j} U_{j}(t) \mathrm{d} t
$$

Now, according to $f^{\prime}(x)=\sum_{k \geq 0}(k+1) a_{k+1}\left(x-x_{0}\right)^{k}$ we have
$f^{\prime}(x)=\frac{1}{i} \int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2}\left(\sum_{k \geq 0} \delta_{k}\left(x-x_{0}\right)^{k} U_{k}(t)\right) \mathrm{d} t$.
Using next the generating relation

$$
\frac{2}{\pi} \frac{1-x^{2}}{\left(1-2 t x+x^{2}\right)^{2}}=\sum_{k=0}^{\infty} \delta_{k} U_{k}(t) x^{k} \quad(|x|<1,|t|<1)
$$

we obtain

$$
\begin{array}{r}
f^{\prime}(t)=\frac{2}{i \pi} \int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} \\
\cdot \frac{1-\left(x-x_{0}\right)^{2}}{\left(1-2 t\left(x-x_{0}\right)+\left(x-x_{0}\right)^{2}\right)^{2}} \mathrm{~d} t
\end{array}
$$

Hence

$$
\begin{array}{r}
f^{\prime}\left(x_{0}+z\right)=\frac{2}{i \pi} \int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)-f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} \tag{2.1}\\
\cdot \frac{1-z^{2}}{\left(1-2 t z+z^{2}\right)^{2}} \mathrm{~d} t
\end{array}
$$

Further, it is know that the Abel operator $A=D E^{a}$ is a delta-operator and the basic set for this operator $p_{n}^{(a)}=x(x-n a)^{n-1}$, (see [4]). Regarding the relation between the operators A and P_{t}, we have

Theorem 1. Suppose that $|a|<1$, and $f \in \Pi$. Then

$$
\begin{equation*}
(A f)(x)=\frac{2\left(1-a^{2}\right)}{\pi} \int_{-1}^{1}\left(P_{t} f\right)(x) \frac{\mathrm{d} t}{\left(1-2 t a+a^{2}\right)^{2}} \text {, so } \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
A=\frac{2\left(1-a^{2}\right)}{\pi} \int_{-1}^{1} \frac{1}{\left(1-2 t a+a^{2}\right)^{2}} P_{t} \mathrm{~d} t \tag{2.3}
\end{equation*}
$$

Proof. It is easy to observe that (2.2) follows from (1.2) and (2.1), with $z=a$ and $x_{0}=x$.

Let us observe that for the ABEL polynomials we have

$$
\begin{equation*}
p_{n}^{(a)}(x)=\frac{2\left(1-a^{2}\right)}{(n+1) \pi} \int_{-1}^{1}\left(P_{t} p_{n+1}^{(a)}\right)(x) \frac{\mathrm{d} t}{\left(1-2 t a+a^{2}\right)^{2}}, \quad|a|<1 . \tag{2.4}
\end{equation*}
$$

Corollary. We have

$$
\begin{align*}
(D f)(x) & =\frac{2}{\pi} \int_{-1}^{1}\left(P_{t} f\right)(x) \mathrm{d} t, \text { so } \tag{2.5}\\
D & =\frac{2}{\pi} \int_{-1}^{1} P_{t} \mathrm{~d} t \tag{2.6}
\end{align*}
$$

Because P_{t} is a delta-operator we will try to find an expression for the inverse of this Pincherle derivative.
Theorem 2. If $t=\cos \widetilde{\varphi}, \widetilde{\varphi} \in(0, \pi)$, then $P_{t}^{\prime-1}=e^{-t D} \operatorname{cosec}(\widetilde{\varphi} I+(\sin \widetilde{\varphi}) D)$.
Proof. We consider $h(t, z)=e^{t z} \sin \left(\sqrt{1-t^{2}} z\right)$ whence $h_{z}^{\prime}(t, z)=e^{t z} \sin (\widetilde{\varphi}+$ $(\sin \widetilde{\varphi}) z)$. We find $P_{t}^{\prime-1}=e^{-t D} \operatorname{cosec}(\widetilde{\varphi} I+(\sin \widetilde{\varphi}) D)$.

3. THE LINEAR OPERATOR Q_{t}

It is not difficult to obtain

$$
\begin{align*}
& \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)+f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} \tag{3.1}\\
& \quad=\sum_{k \geq 0} a_{k} \frac{\left(t+i \sqrt{1-t^{2}}\right)^{k}+\left(t-i \sqrt{1-t^{2}}\right)^{k}}{2}=\sum_{k \geq 0} a_{k} T_{k}(t)
\end{align*}
$$

where $T_{n}(t)=\cos (n \arccos t), n \in \mathbf{N},|t|<1$, is the TChebicheff polynomials of the first kind.

Because

$$
\int_{-1}^{1} \frac{T_{n}(t) T_{m}(t)}{\sqrt{1-t^{2}}} \mathrm{~d} t= \begin{cases}0 & (m \neq n) \\ \pi / 2 & (m=n \neq 0) \\ \pi & (m=n=0)\end{cases}
$$

we get from (3.1)

$$
\int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)+f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} T_{j}(t) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}=\frac{1}{\gamma_{j}} a_{j}
$$

where $\gamma_{j}=1 / \pi(j \neq 0)$ and $\gamma_{j}=2 / \pi(j \geq 1)$.
We have
$f(x)=\int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)+f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2}\left(\sum_{k \geq 0} \gamma_{k}\left(x-x_{0}\right)^{k} T_{k}(t)\right) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}$
and using the generating relation

$$
\frac{1}{\pi} \frac{1-x^{2}}{1-2 t x+x^{2}}=\sum_{k=0}^{\infty} \gamma_{k} T_{k}(t) x^{k}, \quad|x|<1, \quad|t|<1
$$

we obtain

$$
\begin{align*}
f(x)=\frac{1}{\pi} & \int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)+f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2} \tag{3.2}\\
& \cdot \frac{1-\left(x-x_{0}\right)^{2}}{1-2 t\left(x-x_{0}\right)+\left(x-x_{0}\right)^{2}} \cdot \frac{\mathrm{~d} t}{\sqrt{1-t^{2}}} .
\end{align*}
$$

Hence
(3.3) $f\left(x_{0}+z\right)=\frac{1-z^{2}}{\pi} \int_{-1}^{1} \frac{f\left(x_{0}+t+i \sqrt{1-t^{2}}\right)+f\left(x_{0}+t-i \sqrt{1-t^{2}}\right)}{2\left(1-2 t z+z^{2}\right)} \cdot \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}$.

Theorem 3. For $|a|<1$ and $f \in \Pi$, we have

$$
\begin{align*}
\left(E^{a} f\right)(x) & =\frac{1-a^{2}}{\pi} \int_{-1}^{1}\left(Q_{t} f\right)(x) \frac{\mathrm{d} t}{\left(1-2 t a+a^{2}\right) \sqrt{1-t^{2}}}, \text { so } \tag{3.4}\\
E^{a} & =\frac{1-a^{2}}{\pi} \int_{-1}^{1} \frac{1}{\left(1-2 t a+a^{2}\right) \sqrt{1-t^{2}}} Q_{t} \mathrm{~d} t .
\end{align*}
$$

Proof. Immediate from (1.3) and (3.3).
Corollary. If $f \in \Pi$, then

$$
\begin{gather*}
f(x)=\frac{1}{\pi} \int_{-1}^{1}\left(Q_{t} f\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}, \text { so } \tag{3.6}\\
I=\frac{1}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} Q_{t} \mathrm{~d} t . \tag{3.7}
\end{gather*}
$$

Since Q_{t} is an invertible shift-invariant operator, we can consider the deltaoperator $R_{t}=D Q_{t}$.

Regarding the relation between the AbEL operator $A=D E^{a}$ and R_{t} we have Theorem 4. For $|a|<1$,

$$
\begin{equation*}
(A f)(x)=\frac{1-a^{2}}{\pi} \int_{-1}^{1}\left(R_{t} f\right)(x) \frac{\mathrm{d} t}{\left(1-2 t a+a^{2}\right) \sqrt{1-t^{2}}} \tag{3.8}
\end{equation*}
$$

Proof. Immediate from Theorem 3.
Theorem 5. For $f \in \Pi$, we have

$$
\begin{equation*}
\int_{-1}^{1}\left(R_{t} f\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}=2 \int_{-1}^{1}\left(P_{t} f\right)(x) \mathrm{d} t \tag{3.9}
\end{equation*}
$$

Proof. Immediate from (2.5) and (3.6).
Theorem 6. If $t=\cos \widetilde{\varphi}, \widetilde{\varphi} \in(0, \pi)$, then $R_{t}^{\prime-1}=g(D)$, where

$$
g(z)=\frac{e^{-t z}}{\cos \left(\sqrt{1-t^{2}} z\right)+z \cos \left(\widetilde{\varphi}+\sqrt{1-t^{2}} z\right)}
$$

Proof. We consider $h(t, z)=z e^{t z} \cos \left(\sqrt{1-t^{2}} z\right)$ and hence

$$
h_{z}^{\prime}(t, z)=e^{t z}\left(\cos \left(\sqrt{1-t^{2}} z\right)+z \cos \left(\widetilde{\varphi}+\sqrt{1-t^{2}} z\right)\right)
$$

We note with $g(z)$ the formal series

$$
g(z)=\frac{e^{-t z}}{\cos \left(\sqrt{1-t^{2}} z\right)+z \cos \left(\widetilde{\varphi}+\sqrt{1-t^{2}} z\right)}
$$

and we have $R_{t}^{\prime-1}=g(D)$.
Theorem 7. For any $f \in \Pi$, we have

$$
\begin{equation*}
\int_{-1}^{1} P_{t}\left(\int_{-1}^{1}\left(Q_{t} f\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}\right)(x) \mathrm{d} t=\int_{-1}^{1} Q_{t}\left(\int_{-1}^{1}\left(P_{t} f\right)(x) \mathrm{d} t\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}} \tag{3.10}
\end{equation*}
$$

Proof. Using (2.5) and (3.6) we obtain

$$
\begin{aligned}
& \int_{-1}^{1} P_{t}\left(\int_{-1}^{1}\left(Q_{t} f\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}\right)(x) \mathrm{d} t=\pi \int_{-1}^{1}\left(P_{t} f\right)(x) \mathrm{d} t=\frac{\pi^{2}}{2} f^{\prime}(x) \\
& =\frac{\pi}{2} \int_{-1}^{1}\left(Q_{t} f^{\prime}\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}}=\int_{-1}^{1} Q_{t}\left(\int_{-1}^{1} P_{t} f(x) \mathrm{d} t\right)(x) \frac{\mathrm{d} t}{\sqrt{1-t^{2}}} \quad \text { Q.E.D. }
\end{aligned}
$$

Regarding the operator differential equation satisfied by the linear operators P_{t} and Q_{t} we have
Theorem 8. The delta-operator P_{t} and the linear operator Q_{t} satisfies the operator differential equation in the Pincherle derivative $Y^{\prime \prime}-2 t Y^{\prime}+Y=0$.
Proof. We have

$$
P_{t}^{\prime}=t P_{t}+\sqrt{1-t^{2}} Q_{t}, \quad Q_{t}^{\prime}=-\sqrt{1-t^{2}} P_{t}+t Q_{t}
$$

and

$$
\begin{aligned}
& P_{t}^{\prime \prime}=t P_{t}^{\prime}+\sqrt{1-t^{2}} Q_{t}^{\prime}=\left(2 t^{2}-1\right) P_{t}+2 t \sqrt{1-t^{2}} Q_{t} \\
& Q_{t}^{\prime \prime}=-\sqrt{1-t^{2}} P_{t}^{\prime}+t Q_{t}^{\prime}=-2 t \sqrt{1-t^{2}} P_{t}+\left(2 t^{2}-1\right) Q_{t}
\end{aligned}
$$

Whence we obtain $-2 t P_{t}^{\prime}+P_{t}^{\prime \prime}=-P_{t}, \quad-2 t Q_{t}^{\prime}+Q_{t}^{\prime \prime}=-Q_{t}$.
Hence $P_{t}^{\prime \prime}-2 t P_{t}+P_{t}=0, \quad Q_{t}^{\prime \prime}-2 t Q_{t}+Q_{t}=0$.

REFERENCES

1. D. S. Mitrinović: Specijalne funkcije-Zbornik zadataka i problema. Beograd, 1972.
2. D. Rainville: Special functions. Mac Millan, New York, 1960.
3. S. Roman, G-C. Rota: The umbral calculus. Advances in Mathematics, 27 (2) (1978), 95-188.
4. S. Roman: The umbral calculus. Academic Press, New York, 1984.
5. G-C. Rota, D. Kahaner, A. Odlyzko: Finite operators calculus. Journal of Mathematical Analysis and Applications, 42 (3) (1979), 685-760.
"Lucian Blaga" University of Sibiu,
Department of Mathematics,
I. Raţiu, No. 5-7, 2400 Sibiu,

România

[^0]: 2000 Mathematics Subject Classification: 05A40, 33C25
 Keywords and Phrases: delta-operator; Tchebicheff polynomials; Abel operator; Pincherle derivative.

