ON APPROXIMATIVE SOLUTIONS OF SOME DIFFERENTIAL EQUATIONS BY MEANS OF BERNSTEIN POLYNOMIALS

Tomica R. Divnić

In this paper, we give the estimation of the approximation of the differential equation solution

$$
y^{\prime \prime}=f(x, y), \quad y(0)=y^{\prime}(0)=0, \quad x \in[0, h]
$$

where $f(x, y) \in A N^{1}$, by the use of the Bernstein's polynomial

$$
B_{n}[\varphi(t) ; x]=\frac{1}{h^{n}} \sum_{k=0}^{n} \varphi\left(k \frac{h}{n}\right)\binom{n}{k} x^{k}(h-x)^{n-k}
$$

where $\varphi(t) \in L^{\infty}[0, h]$.

Let $D=\{(x, y): 0 \leq x \leq h,|y| \leq a\}$. Denote by $A N^{1}$ (see $\left.[\mathbf{1}]\right)$ the class of all functions $f(x, y)$ such that $f(x, y)$ is countinuous on D and by the second coordinate satisfying the LIPSCHITZ condition with the constant A :

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq A\left|y_{1}-y_{2}\right| .
$$

On the segment $[0, h]$, Bernstein polynomials are of the form:

$$
B_{n}[\varphi(t) ; x]=\frac{1}{h^{n}} \sum_{k=0}^{n} \varphi\left(k \frac{h}{n}\right)\binom{n}{k} x^{k}(h-x)^{n-k},
$$

where $\varphi(t) \in L^{\infty}[0, h]$.
We consider the equation of the following form

$$
\begin{equation*}
y^{\prime \prime}=f(x, y), \quad y(0)=y^{\prime}(0)=0, \quad x \in[0, h] \tag{1}
\end{equation*}
$$

where $f(x, y) \in A N^{1}$. We give this equation (1) in the integral form:

$$
y(x)=\int_{0}^{x}(x-t) f(t, y(t)) \mathrm{d} t
$$

The method for the approximate solution of ordinary differential equations by the use of linear operators was introduced by V. K. Dziadik in [1]. By following that method, we take BERNSTEIN polynomials, as an example of linear operators, and we look for the approximate solution of the equation (1) by the use of the equation

$$
\begin{equation*}
\tilde{y}_{n}(x)=B_{n}\left[\int_{0}^{\xi}(\xi-t) f\left[t, \tilde{y}_{n}(t)\right] \mathrm{d} t ; x\right] . \tag{2}
\end{equation*}
$$

We give the result, without the proof, given by B. B. Krochuk in [2], about the approximation of the solution of the differential equation (1), where BERNSTEIN polynomials are used.

Theorem A. For the arbitrary equation of the form (1), where $f(x, y) \in A N^{1}$ and arbitrary number h, such that the equation (2) is solvable on the segment $[0, h]$, the polynomial $\tilde{y}_{n}(x)$ which is the solution of that equation, approximates on $[0, h]$ the solution $y(x)$ of the equation (1) and the inequality

$$
\begin{equation*}
\left\|y(x)-\tilde{y}_{n}(x)\right\|_{C} \leq\left(1+\alpha_{n}\right)\left\|y(x)-B_{n}[y(t) ; x]\right\|_{C} e^{A h^{2}} \tag{3}
\end{equation*}
$$

is valid, where

$$
\alpha_{n}=\frac{A h^{2} e^{A h^{2}}}{8 n-A h^{2} e^{A h^{2}}}
$$

In this paper, we get different results. In the proof we use the following characteristic of the BERNSTEIN polynomial.

Lema 1. Let $\varphi_{1}(x), \varphi_{2}(x) \in C_{[0, h]}$. Then, for each $n \in \mathbf{N}$, holds:

$$
\left|B_{n}\left[\varphi_{1}(t) ; x\right]-B_{n}\left[\varphi_{2}(t) ; x\right]\right| \leq\left\|\varphi_{1}(x)-\varphi_{2}(x)\right\|_{C}
$$

Proof.

$$
\begin{aligned}
\left|B_{n}\left[\varphi_{1}(t) ; x\right]-B_{n}\left[\varphi_{2}(t) ; x\right]\right|= & \left\lvert\, \frac{1}{h^{n}} \sum_{k=0}^{n} \varphi_{1}\left(k \frac{h}{n}\right)\binom{n}{k} x^{k}(h-x)^{n-k}\right. \\
& \left.-\frac{1}{h^{n}} \sum_{k=0}^{n} \varphi_{2}\left(k \frac{h}{n}\right)\binom{n}{k} x^{k}(h-x)^{n-k} \right\rvert\, \\
= & \left|\frac{1}{h^{n}} \sum_{k=0}^{n}\left[\varphi_{1}\left(k \frac{h}{n}\right)-\varphi_{2}\left(k \frac{h}{n}\right)\right]\binom{n}{k} x^{k}(h-x)^{n-k}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{h^{n}} \sum_{k=0}^{n}\left|\varphi_{1}\left(k \frac{h}{n}\right)-\varphi_{2}\left(k \frac{h}{n}\right)\right|\binom{n}{k} x^{k}(h-x)^{n-k} \\
& \leq\left\|\varphi_{1}(x)-\varphi_{2}(x)\right\| \frac{1}{h^{n}} \sum_{k=0}^{n}\binom{n}{k} x^{k}(h-x)^{n-k} \\
& =\left\|\varphi_{1}(x)-\varphi_{2}(x)\right\| . \quad \square
\end{aligned}
$$

Now, we give the main result of this paper.
Theorem 1. For the arbitrary equation of the form (1), where $f(x, y) \in A N^{1}$ and arbitrary number h, such that the equation (2) is solvable on the segment $[0, h]$, the polynomial $\tilde{y}_{n}(x)$, which is the solution of that equation, approximates on $[0, h]$ the solution $y(x)$ of the equation (1) and the inequality

$$
\begin{equation*}
\left\|y(x)-\tilde{y}_{n}(x)\right\|_{C} \leq(1+\alpha)\left\|y(x)-B_{n}[y(t) ; x]\right\|_{C} \tag{4}
\end{equation*}
$$

is valid, where

$$
\alpha= \begin{cases}\frac{\eta}{2-\eta}, & \eta \stackrel{\text { def }}{=} A h^{2}<2 \\ \infty, & \eta \geq 2\end{cases}
$$

Proof.

$$
\begin{aligned}
\left|y(x)-\tilde{y}_{n}(x)\right| & =\left|y(x)-B_{n}[y(t) ; x]+B_{n}[y(t) ; x]-\tilde{y}_{n}(x)\right| \\
& \leq\left|y(x)-B_{n}[y(t) ; x]\right| \\
& +\left|B_{n}\left[\int_{0}^{\xi}(\xi-t) f[t, y(t)] \mathrm{d} t ; x\right]-B_{n}\left[\int_{0}^{\xi}(\xi-t) f\left[t, \tilde{y}_{n}(t)\right] \mathrm{d} t ; x\right]\right| \\
& \leq\left|y(x)-B_{n}[y(t) ; x]\right| \\
& +\left\|\int_{0}^{x}(x-t) f[t, y(t)] d t-\int_{0}^{x}(x-t) f\left[t, \tilde{y}_{n}(t)\right] \mathrm{d} t\right\| \\
& =\left|y(x)-B_{n}[y(t) ; x]\right|+\left\|\int_{0}^{x}(x-t)\left(f[t, y(t)]-f\left[t, \tilde{y}_{n}(t)\right]\right) \mathrm{d} t\right\| \\
& \leq\left\|y(x)-B_{n}[y(t) ; x]\right\|+\int_{0}^{h}(h-t)\left\|f[t, y(t)]-f\left[t, \tilde{y}_{n}(t)\right]\right\| \mathrm{d} t \\
& \leq\left\|y(x)-B_{n}[y(t) ; x]\right\|+A\left\|y(t)-\tilde{y}_{n}(t)\right\| \int_{0}^{h}(h-t) \mathrm{d} t \\
& =\left\|y(x)-B_{n}[y(t) ; x]\right\|+A\left\|y(t)-\tilde{y}_{n}(t)\right\| \frac{h^{2}}{2} .
\end{aligned}
$$

Since the previous calculation holds for every $x \in[0, h]$, it follows that:

$$
\left\|y(x)-\tilde{y}_{n}(x)\right\| \leq\left\|y(x)-B_{n}[y(t) ; x]\right\|+\frac{A h^{2}}{2}\left\|y(x)-\tilde{y}_{n}(x)\right\|
$$

and therefore

$$
\left\|y(x)-\tilde{y}_{n}(x)\right\| \leq \frac{1}{1-\frac{A h^{2}}{2}}\left\|y(x)-B_{n}[y(t) ; x]\right\| .
$$

This proves the theorem.
Remark. Operational equation (2) is solvable for $A h^{2}<2$ (see [2]).
Next we compare the results (3) and (4). Notice that

$$
e^{A h^{2}}\left\|y(x)-B_{n}[y(t) ; x]\right\| \leq\left(1+\alpha_{n}\right)\left\|y(x)-B_{n}[y(t) ; x]\right\| e^{A h^{2}}
$$

for $\alpha_{n} \geq 0(n \geq 2)$. Compare the left side with the right side of the inequality (4). What is larger: $e^{A h^{2}}$ or $\frac{1}{1-\frac{A h^{2}}{2}}$? Let $x=A h^{2}, g(x)=e^{x}-\frac{1}{1-\frac{x}{2}}$ and $0<x<2$.
Then it is easy to prove that $g(x)>0$ for $x \in] 0, \xi_{0}\left[\right.$ where $\xi_{0} \approx 1,60$.
Therefore, we get that $e^{A h^{2}}$ is greater than $\frac{1}{1-\frac{A h^{2}}{2}}$ for $\left.A h^{2} \in\right] 0, \xi_{0}[$ which shows that the estimation (4) is better than estimation (3) on the interval $] 0, \xi_{0}[$.

REFERENCES

1. В. К. Дзядик: О применении линейных методов к приближению полиномами решений обыкновенных дифференциальных уравнений и интегральных уравнений Гаммерштейна. Изв. АН СССР, т. 34, No 4 (1970), 827-848.
2. Б. Б. Крочук: К вопросу о сходимости аппроксимационного метода решения дифференциальных уравнений, построенных на базе полиномов Бернштейна. Изд. Инст. мат. АН УССР (1976), 61-96.
3. В. К. Дзядик: О применении линейных операторов к приближенному решений обыкновенных дифференциальных уравнений. Изд. Инст. мат. АН УССР (1976), 61-96.
