TRANSFER MATRICES OF N-DIMENSIONAL SIERPINSKI TETRAHEDRON

Jin Bai Kim, Hyun Sook Kim

Abstract

We present the transfer matrix $M=\left(m_{i}^{j}\right)$ of n-dimensional SIERPINSKI tetrahedron and show that the Fractal dimension of the n-dimensional SierpinSKI tetrahedron is equal to $\ln (n+1) / \ln 2$ in connection with the matrix $M=\left(m_{i}^{j}\right)$.

1. INTRODUCTION

Mandelbrot, Gefent, Aharony and Peyriere [4] introduced transfer matrices of fractals. In [4], it was shown that when two transfer matrices of a fractal coming from related geometric constructions are diagonalizable.

Wen [6] considered also diagonalizability of transfer matrices of fractals. Nenska-Ficek [3] considered duality of fractals and the dual of Sierpinski gasket. Kim-Kim [2] studied the fractal dimension of an n-dimensional Sierpinski tetrahedron.

In this paper we construct transfer matrices of n-dimensional Sierpinski tetrahedron, denoting it by n, and discuss the fractal dimension of n. We also consider the dual Sierpinski gasket.

2. AN EXAMPLE OF TRANSFER MATRIX OF SIERPINSKI GASKET

In this section, we give an example of transfer matrix of Sierpinski gasket.
(1) We define two sets $S=\{1,2,3\}$ and $E=\{w, e, s\}$. We define two mappings τ and ϕ as follows: $\tau(1)=\{s\}, \tau(2)=\{e\}, \tau(3)=\{w\}, \phi(1)=\{w, e\}$, $\phi(2)=\{w, s\}$ and $\phi(3)=\{e, s\}$, in connection with two triangles:

[^0]$\Delta(0) \equiv$

$\Delta(1) \equiv$

We define I_{i} and J_{i} as follows: $I_{i}=J_{i}(i=1,2,3,4,5,6,7), I_{1}=\{w\}$, $I_{2}=\{e\}, I_{3}=\{s\}, I_{4}=\{w, e\}, I_{5}=\{w, s\}, I_{6}=\{e, s\}, I_{7}=\{w, e, s\}$.
Notation 1. We define a matrix $M(\triangle(1))=\left(m_{i j}\right)$ by

$$
m_{i}^{j}=\left|\left\{s \in S: \tau(s)^{\cup}\left(I_{i}^{\cap} \phi(s)\right)=J_{j}\right\}\right| .
$$

(We also use m_{I}^{J} and $m_{I_{i}}^{J_{j}}$ instead of m_{i}^{j} in case no confusion is possible). We can see that $m_{1}{ }^{1}=1$ and $m_{1}{ }^{2}=0$.

We can obtain $M(\triangle(1))=\left(m_{i}^{j}\right)$ as follows:

$$
M(\triangle(1))=\left(m_{i}^{j}\right)=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

$\left(J_{1} J_{2} J_{3} J_{4} J_{5} J_{6} J_{7}\right)$ is referring columns of the above matrix.
(2) We define a set E as $E=\{w, s, e\}$ and a set $S=\{1,2,3,4,5,6,7,8,9\}$.
$\triangle(2)$ is the symbol of the right picture:
We define τ as follows: $\tau(1)=\{s\}, \tau(2)=$ $\{s, e\}, \tau(3)=\{s, e\}, \tau(4)=\{e\}, \tau(5)=\{w, s\}$, $\tau(6)=\{w, e\}, \tau(7)=\{w, s\}, \tau(8)=\{w, e\}$, $\tau(9)=\{w\}$.
Definition 1. Let F be a subset of E. We define $F^{\perp}=\{t \in E: t \notin F\}$ and we call it the complementary subset of F for E. We may write $F \oplus F^{\perp}=E$.

We define a mapping ϕ by $\phi(t)=\{\tau(t)\}^{\perp} . I_{i}$ and J_{i} are defined as in (1). We use $m_{i}{ }^{j}$ defined as before and we can see the following the transfer matrix $M(\triangle(2))$:

$$
M(\triangle(2))=\left[\begin{array}{lllllll}
1 & 0 & 0 & 3 & 3 & 0 & 2 \\
0 & 1 & 0 & 3 & 0 & 3 & 2 \\
0 & 0 & 1 & 0 & 3 & 3 & 2 \\
0 & 0 & 0 & 4 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 4 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 9
\end{array}\right]
$$

(3) We consider $\triangle(3)$:

(The picture of $\triangle(3)$ may be called the 3 rd step figure of SIERPINSKI triangle or gasket π).

We define E as before and define $S=\{1,2,3, \ldots, 27\} . I_{i}$ and J_{i} are defined as in (1). We define τ as follows:

$$
\begin{aligned}
& \tau(1)=\{s\}, \tau(2)=\tau(3)=\tau(4)=\tau(5)=\tau(6)=\tau(7)=\{e, s\}, \tau(8)=\{e\}, \\
& \tau(9)=\tau(13)=\tau(17)=\tau(19)=\tau(23)=\tau(25)=\{w, s\} \\
& \tau(10)=\tau(11)=\tau(20)=\tau(21)=\tau(14)=\tau(16)=\{w, e, s\}=E \\
& \tau(12)=\tau(16)=\tau(18)=\tau(22)=\tau(24)=\tau(26)=\{w, e\}, \tau(27)=\{w\}
\end{aligned}
$$

We define $\varphi(t)$ as $\{\tau(t)\}^{\perp}$. In this case $m_{i}{ }^{j}$ is given by

$$
m_{i}{ }^{j}=\left|\left\{s \in S: \tau(s) \cup\left(I_{i} \cap \varphi(s)\right)=J_{j}\right\}\right| .
$$

For $I_{1}=\{w\}=J_{1}$, we can see that the only choice is $\tau(27)=\{w\}$ and $m_{1}{ }^{1}=1$. We can see that J_{1} and $I_{i}(i \neq 1)$ make $m_{i}{ }^{1}=0$. This way we may obtain
the following:

$$
M(\triangle(3))=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 7 & 7 & 0 & 12 \\
0 & 1 & 0 & 7 & 0 & 7 & 12 \\
0 & 0 & 1 & 0 & 7 & 7 & 12 \\
0 & 0 & 0 & 8 & 0 & 0 & 19 \\
0 & 0 & 0 & 0 & 8 & 0 & 19 \\
0 & 0 & 0 & 0 & 0 & 8 & 19 \\
0 & 0 & 0 & 0 & 0 & 0 & 27
\end{array}\right]
$$

3. A PROPOSITION

In this section, we prove a proposition for Sierpinski triangle or gasket. Let $\triangle(n)$ be the n-step figure of Sierpinski triangle. Let $E=\{w, e, s\}$ be a set of three elements referring $\triangle(0)$. We let $S=\left\{1,2,3, \ldots, 3^{n}\right\}$ and define $\tau(t)$ by the usual way for $\triangle(n)$. We define $\varphi(t)$ by $\varphi(t)=\{\varphi(t)\}^{-1}$. We define $I_{i}=J_{i}$ as we defined in the section 2 . We use $m_{i}{ }^{j}$ which is defined in the section 2.

Proposition 1. The n-th step figure of Sierpinski triangle $\triangle(n)$ has the following transfer matrix $M(\triangle(n))=\left(m_{i}{ }^{j}\right)$ of $\triangle(n)$:

$$
M(\triangle(n))=\left[\begin{array}{lllllll}
1 & 0 & 0 & 2^{n}-1 & 2^{n}-1 & 0 & 3^{n}-2^{n+1}+1 \\
0 & 1 & 0 & 2^{n}-1 & 0 & 2^{n}-1 & 3^{n}-2^{n+1}+1 \\
0 & 0 & 1 & 0 & 2^{n}-1 & 2^{n}-1 & 3^{n}-2^{n+1}+1 \\
0 & 0 & 0 & 2^{n} & 0 & 0 & 3^{n}-2^{n} \\
0 & 0 & 0 & 0 & 2^{n} & 0 & 3^{n}-2^{n} \\
0 & 0 & 0 & 0 & 0 & 2^{n} & 3^{n}-2^{n} \\
0 & 0 & 0 & 0 & 0 & 0 & 3^{n}
\end{array}\right]
$$

Proof. (i) We apply the method used in the chapter 2 and obtain (1000000) ${ }^{T}$ as the first column of the matrix, where T denotes the symbol of transpose. Similarly, we can prove that the second column of the matrix is $(0100000)^{T}$ and the third column of the matrix is $(0010000)^{T}$.
(ii) We consider $m_{4}{ }^{4}$. If $\triangle(3)$ is the case $(n=3)$, we know that $m_{4}{ }^{4}=2^{3}=8$ by the example and hence it is justified for $n=3$. If $n=4$, there exist 2^{4} triangles each of which has s mark and $\tau(t) \cup(\{w, e\} \cap \varphi(t))=\{w, e\}$ gives $m_{4}{ }^{4}=2^{4}=16$. We use a symbol $S_{I}{ }^{J}$ defined as $S_{I}{ }^{J}=\{t \in S: \tau(t) \cup(I \cap \varphi(t))=J\}$. When $I=I_{i}$ and $J=J_{j}$, then $S_{I}{ }^{J}=S_{I_{i}}{ }^{J_{j}}=S_{i}{ }^{j}$ will be used.

If $n=k>3$, then the number of triangles each of which has s mark is equal to 2^{k} and hence S_{I}^{I} gives $m_{4}{ }^{4}=2^{k}$, where $I=\{w, e\}$. Similarly, we obtain $m_{5}{ }^{5}=m_{6}{ }^{6}=2^{k}$.
(iii) We consider $m_{1}{ }^{4}$. In the case $S_{I}{ }^{I}$ gives $m_{7}{ }^{7}=3^{k} \quad(n=k)$ because each triangle contributes 1 for $m_{7}{ }^{7}$, where $I=E$. (Each triangle means that a triangle with a number $t \in\left\{1,2,3, \ldots, 3^{k}\right\}$.)
(iv) We consider $m_{1}{ }^{4}$. We take $S_{I}{ }^{J}$ and triangles with s marks, where $I=\{w\}$ and $J=\{w, e\}$. The number of all triangles with s marks is equal to 2^{n} for $\triangle(n)$.

We need a symbol tri (u) as the triangle numbered u. Then we see that tri $\left(2^{n}\right)$, $\operatorname{tri}\left(2^{n}+2^{n-1}\right)$, $\operatorname{tri}\left(2^{n}+2\left(2^{n-1}\right)+2^{n-2}\right), \operatorname{tri}\left(2^{n}+2\left(2^{n-1}\right)+2^{n-2}+2^{n-1}\right)$, tri $\left(2^{n}+\right.$ $\left.2\left(2^{n-1}\right)+2^{n-2}+2^{n-1}+2\left(2^{n-2}\right)\right), \ldots, \operatorname{tri}\left(3^{n}-1\right)$ are triangles such that each tri (u) has s mark and $u \in S_{I}{ }^{J}$. We note that $3^{n} \notin S_{I}{ }^{J}$. Thus we obtain $m_{1}{ }^{4}=2^{n}-1$. Similarly, we have that $m_{1}{ }^{5}=2^{n}-1$.

For $m_{1}{ }^{6}$, we have $I_{1}=\{w\}$ and $J_{6}=\{e, s\}$. By $S_{I}{ }^{J}$ with $I=I_{1}$ and J_{6}, we clearly obtain that $m_{1}{ }^{6}=0$.
(v) For $m_{1}{ }^{7}$, we let $I=\{w\}$ and $J=\{w, e, s\}$.

We know that the total number of $\operatorname{tri}(u), u=1,2, \ldots, 3^{n}$, is equal to 3^{n}. If $I_{1}=\{w\}$ is fixed and J_{i} varies $(i=1,2, \ldots, 7)$, then we obtain that $m_{1}{ }^{1}+m_{1}{ }^{2}+$ $\cdots+m_{1}{ }^{7}=3^{n}=\sum_{i=1}^{7} m_{1}{ }^{i}$ and $m_{1}{ }^{7}=3^{n}-1-2\left(2^{n}-1\right)=3^{n}-2^{n+1}+1$.
(vi) Consider $m_{4}{ }^{7}$. We know that $m_{4}{ }^{5}=m_{4}{ }^{6}=0$ and $m_{4}{ }^{1}=m_{4}{ }^{2}=$ $m_{4}^{3}=0$. We also know that $m_{4}{ }^{4}=2^{n}$ and $\sum_{i=1}^{7} m_{4}{ }^{i}=3^{n}$. Thus we obtain that $m_{4}{ }^{7}=3^{n}-2^{n}$.

The rest is clear and we have proved the proposition.

N-DIMENSIONAL SIERPINSKI TETRAHEDRON

In this section, we take n-dimensional Sierpinski tetrahedrons n, and have Proposition 2 and Theorem 1 about $n, n \geq 3$.

Definition 2. (i) Let $E=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a set of k elements. We let $I_{i}=\left\{w_{i}\right\}(i=1,2, \ldots, k), I_{k+j}=\left\{w_{1}, w_{j+1}\right\}(j=1,2, \ldots, k-1), I_{2 k}=$ $\left\{w_{2}, w_{3}\right\}, \ldots, I_{\pi}=\left\{w_{k-1}, w_{k}\right\}(\pi=1+2+3+\cdots+k-1), I_{\pi+1}=\left\{w_{1}, w_{2}, w_{3}\right\}$, and so on.
(ii) $\Lambda(m)$ is used as the symbol of the k-th step figure of n-dimensional Sierpinski tetrahedron. Let $S=\left\{1,2, \ldots,(n+1)^{k}\right\}$ for $\AA(m)$.
(iii) Let $E=\left\{w_{1}, w_{2}, \ldots, w_{n+1}\right\}$ for $n(m)$.
(iv) If $\tau(t)$ and $\varphi(t)$ are defined for $n(m)$, then the the transfer matrix $M(\bigwedge(m))=M=\left(m_{i}{ }^{j}\right)$ will be called the combinatorial transfer matrix of the n-dimensional Sierpinski tetrahedron, or $\lfloor(m)$.

Definition 3. Let $M(\widehat{n}(m))=M=\left(m_{i}{ }^{j}\right)$ be the combinatorial transfer matrix of $n(m)$.
(i) The submatrix of M for $I_{i}(i=1,2, \ldots, n+1)$ will be denoted by M_{11}.
(ii) The submatrix of M for I_{k+j} will be denoted by M_{22}.
(iii) Similarly, we define submatrix $M_{i i}(i=1,2, \ldots, n+1)$.
(iv) We hence can define $M_{i j}$ as a submatrix of the matrix, for $i, j=$ $1,2, \ldots, n+1$.

We consider the following tetrahedron $\widehat{3}(0)$ with vertices $A=e_{1}=\left(\begin{array}{ll}1 & 0\end{array} 0\right)$, $B=e_{2}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right), C=e_{3}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$ and $O=e_{0}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ in the 3-dimensional Euclidean space \mathbf{R}^{3} :

As in the section 3, we say that the k-step figure of (3-dimensional) SierPINSKI tetrahedron and it will be denoted by $\hat{3}(k)$. We can define $E, S, \tau(t)$ and $\varphi(t)$ as before .

Definition 4. $\left\{t \in S: \tau(t) \cup\left(I_{i} \cap \varphi(t)\right)=J_{j}\right\}=S_{i}{ }^{j}$ will be called the $S_{i}{ }^{j}$ set (3 (k)).

We know that $\left|S_{i}{ }^{j}\right|=m_{i}{ }^{j}$. We state the proposition 2.
Proposition 2. (i) Let 3 (1) be the first step of Sierpinski tetraedron. Then the combinatorial transfer matrix $M(\widehat{3}(1))=M=\left(m_{i}{ }^{j}\right)$ of $\hat{3}(1)$ is given by the
following

$$
\begin{aligned}
M & =\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{llllll}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right] .
\end{aligned}
$$

(ii) Let 3 (k) be the k-th step of Sierpinski tetrahedron. Then the combinartorial transfer matrix $M(\widehat{3}(k))=M(3, k)$ takes the following form:

$$
M(3, k)=\left[\begin{array}{llll}
M_{11} & M_{12} & M_{13} & M_{14} \\
M_{21} & M_{22} & M_{23} & M_{24} \\
M_{31} & M_{32} & M_{33} & M_{34} \\
M_{41} & M_{42} & M_{43} & M_{44}
\end{array}\right],
$$

(ii)-(1) $M_{i i}$ is the diagonal matrix $=\operatorname{diag}\left(i^{k}, i^{k}, \ldots, i^{k}\right),(i=1,2,3,4)$.
(ii)-(2) $M_{i j}=O$ for $i>j$, where O denotes the zero matrix.
(ii) $-(3)$

$$
M_{12}=\left[\begin{array}{cccccc}
\lambda & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & 0 & 0 & \lambda & \lambda & 0 \\
0 & \lambda & 0 & \lambda & 0 & \lambda \\
0 & 0 & \lambda & 0 & \lambda & \lambda
\end{array}\right]
$$

where $\lambda=2^{k}-1$.
(ii) $-(4)$

$$
M_{13}=\left[\begin{array}{cccc}
\lambda & \lambda & \lambda & 0 \\
\lambda & \lambda & 0 & \lambda \\
\lambda & 0 & \lambda & \lambda \\
0 & \lambda & \lambda & \lambda
\end{array}\right],
$$

where $\lambda=3^{k}-2^{k+1}+1$.
(ii)-(5) $M_{14}=\left[\begin{array}{llll}\lambda & \lambda & \lambda & \lambda\end{array}\right]^{T}$, where $\lambda=4^{k}-3^{k+1}+3 \cdot 2^{k}-1$.
(ii)-(6)

$$
M_{23}=\left[\begin{array}{cccc}
\lambda & \lambda & 0 & 0 \\
\lambda & 0 & \lambda & 0 \\
0 & \lambda & \lambda & 0 \\
\lambda & 0 & 0 & \lambda \\
0 & \lambda & 0 & \lambda \\
0 & 0 & \lambda & \lambda
\end{array}\right],
$$

where $\lambda=3^{k}-2^{k}$.
(ii)-(7) $M_{24}=\left[\begin{array}{lllll}\lambda & \lambda & \lambda & \lambda & \lambda\end{array}\right]^{T}$, where $\lambda=4^{k}-2 \cdot 3^{k}+2^{k}$.
(ii)-(8) $M_{34}=\left[\begin{array}{lll}\lambda & \lambda & \lambda\end{array}\right]^{T}$, where $\lambda=4^{k}-3^{k}$.

The proof of Proposition 2 is similar to the proof of Proposition 1 and we omit the proof of the proposition.

In the n-dimensional Euclidean space \mathbf{R}^{n}, a symbol n denotes the n dimensional tetrahedron with vertices $e_{0}=\left(\begin{array}{llll}0 & 0 & \ldots & 0\end{array}\right), e_{1}=\left(\begin{array}{lllll}1 & 0 & 0 & \ldots\end{array}\right)$, $e_{2}=\left(\begin{array}{lllll}0 & 1 & 0 & \ldots & 0\end{array}\right), \ldots, e_{n}=\left(\begin{array}{lllll}0 & 0 & \ldots & 0 & 1\end{array}\right)$. We may use $\quad n(k)$ as a symbol for the k-th step figure of an n-dimensional SIERPINSKI tetrahedron. We define a set E and state Theorem 1.

Definition 5. Let $E=\left\{w_{1}, w_{2}, \ldots, w_{n+1}\right\} .\left\langle\begin{array}{lllll}\dot{e}_{1} & e_{2} & e_{3} & \ldots & e_{n}\end{array} e_{0}\right\rangle$ denotes the $(n-1)$ dimensional tetrahedron formed by $e_{2}, e_{3}, \ldots, e_{n}$ and e_{0}, where \dot{e}_{1} means that e_{1} is missing.

We write w_{1} as $w_{1}=\left\langle\begin{array}{lllllll}\dot{e}_{1} & e_{2} & \ldots & e_{n} & e_{0}\end{array}\right\rangle$ and $w_{2}=\left\langle\begin{array}{llll}e_{1} & \dot{e}_{2} & e_{3} & \ldots\end{array} e_{n} e_{0}\right\rangle$. Similarly we can write $w_{3}, w_{4}, \ldots, w_{n+1}$.
(We have used $E=\{w, e, s\}$ in the section 2 and we may rewrite as $w_{1}=$ $w, w_{2}=e$ and $w_{3}=s$.)

We state theorem 1 .
Theorem 1. A combinatorial transfer matrix $M(\bigwedge(k))=M=\left(M_{i j}\right)$ takes the following:
(1) $M_{i i}-\operatorname{diag}\left(i^{k} i^{k} \ldots i^{k}\right)$ is a diagonal matrix $(i=1,2, \ldots, n+1)$ and a $\binom{n+1}{i}$ by $\binom{n+1}{i}$ matrix.
(2) $M_{i j}=O$ is the zero matrix if $j>i$.
(3) For each $i \in\left\{1,2, \ldots, 2^{n+1}-1\right\}, \sum_{j=1}^{n+1} m_{i}^{j}=(n+1)^{k}$.
(4) If u_{1} and u_{2} are non-zero elements of $M_{i j}$, then $u_{1}=u_{2}$.
(5) Suppose that m_{1}, m_{2} and m_{3} are non-zero elements of $M_{i i}, M_{i+1}$ and $M_{i+1}{ }_{i+1}$, respectively, then $m_{1}+m_{2}=m_{3},(i=1,2, \ldots, n+1)$.
(6) Suppose that m_{1}, m_{2} and m_{3} are non-zero elements of $M_{i+1}, M_{i}{ }_{i+2}$ and $M_{i+1}{ }_{i+2}$, respectively, then $m_{1}+m_{2}=m_{3}$.

Proof of Theorem 1. We assume E is defined for $n(0)$ by Definition 5. Suppose we have defined $S=\left\{1,2, \ldots,(n+1)^{k}\right\}$ for $n(k)$ and hence we can say that $\operatorname{tri}(u)$ $\left(u=1,2, \ldots,(n+1)^{k}\right)$ is defined as we had in the chapter $2-(2)$, where tri (u) means that a small tetrahedron with the number u. We also have defined $\tau(t)$ for $t \in S$.
(1) We now consider M_{11}. There exists u in S such that $\tau(u)=\left\{w_{1}\right\}$ and $\varphi(u)=\{\tau(u)\}^{\perp}$. Thus $S_{1}{ }^{1}=\{u\}$ and $m_{1}{ }^{1}=1$. It is clear that $m_{j}{ }^{1}=0(j=$ $2,3, \ldots, n+1)$ by $S_{j}{ }^{1}$.

By the combinatorial observation we conclude that $M_{11}=I$, the identity matrix of rank $(n+1)$.

Consider now M_{22}. Let $I=\left\{w_{1}, w_{2}\right\}=J$. Assume that $k=1$. Then there exist u_{1} and u_{2} in S such that $\tau\left(u_{1}\right)=\left\{w_{1}\right\}$ and $\tau\left(u_{2}\right)=\left\{w_{2}\right\}$. Thus $m_{I}{ }^{J}=2$. If $k=2$, there exist u_{3} and u_{4} in S such that $\tau\left(u_{3}\right)=\left\{w_{1}, w_{2}\right\}=\tau\left(u_{4}\right)$. We know that tri $\left(u_{1}\right)$ and tri $\left(u_{2}\right)$ make $\tau\left(u_{1}\right)=\left\{w_{1}\right\}$ and $\tau\left(u_{2}\right)=\left\{w_{2}\right\}$, respectively. Thus we obtain that $m_{I}^{J}=2^{2}$. This way we obtain that $m_{I}^{J}=2^{p}$ when $k=p$. The rest is clear and hence we have $\left.M_{22}=\operatorname{diag}\right],\left(\begin{array}{ll}2^{k} & \left.2^{k} \ldots 2^{k}\right)=2^{k} \cdot I \text {, where } I \text { is the }\end{array}\right.$ identity matrix of rank $\binom{n+1}{2}$.
(2) It is clear by $S_{I}{ }^{J}$.
(3) Let $i \in\left\{1,2, \ldots, 2^{k+1}-1\right\}$. Consider $u \in\left\{1,2, \ldots,(n+1)^{k}\right\}=S$. tri (u) contributes 1 to $\sum_{j=1}^{\pi} m_{i}{ }^{j}$, where π denotes $\pi=2^{n+1}-1$. Therefore we obtain that $\sum_{j=1}^{\pi} m_{i}^{j}=(n+1)^{k}$.
(4) By a combinatorial observation or a statistical view the assertion is justified.
(5) We know that $M_{n n}$ is a $(n+1)$ by $(n+1)$ matrix and $M_{n+1 n+1}$ is a number or $M_{n+1 n+1}=(n+1)^{k}$. By (3), the assertion is true for this case. If $i=n-1$, the assertion is also true. We omit the rest of the proof of (5).
(6) See Proposition 2 for a special case and we omit the rest of the proof of (6).

Note 1. For 3 (2), we defined S as $\left\{1,2, \ldots, 4^{2}\right\}$. We may redefine S as $S=$ $\{1-1,1-2,1-3,1-4,2-1,2-2,2-3,2-4,3-1,3-2,3-3,3-4,4-1$, $4-2,4-3,4-4\}$.

5. FRACTAL DIMENSION THEOREM

We consider Fractal Dimensions of n-dimensional SiERPINSKi tetrahedron $\lfloor(\pi)$ in connection with a transfer matrix of n-dimensional SIERPINSKI tetrahedron. We start with the following definition.

Definition 6 [1, p. 173-174]. Let (X, d) denote a complete metric space. Let $A \in H(X)$ (see [1] for $H(X)$) be a non-empty compact subset of X. Let $\varepsilon>0$. Let $B(x, \varepsilon)$ denote the closed ball of radius ε and center at a point $x \in X$. For each $\varepsilon>0$, let $N(A, \varepsilon)$ denote the smallest number of closed ball $B(x, \varepsilon)$ of radius ε needed to cover A. If $D=\lim _{\varepsilon \rightarrow 0}(\ln (N(A, \varepsilon)) / \ln (1 / \varepsilon))$ exists, then D is called the fractal dimension of A. We use the Euclidean metric d and $X=R$. We will use the notation $D=D(A)$, and will say that A has fractal dimension $D=D(A)$.

We use the box counting theorem.

Theorem 2 [1, p 136]. (The box counting theorem) Let $A \in H\left(R^{m}\right)$, where the Euclidean metric is used. Cover R^{m} by closed just-touching square boxed of side length $1 / 2^{n}$. Let $N(A, n)$ denote the number of boxed of side length $1 / 2^{n}$ which intersect the attractor. If $D=\lim _{n \rightarrow \infty}\left(\ln (N(A, n)) / \ln \left(2^{n}\right)\right)$, then A has fractal dimension D.

Theorem 1 states that $M_{n+1} n+1=(n+1)^{k}$ for $\lfloor n(k)$.
Let $2^{n+1}-1=\alpha$. Then $m_{\alpha}^{\alpha}=(n+1)^{k}$ by Theorem 1. If we write $m(n)$, then $m_{\alpha}{ }^{\alpha}=(m+1)^{n}$. We shall use it in Theorem 3.

Definition 7. We define $m(\pi)$ as $m(\pi)=\lim _{n \rightarrow \infty} m(n)$ and we may say that $m(\pi)$ denotes the symbol of an m-dimensional SIERPINSKY tetrahedron.

Theorem 3. An m-dimensional Sierpinski tetrahedron m (π) has fractal dimension

$$
D=D(\npreceq m(\pi))=\lim _{n \rightarrow \infty} \frac{\ln (N(\nless m(n)))}{\ln \left(2^{n}\right)}=\lim _{n \rightarrow \infty} \frac{\ln (m+1)^{n}}{\ln \left(2^{n}\right)}=\frac{\ln (m+1)}{\ln 2}
$$

We apply the box counting theorem to $\not m(n)$ and obtain $N(\cong(n))=$ $(m+1)^{n}$. The rest of the proof is clear.

We refer to [2] for a detailed proof of Theorem 3. (We note that an m dimensional Sierpinski tetrahedron is not usual one.)

REFERENCES

1. M. Barnsley: Fractal everywhere. Acadenic Press, San Diego CA (1988).
2. Jin Bai Kim, Hyun Sook Kim: Fractal dimension on an n-dimensional Sierpinski tetrahedron. Bull. Malaysian Math. Soc, 20 (1997), 1-8.
3. N. Nenska-Ficek: Duality in fractals. J. Physics, A-18, No. 2 (1985), 327-334.
4. B. B. Mandelbrot, Y. Gefen, A. Aharony, J. Peyriere: Fractals, their transfer matrices and eigen-dimensional sequences. J. Physics, A-18, No. 2 (1985), 335-354.
5. B. B. Mandelbrot: The fractal geometry of nature. Freeman, San Francisco, 1982.
6. Zhi-Xion Wen: On the transfer matrices of fractals. Linear algebra and its applications (1996), 189-203.

Department of Mathematics, (Received August 2, 1999)
West Virginia University,
Morganton, WV 26506
Department of Mathematics
Won Kwang University,
Iksan City, Chun-Buk 570-749,
Korea

[^0]: 2000 Mathematics Subject Classification: 28A80, 15A99, 39B12
 Keywords and Phrases: Fractals, transfer matrix of a fractal

