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TRANSFER MATRICES OF N-DIMENSIONAL

SIERPINSKI TETRAHEDRON

Jin Bai Kim, Hyun Sook Kim

We present the transfer matrix M = (m j
i ) of n-dimensional Sierpinski tetra-

hedron and show that the Fractal dimension of the n-dimensional Sierpin-
ski tetrahedron is equal to ln(n + 1)/ ln 2 in connection with the matrix
M = (m j

i ).

1. INTRODUCTION

Mandelbrot, Gefent, Aharony and Peyriere [4] introduced transfer
matrices of fractals. In [4], it was shown that when two transfer matrices of a
fractal coming from related geometric constructions are diagonalizable.

Wen [6] considered also diagonalizability of transfer matrices of fractals.
Nenska–Ficek [3] considered duality of fractals and the dual of Sierpinski gas-
ket. Kim–Kim [2] studied the fractal dimension of an n-dimensional Sierpinski
tetrahedron.

In this paper we construct transfer matrices of n-dimensional Sierpinski

tetrahedron, denoting it by 4n , and discuss the fractal dimension of 4n . We
also consider the dual Sierpinski gasket.

2. AN EXAMPLE OF TRANSFER MATRIX OF SIERPINSKI
GASKET

In this section, we give an example of transfer matrix of Sierpinski gasket.
(1) We define two sets S = {1, 2, 3} and E = {w, e, s}. We define two map-

pings τ and φ as follows: τ(1) = {s}, τ(2) = {e}, τ(3) = {w}, φ(1) = {w, e},
φ(2) = {w, s} and φ(3) = {e, s}, in connection with two triangles:
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We define Ii and Ji as follows: Ii = Ji (i = 1, 2, 3, 4, 5, 6, 7), I1 = {w},
I2 = {e}, I3 = {s}, I4 = {w, e}, I5 = {w, s}, I6 = {e, s}, I7 = {w, e, s}.
Notation 1. We define a matrix M

(4(1)
)

= (mij) by

m j
i =

∣∣{s ∈ S : τ(s)∪
(
I ∩i φ(s)

)
= Jj}

∣∣.
(We also use m J

I and m
Jj

Ii
instead of m j

i in case no confusion is possible). We can
see that m 1

1 = 1 and m1
2 = 0.

We can obtain M
(4(1)

)
= (m j

i ) as follows:

M
(4(1)

)
= (m j

i ) =



1 0 0 1 1 0 0
0 1 0 1 0 1 0
0 0 1 0 1 1 0
0 0 0 2 0 0 1
0 0 0 0 2 0 1
0 0 0 0 0 2 1
0 0 0 0 0 0 3


,

(J1 J2 J3 J4 J5 J6 J7) is referring columns of the above matrix.

(2) We define a set E as E = {w, s, e} and
a set S = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

4(2) is the symbol of the right picture:
We define τ as follows: τ(1) = {s}, τ(2) =

{s, e}, τ(3) = {s, e}, τ(4) = {e}, τ(5) = {w, s},
τ(6) = {w, e}, τ(7) = {w, s}, τ(8) = {w, e},
τ(9) = {w}.
Definition 1. Let F be a subset of E. We define
F⊥ = {t ∈ E : t /∈ F} and we call it the com-
plementary subset of F for E. We may write
F ⊕ F⊥ = E.

�
�
�

T
T

T

�
�
�

T
T

T

�
�
�

T
T

T

�
�
�

T
T

T
�
�
�

T
T

T

�
�
�

T
T

T
�
�
�

T
T

T

�
�
�

T
T

T
�
�
�

T
T

T

w

w

w

w

s s s s

e

e

e

e

4 6 8 9

3 7

2 5

1

We define a mapping φ by φ(t) = {τ(t)}⊥. Ii and Ji are defined as in (1).
We use mi

j defined as before and we can see the following the transfer matrix
M

(4(2)
)

:
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M
(4(2)

)
=



1 0 0 3 3 0 2
0 1 0 3 0 3 2
0 0 1 0 3 3 2
0 0 0 4 0 0 5
0 0 0 0 4 0 5
0 0 0 0 0 4 5
0 0 0 0 0 0 9


.

(3) We consider 4(3) :
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(The picture of4(3) may be called the 3rd step figure of Sierpinski triangle
or gasketπ).

We define E as before and define S = {1, 2, 3, . . . , 27}. Ii and Ji are defined
as in (1). We define τ as follows:

τ(1) = {s}, τ(2) = τ(3) = τ(4) = τ(5) = τ(6) = τ(7) = {e, s}, τ(8) = {e},
τ(9) = τ(13) = τ(17) = τ(19) = τ(23) = τ(25) = {w, s},
τ(10) = τ(11) = τ(20) = τ(21) = τ(14) = τ(16) = {w, e, s} = E,

τ(12) = τ(16) = τ(18) = τ(22) = τ(24) = τ(26) = {w, e}, τ(27) = {w}.
We define ϕ(t) as {τ(t)}⊥. In this case mi

j is given by

mi
j = |{s ∈ S : τ(s) ∪

(
Ii ∩ ϕ(s)

)
= Jj}|.

For I1 = {w} = J1, we can see that the only choice is τ(27) = {w} and
m1

1 = 1. We can see that J1 and Ii (i 6= 1) make mi
1 = 0. This way we may obtain
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the following:

M
(4(3)

)
=



1 0 0 7 7 0 12
0 1 0 7 0 7 12
0 0 1 0 7 7 12
0 0 0 8 0 0 19
0 0 0 0 8 0 19
0 0 0 0 0 8 19
0 0 0 0 0 0 27


,

3. A PROPOSITION

In this section, we prove a propo-
sition for Sierpinski triangle or gas-
ket. Let 4(n) be the n-step figure of
Sierpinski triangle. Let E = {w, e, s}
be a set of three elements referring
4(0). We let S = {1, 2, 3, . . . , 3n} and
define τ(t) by the usual way for4(n).
We define ϕ(t) by ϕ(t) = {ϕ(t)}−1. We
define Ii = Ji as we defined in the sec-
tion 2. We use mi

j which is defined in
the section 2.
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Proposition 1. The n-th step figure of Sierpinski triangle 4(n) has the following
transfer matrix M

(4(n)
)

= (mi
j) of 4(n) :

M
(4(n)

)
=



1 0 0 2n − 1 2n − 1 0 3n − 2n+1 + 1
0 1 0 2n − 1 0 2n − 1 3n − 2n+1 + 1
0 0 1 0 2n − 1 2n − 1 3n − 2n+1 + 1
0 0 0 2n 0 0 3n − 2n

0 0 0 0 2n 0 3n − 2n

0 0 0 0 0 2n 3n − 2n

0 0 0 0 0 0 3n


.

Proof. (i) We apply the method used in the chapter 2 and obtain (1 0 0 0 0 0 0)T as
the first column of the matrix, where T denotes the symbol of transpose. Similarly,
we can prove that the second column of the matrix is (0 1 0 0 0 0 0)T and the third
column of the matrix is (0 0 1 0 0 0 0)T .

(ii) We consider m4
4. If4(3) is the case (n = 3), we know that m4

4 = 23 = 8
by the example and hence it is justified for n = 3. If n = 4, there exist 24 triangles
each of which has s mark and τ(t) ∪

(
{w, e} ∩ ϕ(t)

)
= {w, e} gives m4

4 = 24 = 16.

We use a symbol SI
J defined as SI

J = {t ∈ S : τ(t)∪
(
I∩ϕ(t)

)
= J}. When I = Ii

and J = Jj , then SI
J = SIi

Jj = Si
j will be used.
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If n = k > 3, then the number of triangles each of which has s mark is
equal to 2k and hence SI

I gives m4
4 = 2k, where I = {w, e}. Similarly, we obtain

m5
5 = m6

6 = 2k.

(iii) We consider m1
4. In the case SI

I gives m7
7 = 3k (n = k) because each

triangle contributes 1 for m7
7, where I = E. (Each triangle means that a triangle

with a number t ∈ {1, 2, 3, . . . , 3k}.)
(iv) We consider m1

4. We take SI
J and triangles with s marks, where I = {w}

and J = {w, e}. The number of all triangles with s marks is equal to 2n for 4(n).
We need a symbol tri (u) as the triangle numbered u. Then we see that tri (2n),

tri (2n +2n−1), tri (2n +2 (2n−1)+2n−2), tri (2n +2 (2n−1)+2n−2 +2n−1), tri (2n +
2 (2n−1)+2n−2+2n−1+2 (2n−2)), . . . , tri (3n−1) are triangles such that each tri (u)
has s mark and u ∈ SI

J . We note that 3n /∈ SI
J . Thus we obtain m1

4 = 2n − 1.
Similarly, we have that m1

5 = 2n − 1.

For m1
6, we have I1 = {w} and J6 = {e, s}. By SI

J with I = I1 and J6, we
clearly obtain that m1

6 = 0.

(v) For m1
7, we let I = {w} and J = {w, e, s}.

We know that the total number of tri (u), u = 1, 2, . . . , 3n, is equal to 3n. If
I1 = {w} is fixed and Ji varies (i = 1, 2, . . . , 7), then we obtain that m1

1 + m1
2 +

· · ·+ m1
7 = 3n =

7∑
i=1

m1
i and m1

7 = 3n − 1− 2 (2n − 1) = 3n − 2n+1 + 1.

(vi) Consider m4
7. We know that m4

5 = m4
6 = 0 and m4

1 = m4
2 =

m4
3 = 0. We also know that m4

4 = 2n and
7∑

i=1

m4
i = 3n. Thus we obtain that

m4
7 = 3n − 2n.

The rest is clear and we have proved the proposition.

N-DIMENSIONAL SIERPINSKI TETRAHEDRON

In this section, we take n-dimensional Sierpinski tetrahedrons 4n , and

have Proposition 2 and Theorem 1 about4n , n ≥ 3.

Definition 2. (i) Let E = {w1, w2, . . . , wk} be a set of k elements. We let
Ii = {wi} (i = 1, 2, . . . , k), Ik+j = {w1, wj+1} (j = 1, 2, . . . , k − 1), I2k =
{w2, w3}, . . . , Iπ = {wk−1, wk} (π = 1 + 2 + 3 + · · ·+ k − 1), Iπ+1 = {w1, w2, w3},
and so on.

(ii) 4n (m) is used as the symbol of the k-th step figure of n-dimensional

Sierpinski tetrahedron. Let S = {1, 2, . . . , (n + 1)k} for4n (m).

(iii) Let E = {w1, w2, . . . , wn+1} for4n (m).
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(iv) If τ(t) and ϕ(t) are defined for 4n (m), then the the transfer matrix

M
(4n (m)

)
= M = (mi

j) will be called the combinatorial transfer matrix of the

n-dimensional Sierpinski tetrahedron, or4n (m).

Definition 3. Let M
(4n (m)

)
= M = (mi

j) be the combinatorial transfer matrix

of4n (m).

(i) The submatrix of M for Ii (i = 1, 2, . . . , n + 1) will be denoted by M11.

(ii) The submatrix of M for Ik+j will be denoted by M22.

(iii) Similarly, we define submatrix Mii (i = 1, 2, . . . , n + 1).

(iv) We hence can define Mij as a submatrix of the matrix, for i, j =
1, 2, . . . , n + 1.

We consider the following tetrahedron43 (0) with vertices A = e1 = (1 0 0),

B = e2 = (0 1 0), C = e3 = (0 0 1) and O = e0 = (0 0 0) in the 3-dimensional
Euclidean space R3:

�
�

�
���
�
�
�
�
�
��

���������

@
@

@
@@

43 (0) ≡

B = e2

A = e1

C = e3

O = e0

As in the section 3, we say that the k-step figure of (3-dimensional) Sier-

pinski tetrahedron and it will be denoted by43 (k). We can define E,S, τ(t) and

ϕ(t) as before.

Definition 4. {t ∈ S : τ(t) ∪
(
Ii ∩ ϕ(t)

)
= Jj} = Si

j will be called the Si
j set(43 (k)

)
.

We know that |Si
j | = mi

j . We state the proposition 2.

Proposition 2. (i) Let43 (1) be the first step of Sierpinski tetraedron. Then the

combinatorial transfer matrix M
(43 (1)

)
= M = (mi

j) of43 (1) is given by the
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following

M =



1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 2 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 2 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 2 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 2 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 2 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 3 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 3 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 3 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4



=


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 .

(ii) Let43 (k) be the k-th step of Sierpinski tetrahedron. Then the combina-

rtorial transfer matrix M
(43 (k)

)
= M(3, k) takes the following form:

M(3, k) =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 ,

(ii)–(1) Mii is the diagonal matrix = diag(ik, ik, . . . , ik), (i = 1, 2, 3, 4).

(ii)–(2) Mij = O for i > j, where O denotes the zero matrix.

(ii)–(3)

M12 =


λ λ λ 0 0 0
λ 0 0 λ λ 0
0 λ 0 λ 0 λ
0 0 λ 0 λ λ

 ,

where λ = 2k − 1.

(ii)–(4)

M13 =


λ λ λ 0
λ λ 0 λ
λ 0 λ λ
0 λ λ λ

 ,
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where λ = 3k − 2k+1 + 1.

(ii)–(5) M14 = [λ λ λ λ]T , where λ = 4k − 3k+1 + 3 · 2k − 1.

(ii)–(6)

M23 =


λ λ 0 0
λ 0 λ 0
0 λ λ 0
λ 0 0 λ
0 λ 0 λ
0 0 λ λ

 ,

where λ = 3k − 2k.

(ii)–(7) M24 = [λ λ λ λ λ λ]T , where λ = 4k − 2 · 3k + 2k.

(ii)–(8) M34 = [λ λ λ λ]T , where λ = 4k − 3k.

The proof of Proposition 2 is similar to the proof of Proposition 1 and we
omit the proof of the proposition.

In the n-dimensional Euclidean space Rn, a symbol 4n denotes the n-

dimensional tetrahedron with vertices e0 = (0 0 . . . 0), e1 = (1 0 0 . . . 0),
e2 = (0 1 0 . . . 0), . . . , en = (0 0 . . . 0 1). We may use4n (k) as a symbol for
the k-th step figure of an n-dimensional Sierpinski tetrahedron. We define a set
E and state Theorem 1.

Definition 5. Let E = {w1, w2, . . . , wn+1}. 〈ė1 e2 e3 . . . en e0〉 denotes the
(n − 1) dimensional tetrahedron formed by e2, e3, . . . , en and e0, where ė1 means
that e1 is missing.

We write w1 as w1 = 〈ė1 e2 . . . en e0〉 and w2 = 〈e1 ė2 e3 . . . en e0〉.
Similarly we can write w3, w4, . . . , wn+1.

(We have used E = {w, e, s} in the section 2 and we may rewrite as w1 =
w, w2 = e and w3 = s.)

We state theorem 1.

Theorem 1. A combinatorial transfer matrix M
(4n (k)

)
= M = (Mij) takes the

following:

(1) Mii − diag (ik ik · · · ik) is a diagonal matrix (i = 1, 2, . . . , n + 1) and a(n + 1
i

)
by

(n + 1
i

)
matrix.

(2) Mij = O is the zero matrix if j > i.

(3) For each i ∈ {1, 2, . . . , 2n+1 − 1},
n+1∑
j=1

mi
j = (n + 1)k.

(4) If u1 and u2 are non-zero elements of Mij , then u1 = u2.
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(5) Suppose that m1,m2 and m3 are non-zero elements of Mii, Mi i+1 and
Mi+1 i+1, respectively, then m1 + m2 = m3, (i = 1, 2, . . . , n + 1).

(6) Suppose that m1,m2 and m3 are non-zero elements of Mi i+1, Mi i+2

and Mi+1 i+2, respectively, then m1 + m2 = m3.

Proof of Theorem 1. We assume E is defined for4n (0) by Definition 5. Suppose

we have defined S = {1, 2, . . . , (n+1)k} for4n (k) and hence we can say that tri(u)

(u = 1, 2, . . . , (n+1)k) is defined as we had in the chapter 2–(2), where tri (u) means
that a small tetrahedron with the number u. We also have defined τ(t) for t ∈ S.

(1) We now consider M11. There exists u in S such that τ(u) = {w1} and
ϕ(u) = {τ(u)}⊥. Thus S1

1 = {u} and m1
1 = 1. It is clear that mj

1 = 0 (j =
2, 3, . . . , n + 1) by Sj

1.

By the combinatorial observation we conclude that M11 = I, the identity
matrix of rank (n + 1).

Consider now M22. Let I = {w1, w2} = J. Assume that k = 1. Then there
exist u1 and u2 in S such that τ(u1) = {w1} and τ(u2) = {w2}. Thus mI

J = 2. If
k = 2, there exist u3 and u4 in S such that τ(u3) = {w1, w2} = τ(u4). We know
that tri (u1) and tri (u2) make τ(u1) = {w1} and τ(u2) = {w2}, respectively. Thus
we obtain that mI

J = 22. This way we obtain that mI
J = 2p when k = p. The

rest is clear and hence we have M22 = diag], (2k 2k . . . 2k) = 2k · I, where I is the

identity matrix of rank
(n + 1

2

)
.

(2) It is clear by SI
J .

(3) Let i ∈ {1, 2, . . . , 2k+1 − 1}. Consider u ∈ {1, 2, . . . , (n + 1)k} = S. tri

(u) contributes 1 to
π∑

j=1

mi
j , where π denotes π = 2n+1 − 1. Therefore we obtain

that
π∑

j=1

mi
j = (n + 1)k.

(4) By a combinatorial observation or a statistical view the assertion is
justified.

(5) We know that Mn n is a (n + 1) by (n + 1) matrix and Mn+1 n+1 is
a number or Mn+1 n+1 = (n + 1)k. By (3), the assertion is true for this case. If
i = n− 1, the assertion is also true. We omit the rest of the proof of (5).

(6) See Proposition 2 for a special case and we omit the rest of the proof of
(6).

Note 1. For 43 (2), we defined S as {1, 2, . . . , 42}. We may redefine S as S =

{1− 1, 1− 2, 1− 3, 1− 4, 2− 1, 2− 2, 2− 3, 2− 4, 3− 1, 3− 2, 3− 3, 3− 4, 4− 1,
4− 2, 4− 3, 4− 4}.
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5. FRACTAL DIMENSION THEOREM

We consider Fractal Dimensions of n-dimensional Sierpinski tetrahedron
4n (π) in connection with a transfer matrix of n-dimensional Sierpinski tetrahe-
dron. We start with the following definition.

Definition 6 [1, p. 173–174]. Let (X, d) denote a complete metric space. Let
A ∈ H(X) (see [1] for H(X)) be a non-empty compact subset of X. Let ε > 0. Let
B(x, ε) denote the closed ball of radius ε and center at a point x ∈ X. For each
ε > 0, let N(A, ε) denote the smallest number of closed ball B(x, ε) of radius ε
needed to cover A. If D = lim

ε→0
(ln (N(A, ε))/ ln (1/ε)) exists, then D is called the

fractal dimension of A. We use the Euclidean metric d and X = R. We will use
the notation D = D(A), and will say that A has fractal dimension D = D(A).

We use the box counting theorem.

Theorem 2 [1, p 136]. (The box counting theorem) Let A ∈ H(Rm), where the Eu-
clidean metric is used. Cover Rm by closed just-touching square boxed of side length
1/2n. Let N(A,n) denote the number of boxed of side length 1/2n which intersect
the attractor. If D = lim

n→∞
(ln(N(A,n))/ ln(2n)), then A has fractal dimension D.

Theorem 1 states that Mn+1 n+1 = (n + 1)k for4n (k).

Let 2n+1 − 1 = α. Then mα
α = (n + 1)k by Theorem 1. If we write4m (n),

then mα
α = (m + 1)n. We shall use it in Theorem 3.

Definition 7. We define4m (π) as4m (π) = lim
n→∞4m (n) and we may say that

4m (π) denotes the symbol of an m-dimensional Sierpinsky tetrahedron.

Theorem 3. An m-dimensional Sierpinski tetrahedron4m (π) has fractal dimen-
sion

D = D
(4m (π)

)
= lim

n→∞

ln
(
N

(4m (n)
))

ln(2n)
= lim

n→∞

ln(m + 1)n

ln(2n)
=

ln(m + 1)
ln 2

.

We apply the box counting theorem to 4m (n) and obtain N
(4m (n)

)
=

(m + 1)n. The rest of the proof is clear.
We refer to [2] for a detailed proof of Theorem 3 . (We note that an m-

dimensional Sierpinski tetrahedron is not usual one.)
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