UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 12 (2001), 1–11.

TRANSFER MATRICES OF N-DIMENSIONAL SIERPINSKI TETRAHEDRON

Jin Bai Kim, Hyun Sook Kim

We present the transfer matrix $M = (m_i^{j})$ of *n*-dimensional SIERPINSKI tetrahedron and show that the Fractal dimension of the *n*-dimensional SIERPINSKI tetrahedron is equal to $\ln(n + 1)/\ln 2$ in connection with the matrix $M = (m_i^{j})$.

1. INTRODUCTION

MANDELBROT, GEFENT, AHARONY and PEYRIERE [4] introduced *transfer* matrices of fractals. In [4], it was shown that when two transfer matrices of a fractal coming from related geometric constructions are diagonalizable.

WEN [6] considered also diagonalizability of transfer matrices of fractals. NENSKA-FICEK [3] considered *duality of fractals* and the dual of SIERPINSKI gasket. KIM-KIM [2] studied the fractal dimension of an *n*-dimensional SIERPINSKI tetrahedron.

In this paper we construct transfer matrices of *n*-dimensional SIERPINSKI tetrahedron, denoting it by \underline{n} , and discuss the fractal dimension of \underline{n} . We also consider the dual SIERPINSKI gasket.

2. AN EXAMPLE OF TRANSFER MATRIX OF SIERPINSKI GASKET

In this section, we give an example of transfer matrix of SIERPINSKI gasket.

(1) We define two sets $S = \{1, 2, 3\}$ and $E = \{w, e, s\}$. We define two mappings τ and ϕ as follows: $\tau(1) = \{s\}, \tau(2) = \{e\}, \tau(3) = \{w\}, \phi(1) = \{w, e\}, \phi(2) = \{w, s\}$ and $\phi(3) = \{e, s\}$, in connection with two triangles:

²⁰⁰⁰ Mathematics Subject Classification: 28A80, 15A99, 39B12 Keywords and Phrases: Fractals, transfer matrix of a fractal

We define I_i and J_i as follows: $I_i = J_i$ $(i = 1, 2, 3, 4, 5, 6, 7), I_1 = \{w\}, I_2 = \{e\}, I_3 = \{s\}, I_4 = \{w, e\}, I_5 = \{w, s\}, I_6 = \{e, s\}, I_7 = \{w, e, s\}.$ NOTATION 1. We define a matrix $M(\triangle(1)) = (m_{ij})$ by

$$m_i^j = \left| \{ s \in S : \tau(s)^{\cup} \left(I_i^{\cap} \phi(s) \right) = J_j \} \right|.$$

(We also use m_I^J and $m_{I_i}^{J_j}$ instead of m_i^j in case no confusion is possible). We can see that $m_1^1 = 1$ and $m_1^2 = 0$.

We can obtain $M(\triangle(1)) = (m_i^{j})$ as follows:

$$M(\triangle(1)) = (m_i^{\ j}) = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix},$$

 $(J_1 J_2 J_3 J_4 J_5 J_6 J_7)$ is referring columns of the above matrix.

(2) We define a set E as $E = \{w, s, e\}$ and a set $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

 \triangle (2) is the symbol of the right picture:

We define τ as follows: $\tau(1) = \{s\}, \tau(2) = \{s, e\}, \tau(3) = \{s, e\}, \tau(4) = \{e\}, \tau(5) = \{w, s\}, \tau(6) = \{w, e\}, \tau(7) = \{w, s\}, \tau(8) = \{w, e\}, \tau(9) = \{w\}.$

Definition 1. Let F be a subset of E. We define $F^{\perp} = \{t \in E : t \notin F\}$ and we call it the complementary subset of F for E. We may write $F \oplus F^{\perp} = E$.

We define a mapping ϕ by $\phi(t) = \{\tau(t)\}^{\perp}$. I_i and J_i are defined as in (1). We use m_i^{j} defined as before and we can see the following the transfer matrix $M(\triangle(2))$:

$$M(\triangle(2)) = \begin{bmatrix} 1 & 0 & 0 & 3 & 3 & 0 & 2 \\ 0 & 1 & 0 & 3 & 0 & 3 & 2 \\ 0 & 0 & 1 & 0 & 3 & 3 & 2 \\ 0 & 0 & 0 & 4 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 9 \end{bmatrix}$$

ider $\triangle(3)$:

(The picture of $\Delta(3)$ may be called the 3rd step figure of SIERPINSKI triangle or gasket π).

We define E as before and define $S = \{1, 2, 3, ..., 27\}$. I_i and J_i are defined as in (1). We define τ as follows:

$$\begin{split} \tau(1) &= \{s\}, \, \tau(2) = \tau(3) = \tau(4) = \tau(5) = \tau(6) = \tau(7) = \{e, s\}, \, \tau(8) = \{e\}, \\ \tau(9) &= \tau(13) = \tau(17) = \tau(19) = \tau(23) = \tau(25) = \{w, s\}, \\ \tau(10) &= \tau(11) = \tau(20) = \tau(21) = \tau(14) = \tau(16) = \{w, e, s\} = E, \\ \tau(12) &= \tau(16) = \tau(18) = \tau(22) = \tau(24) = \tau(26) = \{w, e\}, \, \tau(27) = \{w\}. \\ \end{split}$$
 We define $\varphi(t)$ as $\{\tau(t)\}^{\perp}$. In this case $m_i{}^j$ is given by

$$m_i^j = |\{s \in S : \tau(s) \cup (I_i \cap \varphi(s)) = J_j\}|.$$

For $I_1 = \{w\} = J_1$, we can see that the only choice is $\tau(27) = \{w\}$ and $m_1^{-1} = 1$. We can see that J_1 and I_i $(i \neq 1)$ make $m_i^{-1} = 0$. This way we may obtain

the following:

$$M(\triangle(3)) = \begin{bmatrix} 1 & 0 & 0 & 7 & 7 & 0 & 12 \\ 0 & 1 & 0 & 7 & 0 & 7 & 12 \\ 0 & 0 & 1 & 0 & 7 & 7 & 12 \\ 0 & 0 & 0 & 8 & 0 & 0 & 19 \\ 0 & 0 & 0 & 0 & 8 & 0 & 19 \\ 0 & 0 & 0 & 0 & 0 & 8 & 19 \\ 0 & 0 & 0 & 0 & 0 & 0 & 27 \end{bmatrix}$$

3. A PROPOSITION

In this section, we prove a proposition for SIERPINSKI triangle or gasket. Let $\triangle(n)$ be the *n*-step figure of SIERPINSKI triangle. Let $E = \{w, e, s\}$ be a set of three elements referring $\triangle(0)$. We let $S = \{1, 2, 3, \ldots, 3^n\}$ and define $\tau(t)$ by the usual way for $\triangle(n)$. We define $\varphi(t)$ by $\varphi(t) = \{\varphi(t)\}^{-1}$. We define $I_i = J_i$ as we defined in the section 2. We use m_i^j which is defined in the section 2.

Proposition 1. The n-th step figure of Sierpinski triangle $\triangle(n)$ has the following transfer matrix $M(\triangle(n)) = (m_i^j)$ of $\triangle(n)$:

$$M(\triangle(n)) = \begin{bmatrix} 1 & 0 & 0 & 2^n - 1 & 2^n - 1 & 0 & 3^n - 2^{n+1} + 1 \\ 0 & 1 & 0 & 2^n - 1 & 0 & 2^n - 1 & 3^n - 2^{n+1} + 1 \\ 0 & 0 & 1 & 0 & 2^n - 1 & 2^n - 1 & 3^n - 2^{n+1} + 1 \\ 0 & 0 & 0 & 2^n & 0 & 0 & 3^n - 2^n \\ 0 & 0 & 0 & 0 & 2^n & 0 & 3^n - 2^n \\ 0 & 0 & 0 & 0 & 0 & 2^n & 3^n - 2^n \\ 0 & 0 & 0 & 0 & 0 & 0 & 3^n \end{bmatrix}.$$

Proof. (i) We apply the method used in the chapter 2 and obtain $(1\ 0\ 0\ 0\ 0\ 0)^T$ as the first column of the matrix, where T denotes the symbol of transpose. Similarly, we can prove that the second column of the matrix is $(0\ 1\ 0\ 0\ 0\ 0)^T$ and the third column of the matrix is $(0\ 1\ 0\ 0\ 0\ 0)^T$.

(ii) We consider m_4^4 . If \triangle (3) is the case (n = 3), we know that $m_4^4 = 2^3 = 8$ by the example and hence it is justified for n = 3. If n = 4, there exist 2^4 triangles each of which has s mark and $\tau(t) \cup (\{w, e\} \cap \varphi(t)) = \{w, e\}$ gives $m_4^4 = 2^4 = 16$. We use a symbol S_I^J defined as $S_I^J = \{t \in S : \tau(t) \cup (I \cap \varphi(t)) = J\}$. When $I = I_i$ and $J = J_j$, then $S_I^J = S_{I_i}^{J_j} = S_i^j$ will be used. If n = k > 3, then the number of triangles each of which has s mark is equal to 2^k and hence S_I^I gives $m_4^4 = 2^k$, where $I = \{w, e\}$. Similarly, we obtain $m_5^5 = m_6^{-6} = 2^k$.

(iii) We consider m_1^4 . In the case S_I^I gives $m_7^7 = 3^k$ (n = k) because each triangle contributes 1 for m_7^7 , where I = E. (Each triangle means that a triangle with a number $t \in \{1, 2, 3, \ldots, 3^k\}$.)

(iv) We consider m_1^4 . We take S_I^J and triangles with s marks, where $I = \{w\}$ and $J = \{w, e\}$. The number of all triangles with s marks is equal to 2^n for $\Delta(n)$.

We need a symbol tri (u) as the triangle number du. Then we see that tri (2^n) , tri $(2^n + 2^{n-1})$, tri $(2^n + 2(2^{n-1}) + 2^{n-2})$, tri $(2^n + 2(2^{n-1}) + 2^{n-2} + 2^{n-1})$, tri $(2^n + 2(2^{n-1}) + 2^{n-2} + 2^{n-1} + 2(2^{n-2}))$, ..., tri $(3^n - 1)$ are triangles such that each tri (u) has s mark and $u \in S_I^J$. We note that $3^n \notin S_I^J$. Thus we obtain $m_1^4 = 2^n - 1$. Similarly, we have that $m_1^5 = 2^n - 1$.

For m_1^6 , we have $I_1 = \{w\}$ and $J_6 = \{e, s\}$. By S_I^J with $I = I_1$ and J_6 , we clearly obtain that $m_1^6 = 0$.

(v) For m_1^7 , we let $I = \{w\}$ and $J = \{w, e, s\}$.

We know that the total number of tri (u), $u = 1, 2, ..., 3^n$, is equal to 3^n . If $I_1 = \{w\}$ is fixed and J_i varies (i = 1, 2, ..., 7), then we obtain that $m_1^1 + m_1^2 + ... + m_1^7 = 3^n = \sum_{i=1}^7 m_1^i$ and $m_1^7 = 3^n - 1 - 2(2^n - 1) = 3^n - 2^{n+1} + 1$.

(vi) Consider m_4^7 . We know that $m_4^5 = m_4^6 = 0$ and $m_4^1 = m_4^2 = m_4^3 = 0$. We also know that $m_4^4 = 2^n$ and $\sum_{i=1}^7 m_4^i = 3^n$. Thus we obtain that $m_4^7 = 3^n - 2^n$.

The rest is clear and we have proved the proposition.

N-DIMENSIONAL SIERPINSKI TETRAHEDRON

In this section, we take *n*-dimensional SIERPINSKI tetrahedrons $\underline{\mathcal{M}}$, and have Proposition 2 and Theorem 1 about $\underline{\mathcal{M}}$, $n \geq 3$.

Definition 2. (i) Let $E = \{w_1, w_2, \dots, w_k\}$ be a set of k elements. We let $I_i = \{w_i\}$ $(i = 1, 2, \dots, k), I_{k+j} = \{w_1, w_{j+1}\}$ $(j = 1, 2, \dots, k-1), I_{2k} = \{w_2, w_3\}, \dots, I_{\pi} = \{w_{k-1}, w_k\}$ $(\pi = 1 + 2 + 3 + \dots + k - 1), I_{\pi+1} = \{w_1, w_2, w_3\},$ and so on.

(ii) $\underline{n}(m)$ is used as the symbol of the k-th step figure of n-dimensional Sierpinski tetrahedron. Let $S = \{1, 2, ..., (n+1)^k\}$ for $\underline{n}(m)$.

(iii) Let $E = \{w_1, w_2, \dots, w_{n+1}\}$ for M(m).

(iv) If $\tau(t)$ and $\varphi(t)$ are defined for $\underline{\bigwedge}(m)$, then the transfer matrix $M(\underline{\bigwedge}(m)) = M = (m_i^{j})$ will be called the combinatorial transfer matrix of the n-dimensional Sierpinski tetrahedron, or $\underline{\bigwedge}(m)$.

Definition 3. Let $M(\underline{\wedge}(m)) = M = (m_i^j)$ be the combinatorial transfer matrix of $\underline{\wedge}(m)$.

- (i) The submatrix of M for I_i (i = 1, 2, ..., n + 1) will be denoted by M_{11} .
- (ii) The submatrix of M for I_{k+j} will be denoted by M_{22} .
- (iii) Similarly, we define submatrix M_{ii} (i = 1, 2, ..., n + 1).

(iv) We hence can define M_{ij} as a submatrix of the matrix, for i, j = 1, 2, ..., n + 1.

We consider the following tetrahedron $\underline{\mathcal{A}}(0)$ with vertices $A = e_1 = (1 \ 0 \ 0)$, $B = e_2 = (0 \ 1 \ 0)$, $C = e_3 = (0 \ 0 \ 1)$ and $O = e_0 = (0 \ 0 \ 0)$ in the 3-dimensional Euclidean space \mathbf{R}^3 :

As in the section 3, we say that the k-step figure of (3-dimensional) SIER-PINSKI tetrahedron and it will be denoted by $\Delta(k)$. We can define $E, S, \tau(t)$ and $\varphi(t)$ as before.

Definition 4. $\{t \in S : \tau(t) \cup (I_i \cap \varphi(t)) = J_j\} = S_i^j$ will be called the S_i^j set (A(k)).

We know that $|S_i^{j}| = m_i^{j}$. We state the proposition 2.

Proposition 2. (i) Let $\underline{\mathcal{A}}(1)$ be the first step of Sierpinski tetraedron. Then the combinatorial transfer matrix $M(\underline{\mathcal{A}}(1)) = M = (m_i^j)$ of $\underline{\mathcal{A}}(1)$ is given by the

following

(ii) Let $\underline{\mathcal{A}}(k)$ be the k-th step of Sierpinski tetrahedron. Then the combinartorial transfer matrix $M(\underline{\mathcal{A}}(k)) = M(3,k)$ takes the following form:

$$M(3,k) = \begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{bmatrix},$$

(ii)-(1) M_{ii} is the diagonal matrix = diag (i^k, i^k, \dots, i^k) , (i = 1, 2, 3, 4).

(ii)–(2) $M_{ij} = O$ for i > j, where O denotes the zero matrix.

$$M_{12} = \begin{bmatrix} \lambda & \lambda & \lambda & 0 & 0 & 0 \\ \lambda & 0 & 0 & \lambda & \lambda & 0 \\ 0 & \lambda & 0 & \lambda & 0 & \lambda \\ 0 & 0 & \lambda & 0 & \lambda & \lambda \end{bmatrix}$$

where $\lambda = 2^k - 1$.

(ii)–(4)

$$M_{13} = \begin{bmatrix} \lambda & \lambda & \lambda & 0 \\ \lambda & \lambda & 0 & \lambda \\ \lambda & 0 & \lambda & \lambda \\ 0 & \lambda & \lambda & \lambda \end{bmatrix},$$

where $\lambda = 3^k - 2^{k+1} + 1$.

(ii)-(5) $M_{14} = [\lambda \ \lambda \ \lambda]^T$, where $\lambda = 4^k - 3^{k+1} + 3 \cdot 2^k - 1$. (ii)-(6) $M_{23} = \begin{bmatrix} \lambda \ \lambda \ 0 \ 0 \\ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \\ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \\ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \\ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \\ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \\ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \ \lambda \ 0 \\ \lambda \ 0 \ \lambda$

where $\lambda = 3^k - 2^k$.

- (ii)-(7) $M_{24} = [\lambda \ \lambda \ \lambda \ \lambda \ \lambda]^T$, where $\lambda = 4^k 2 \cdot 3^k + 2^k$.
- (ii)–(8) $M_{34} = [\lambda \ \lambda \ \lambda \ \lambda]^T$, where $\lambda = 4^k 3^k$.

The proof of Proposition 2 is similar to the proof of Proposition 1 and we omit the proof of the proposition.

In the *n*-dimensional Euclidean space \mathbf{R}^n , a symbol \underline{n} denotes the *n*-dimensional tetrahedron with vertices $e_0 = (0 \ 0 \ \dots \ 0), e_1 = (1 \ 0 \ 0 \ \dots \ 0), e_2 = (0 \ 1 \ 0 \ \dots \ 0), \dots, e_n = (0 \ 0 \ \dots \ 0 \ 1)$. We may use $\underline{n}(k)$ as a symbol for the *k*-th step figure of an *n*-dimensional SIERPINSKI tetrahedron. We define a set *E* and state Theorem 1.

Definition 5. Let $E = \{w_1, w_2, \ldots, w_{n+1}\}$. $\langle \dot{e}_1 \ e_2 \ e_3 \ldots e_n \ e_0 \rangle$ denotes the (n-1) dimensional tetrahedron formed by e_2, e_3, \ldots, e_n and e_0 , where \dot{e}_1 means that e_1 is missing.

We write w_1 as $w_1 = \langle \dot{e}_1 \ e_2 \dots e_n \ e_0 \rangle$ and $w_2 = \langle e_1 \ \dot{e}_2 \ e_3 \dots e_n \ e_0 \rangle$. Similarly we can write w_3, w_4, \dots, w_{n+1} .

(We have used $E = \{w, e, s\}$ in the section 2 and we may rewrite as $w_1 = w, w_2 = e$ and $w_3 = s$.)

We state theorem 1.

Theorem 1. A combinatorial transfer matrix $M(\underline{M}(k)) = M = (M_{ij})$ takes the following:

(1) $M_{ii} - \text{diag}(i^k \ i^k \ \cdots \ i^k)$ is a diagonal matrix $(i = 1, 2, \dots, n+1)$ and a $\binom{n+1}{i}$ by $\binom{n+1}{i}$ matrix.

- (2) $M_{ij} = O$ is the zero matrix if j > i.
- (3) For each $i \in \{1, 2, \dots, 2^{n+1} 1\}$, $\sum_{j=1}^{n+1} m_i{}^j = (n+1)^k$.
- (4) If u_1 and u_2 are non-zero elements of M_{ij} , then $u_1 = u_2$.

(5) Suppose that m_1, m_2 and m_3 are non-zero elements of $M_{ii}, M_{i i+1}$ and $M_{i+1 i+1}$, respectively, then $m_1 + m_2 = m_3$, (i = 1, 2, ..., n+1).

(6) Suppose that m_1, m_2 and m_3 are non-zero elements of $M_{i\,i+1}, M_{i\,i+2}$ and $M_{i+1\,i+2}$, respectively, then $m_1 + m_2 = m_3$.

Proof of Theorem 1. We assume *E* is defined for (0) by Definition 5. Suppose we have defined $S = \{1, 2, ..., (n+1)^k\}$ for (k) and hence we can say that tri(u) $(u = 1, 2, ..., (n+1)^k)$ is defined as we had in the chapter 2–(2), where tri (*u*) means that a small tetrahedron with the number *u*. We also have defined $\tau(t)$ for $t \in S$.

(1) We now consider M_{11} . There exists u in S such that $\tau(u) = \{w_1\}$ and $\varphi(u) = \{\tau(u)\}^{\perp}$. Thus $S_1^{-1} = \{u\}$ and $m_1^{-1} = 1$. It is clear that $m_j^{-1} = 0$ $(j = 2, 3, \ldots, n+1)$ by S_j^{-1} .

By the combinatorial observation we conclude that $M_{11} = I$, the identity matrix of rank (n + 1).

Consider now M_{22} . Let $I = \{w_1, w_2\} = J$. Assume that k = 1. Then there exist u_1 and u_2 in S such that $\tau(u_1) = \{w_1\}$ and $\tau(u_2) = \{w_2\}$. Thus $m_I{}^J = 2$. If k = 2, there exist u_3 and u_4 in S such that $\tau(u_3) = \{w_1, w_2\} = \tau(u_4)$. We know that tri (u_1) and tri (u_2) make $\tau(u_1) = \{w_1\}$ and $\tau(u_2) = \{w_2\}$, respectively. Thus we obtain that $m_I{}^J = 2^2$. This way we obtain that $m_I{}^J = 2^p$ when k = p. The rest is clear and hence we have $M_{22} = \text{diag}], (2^k \ 2^k \dots 2^k) = 2^k \cdot I$, where I is the identity matrix of rank $\binom{n+1}{2}$.

(2) It is clear by S_I^{J} .

(3) Let $i \in \{1, 2, \dots, 2^{k+1} - 1\}$. Consider $u \in \{1, 2, \dots, (n+1)^k\} = S$. tri(u) contributes 1 to $\sum_{j=1}^{\pi} m_i^{j}$, where π denotes $\pi = 2^{n+1} - 1$. Therefore we obtain that $\sum_{j=1}^{\pi} m_i^{j} = (n+1)^k$.

(4) By a combinatorial observation or a statistical view the assertion is justified.

(5) We know that $M_{n\,n}$ is a (n+1) by (n+1) matrix and $M_{n+1\,n+1}$ is a number or $M_{n+1\,n+1} = (n+1)^k$. By (3), the assertion is true for this case. If i = n-1, the assertion is also true. We omit the rest of the proof of (5).

(6) See Proposition 2 for a special case and we omit the rest of the proof of (6).

NOTE 1. For (A)(2), we defined S as $\{1, 2, \dots, 4^2\}$. We may redefine S as $S = \{1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 2-3, 2-4, 3-1, 3-2, 3-3, 3-4, 4-1, 4-2, 4-3, 4-4\}.$

5. FRACTAL DIMENSION THEOREM

We consider *Fractal Dimensions* of *n*-dimensional SIERPINSKI tetrahedron $\underline{n}(\pi)$ in connection with a transfer matrix of *n*-dimensional SIERPINSKI tetrahedron. We start with the following definition.

Definition 6 [1, p. 173–174]. Let (X, d) denote a complete metric space. Let $A \in H(X)$ (see [1] for H(X)) be a non-empty compact subset of X. Let $\varepsilon > 0$. Let $B(x, \varepsilon)$ denote the closed ball of radius ε and center at a point $x \in X$. For each $\varepsilon > 0$, let $N(A, \varepsilon)$ denote the smallest number of closed ball $B(x, \varepsilon)$ of radius ε needed to cover A. If $D = \lim_{\varepsilon \to 0} (\ln (N(A, \varepsilon)) / \ln (1/\varepsilon))$ exists, then D is called the fractal dimension of A. We use the Euclidean metric d and X = R. We will use the notation D = D(A), and will say that A has fractal dimension D = D(A).

We use the box counting theorem.

Theorem 2 [1, p 136]. (The box counting theorem) Let $A \in H(\mathbb{R}^m)$, where the Euclidean metric is used. Cover \mathbb{R}^m by closed just-touching square boxed of side length $1/2^n$. Let N(A, n) denote the number of boxed of side length $1/2^n$ which intersect the attractor. If $D = \lim_{n \to \infty} (\ln(N(A, n))/\ln(2^n))$, then A has fractal dimension D.

Theorem 1 states that $M_{n+1 n+1} = (n+1)^k$ for (k).

Let $2^{n+1} - 1 = \alpha$. Then $m_{\alpha}{}^{\alpha} = (n+1)^k$ by Theorem 1. If we write $\underline{A}(n)$, then $m_{\alpha}{}^{\alpha} = (m+1)^n$. We shall use it in Theorem 3.

Definition 7. We define $\underline{M}(\pi)$ as $\underline{M}(\pi) = \lim_{n \to \infty} \underline{M}(n)$ and we may say that $\underline{M}(\pi)$ denotes the symbol of an *m*-dimensional SIERPINSKY tetrahedron.

Theorem 3. An *m*-dimensional Sierpinski tetrahedron $\underline{\bigwedge}(\pi)$ has fractal dimension

$$D = D\left(\bigwedge(\pi)\right) = \lim_{n \to \infty} \frac{\ln\left(N\left(\bigwedge(n)\right)\right)}{\ln(2^n)} = \lim_{n \to \infty} \frac{\ln(m+1)^n}{\ln(2^n)} = \frac{\ln(m+1)}{\ln 2}.$$

We apply the box counting theorem to M(n) and obtain $N(M(n)) = (m+1)^n$. The rest of the proof is clear.

We refer to $[\mathbf{2}]$ for a detailed proof of Theorem 3 . (We note that an m-dimensional SIERPINSKI tetrahedron is not usual one.)

REFERENCES

- 1. M. BARNSLEY: Fractal everywhere. Academic Press, San Diego CA (1988).
- JIN BAI KIM, HYUN SOOK KIM: Fractal dimension on an n-dimensional Sierpinski tetrahedron. Bull. Malaysian Math. Soc, 20 (1997), 1–8.
- 3. N. NENSKA-FICEK: Duality in fractals. J. Physics, A-18, No. 2 (1985), 327–334.
- B. B. MANDELBROT, Y. GEFEN, A. AHARONY, J. PEYRIERE: Fractals, their transfer matrices and eigen-dimensional sequences. J. Physics, A-18, No. 2 (1985), 335–354.
- 5. B. B. MANDELBROT: The fractal geometry of nature. Freeman, San Francisco, 1982.
- ZHI-XION WEN: On the transfer matrices of fractals. Linear algebra and its applications (1996), 189–203.

Department of Mathematics, West Virginia University, Morganton, WV 26506

Department of Mathematics Won Kwang University, Iksan City, Chun-Buk 570–749, Korea (Received August 2, 1999)