A SIMPLIFICATION OF THE PAPER OF KOHNEN

Nenad P. Cakić

In this short note we indicate that a recurrence from the paper [1] is wellknown.

In the recent paper $[\mathbf{1}], \mathrm{W}$. Kohnen analyzed the following recurrence:

$$
\begin{equation*}
a_{n}=\left(1-\frac{1}{n}\right) a_{n-1}+\frac{1}{n} a_{n-2} \tag{1}
\end{equation*}
$$

for $n \geq 2$ and $a_{0}=1, a_{1}=0$.
However, such recursions were itensively studied. Namely, if we introduce the substitution $n!a_{n}=d_{n}$, we get

$$
\begin{equation*}
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right), \tag{2}
\end{equation*}
$$

with $d_{0}=1, d_{1}=0$, which is a well-known recurrence for the number of derangements of the set $[n]$ (see, for example the "old" references $[\mathbf{2}],[\mathbf{3}]$ or or the "new" reference [4]).

So, the fact that $a_{n}=\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!}$ follows immediately from equality $d_{n}=$ $n!\sum_{\nu=0}^{n} \frac{(-1)^{\nu}}{\nu!}$, and does not really require a proof!
REMARK 1. A generalized problem on the line of d_{n} is the recurrence $f(n+1)=$ $n(f(n)+f(n-1))$ with initial conditions $f(0)=a, f(1)=b$, and with the solution ([5]):

$$
f(n)=(a-b) n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}+b n!
$$

1991 Mathematics Subject Classification: 05A10, 11B65
This research was supported by Science Fund of Serbia, grant number 04M03, through Mathematical Institute, Belgrade.

$$
\text { Putting } a=1 \text { and } b=0 \text { we find } f(n)=n!\sum_{k=0}^{n} \frac{(-1)^{\nu}}{\nu!} \text {. }
$$

REmARK 2. In [2], pp. 201, we can find another expression for d_{n} :

$$
d_{n}=\sum_{r=0}^{n-1}(-1)^{r}\binom{n}{r}(n-r)^{r}(n-r-1)^{n-r}
$$

REFERENCES

1. W. Kohnen: A remark on the left - factorial hypothesis. Publ. Elektroteh. Fak. Ser. Mat. 9 (1998), 51-54.
2. L. Comtet: Advanced combinatorics. Reidel, Dodrecht, 1974
3. D. E. Knuth: The art of computer programing. Vol. 3, Addison - Wesley, Rading MA, 1973.
4. H. S. Wilf: Generatingfunctionology. (2nd ed.) Academic Press, San Diego, 1994.
5. N. P. Cakić: Solution of the problem B-853. The Fibomacci Quarterly (to appear).
