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BY NARKIEWICZ CONCERNING

LARGE DIGITS OF POWERS

Robert E. Kennedy, Curtis Cooper

1. INTRODUCTION

For some time we have been concerned about the validity of the statement

s(2n) < 2n for all n > 3.

Here, s(m) denotes the (base 10) digital sum of the integer m. We have been unable
to prove or disprove the above conjecture. But, based on the relation

s(2n) = 2s(2n−1)− 9L(2n−1)

where
L(m) = # of “large digits” of m

we have become interested in the number of large digits occurring in powers of 2.
Generalizing the concepts above, a “base b large digit” is a base b digit when

doubled involves a “carry”. For example, 6 is a base ten large digit since 2×6 = 12
has two digits. The base b large digits are the digits

db/2e, db/2e+ 1, db/2e+ 2, . . . , b− 1.

So, for example, the base 7 large digits are

4, 5, and 6.

Digits which are not large digits are called, “small base b digits.” Hence the small
base 7 digits are

0, 1, 2, and 3.
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In general, Lb(m) denotes the number of base b large digits of the base b represen-
tation of the integer m.

A method due to Narkiewicz [2] and earlier by Gupta [1] was used in
investigating the question asked by Erdős:

“Does there exists an integer m 6= 0, 2, 8 such that
2m is a distinct sum of powers of 3?”

That is,
“Is it true that L3(2m) 6= 0 for m ≥ 9?”

In Narkiewicz [2], it was shown that the number of nonnegative integers m ≤ x
such that 2m is the sum of distinct powers of 3 does not exceed

1.62 x0.631.

This method will be generalized in what follows.

2. MAIN RESULT

Theorem. Let (a, b) = 1, that is a and b are relatively prime. Let

S = {n : Lb(an) = 0} and S(x) = #{n ≤ x : Lb(an) = 0}.

Let
β = #{d < b : (d, b) = 1 and d is small}

and

θ =
ln

(
b+1
2

)

ln b
.

Finally, let φ denote Euler’s phi function. Then

S(x) ≤ β

(
b (1− θ)
θ φ(b)

)θ( 1
1− θ

)
xθ.

Proof. Let

an =
s∑

i=0

dib
i.

If Lb(an) = 0, then 0 ≤ di ≤ b(b− 1)/2c for all 0 ≤ i ≤ s. Then for any k ≥ 0 (we
will assume k ≥ 1)

an ≡
k−1∑

i=0

dib
i (mod bk).
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Note that d0 6= 0, since (a, b) = 1. In fact, (d0, b) = 1, since (a, b) = 1. By the
definition of β, β ≤ φ(b). So,

#{an (mod bk)} ≤ β

(⌊
b− 1

2

⌋
+ 1

)k−1

,

since (a, b) = 1.
The number of residue classes which n can belong to mod φ(bk) is at most

β

(⌊
b− 1

2

⌋
+ 1

)k−1

,

say,
r1, r2, . . . , rβ(b(b−1)/2c)k−1 .

Hence, for any x,

#
{
n ≤ x : n ≡ ri (mod φ(bk))

} ≤ x

φ(bk)
+ 1

and so,

S(x) ≤
β(b(b−1)/2c+1)k−1∑

i=1

#{n ≤ x : n ≡ ri (mod φ(bk))}

≤ β

(⌊
b− 1

2

⌋
+ 1

)k−1(
x

φ(bk)
+ 1

)

≤ β

(
b + 1

2

)k−1(
x

φ(bk)
+ 1

)

=
β

2k−1
(b + 1)k−1 1

bk

(
bkx

φ(bk)

)
+ β

(
b + 1

2

)k−1

=
β

2k−1

(
b + 1

b

)k−1 1
b
· bx

φ(b)
+ β

(
b + 1

2

)k−1

=
β

φ(b)

(
b + 1
2b

)k−1

x + β

(
b + 1

2

)k−1

.

Let

f(z) =
β

φ(b)

(
b + 1
2b

)z−1

x + β

(
b + 1

2

)z−1

so,

f ′(z) =
β

φ(b)

(
b + 1
2b

)z−1

x ln
(

b + 1
2b

)
+ β

(
b + 1

2

)z−1

ln
(

b + 1
2

)

and thus, f ′(z) = 0 implies that

β

(
b + 1

2

)z−1[ 1
φ(b)

· x

bz−1
ln

(
b + 1
2b

)
+ ln

(
b + 1

2

)]
= 0
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when
x

bz−1
=
− ln

(
b+1
2

)

ln
(

b+1
2b

) · φ(b) =
ln

(
b+1
2

)

ln
(

2b
b+1

) φ(b).

Since

θ =
ln

(
b+1
2

)

ln b
, i.e. ln

(
b + 1

2

)
= θ ln b

and

ln
(

2b

b + 1

)
= − ln

(
b + 1
2b

)
= − ln

(
b + 1

2

)
+ ln b = −θ ln b + ln b,

and so,
x

bz−1
=

θ ln b

−θ ln b + ln b
· φ(b) =

θ

1− θ
φ(b).

Since

bz ≥ bbzc = bdze−1 ≥ bz−1,
1
b
· x

φ(b) bz−1
≤ x

φ(b) bbzc
=

x

φ(b) bdze−1

≤ x

φ(b) bz−1
=

θ

1− θ
.

Therefore,
1
b
· θ

1− θ
≤ x

φ(b) bdze−1
≤ θ

1− θ
.

Hence, there exists a k (= dze) that can be used. So let k = dze and we have

1
b
· θ

1− θ
≤ x

φ(b) bk−1
≤ θ

1− θ
.

This implies
1
b
· θ

1− θ
≤ bx

φ(b) bk
≤ θ

1− θ
.

This implies
1
b
· θ

1− θ
≤ x

φ(bk)
≤ θ

1− θ
.

Therefore,

S(x) ≤ β

(
b + 1

2

)k−1(
θ

1− θ
+ 1

)
= β

(
b + 1

2

)k−1( 1
1− θ

)
.

But (
b + 1

2

)k−1

= (bk−1)θ,
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and

bk−1 ≤ bx (1− θ)
θ φ(b)

,

so (
b + 1

2

)k−1

≤
(

b (1− θ)
θ φ(b)

)θ

xθ,

and we have

S(x) ≤ β

(
b (1− θ)
θ φ(b)

)θ( 1
1− θ

)
xθ.

This completes the proof. Note that

θ =
ln

(
b+1
2

)

ln b
< 1,

since
b + 1

2
< b for b ≥ 2.

3. EXAMPLE

Suppose b = 5. Then φ(b) = 4, β = 2, and

θ =
ln 3
ln 5

≈ 0.68

and so

constant c ≈ 2
(

5 (0.32)
0.68(4)

)0.68( 1
0.32

)
≈ 2

(
1.6
2.72

)0.68( 1
0.32

)
≈ 2.18.

Therefore,
S(x) ≤ 2.18x0.68.
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