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A NOTE ON CONNECTION BETWEEN

P -CONVEX AND SUBADDITIVEFUNCTIONS

Stojan Radenovi�c, Slavko Simi�c

The purpose of this paper is to establish a connection between p-convex and locally

subadditive functions.

Primary tools in theory of analytic inequalities are classes of convex and

subadditive functions [4].

A function f : Rn
! R is convex if

f(sx + ty) � sf(x) + tf(y)(1)

for all x; y 2 Rn and all s; t 2 [0; 1] with s + t = 1.

A function f : A ! R(A � R
n
; A + A � A) is called locally subadditive

(resp. superadditive) if for all x; y 2 A:

f(x + y) � f(x) + f(y) (resp. f(x + y) � f(x) + f(y)(2)

The purpose of our work [5] was to establish a connection between those classes of

functions. There we proved that every convex g(x) de�ned on ]a; b[ (�1 � a <

b � +1) produces a locally subadditive function f(x; y) on C � R2,

C =
n
(x; y) : a <

y

x
< b; x > 0

o

given with:

f(x; y) = x � g
�y
x

�
:(3)

A generalization of this proposition for function on Rm, is given in following propo-

sition 3. In this artivcle we treat so called p-convex function as a source of an

enlarged class of subadditive functions in given explicit form in R2, which is also

capable of great generalizations.

A function f : A! R (A is a cone in Rn) is p-convex for some p 2]0; 1[ if

f(sx + ty) � spf(x) + tpf(y);(4)

for all x; y 2 A and all s; t 2]0; 1[ with s+ t = 1.
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This de�nition shows wider notion of convexity, evidently, every positive con-

vex function is p-convex, but the converse is not true. For example, function

f(x) = xp; 0 < p < 1; x > 0, is not convex but is p-convex:

f(sx + ty) = (sx + ty)p � (sx)p + (ty)p = spf(x) + tpf(y):(5)

Also, every positive p2-convex is p1-convex function for 0 < p1 < p2 � 1.

A function f : A! R (A is a cone in Rn) is positive homogenous with degree

p, if f(tx) = tpf(x); t; p 2 R+.

In propositions 1 and 2 we are dealing with necessary and su�cient conditions

for f : C ! R to be subadditive, depending of given g :]a; b[!R. In proposition

3 we give possible generalization in the case p = 1.

Proposition 1. Let g :]a; b[!R be p-convex function. Then

f(x; y) = xp � g
�y
x

�
(6)

is positive homogenous of degree p subadditive function on

C =
n
(x; y) : a <

y

x
< b; x > 0

o

Proof. Let (xi; yi) 2 C; i = 1; 2; then

f((x1; y1) + (x2; y2)) = f(x1 + x2; y1 + y2) = (x1 + x2)
p
� g

�
y1 + y2

x1 + x2

�

= (x1 + x2)
p
� g

�
x1

x1 + x2
�
y1

x1
+

x2

x1 + x2
�
y2

x2

�

� (x1 + x2)
p
�

�
x1

x1 + x2

�p
� g

�
y1

x1

�

+(x1 + x2)
p
�

�
x2

x1 + x2

�p
� g

�
y2

x2

�

= f(x1; y1) + f(x2; y2);

i.e. f(�) is subadditive on C. That f(�) is positive homogenous of degree p is

obvious. 2

We conclude that every p-convex function on R+ produces subadditive func-

tion on C. Conversely:

Proposition 2. Let f : C ! R; C =
n
(x; y) : a <

y

x
< b; x > 0

o
, be subadditive

and positive homogenous function with exact degree p. Then f(�) has to be in the

form:

f(x; y) = xp � g

�y
x

�
;(7)
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where g(�) is p-convex.

Proof. First, we show that g(y) := f(1; y) is p-convex. Using subadditivity of f(�)

we get

g(sy1 + ty2) = f(1; sy1 + ty2) = f(s + t; sy1 + ty2)

� f(s; sy1) + f(t; ty2) = spf(1; y1) + tpf(1; y2)

i.e. g(�) = f(1; �) is p-convex. Now, using homogenously (with t =
1

x
) of f(�) we

have:
1

xp
f(x; y) = f

�
1

x
� x;

1

x
� y

�
= f

�
1;
y

x

�
= g

�y
x

�
;

i.e.

f(x; y) = xp � g
�y
x

�

and the proof is over. We are concluding with a generalization (in the case p = 1)

of proposition cited 2. 2

Proposition 3. A convex function g : Rm
! R produces positive homogenous

subadditive f(�) on C � R2 given with:

f(x) = hA; xi �

�
hB1; xi

hA; xi
;
hB2; xi

hA; xi
; : : : ;

hBm; xi

hA; xi

�
;(8)

where C is half-plane in Rm, i.e. C = fx = (x1; x2; : : : ; xm); hA; xi > 0g; Bi =

(Bi1; Bi2; : : : ; Bim); i = 1; 2; : : :;m; are vectors not equal to zero,A=(A1; A2; : : : ; An)

is constant vector in R
n
, and ha; bi, as usual, de�nes inner product of a; b 2 R

n
.

Proof. Since

hBk; x+ yi

hA; x+ yi
=

hA; xi

hA; x+ yi
�
hBk; xi

hA; xi
+

hA; yi

hA; x+ yi
�
hBk; yi

hA; yi
; k = 1; 2; : : : ;m;

using convexity of g(�), we get:

f(x + y) = hA; x+ yi � g

�
hB1; x+ yi

hA; x+ yi
;
hB2; x+ yi

hA; x+ yi
; : : : ;

hBm; x+ yi

hA; x+ yi

�

� hA; x+ yi � s � g

�
hB1; xi

hA; xi
;
hB2; xi

hA; xi
; : : : ;

hBm; xi

hA; xi

�

+hA; x+ yi � t � g

�
hB1; yi

hA; yi
;
hB2; yi

hA; yi
; : : : ;

hBm; yi

hA; yi

�

= f(x) + f(y); s =
hA; xi

hA; x+ yi
; t =

hA; yi

hA; x+ yi
:

The fact that f(�) is positive homogenous (p = 1) is evident. 2
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Proposition 4. Let f : C ! R; C = f(x1; x2; : : : ; xn) : xn > 0g be subadditive

and positive homogenous (p = 1). Then f(�) has to be in the form:

f(x1; x2; : : : ; xn) = xn � g

�
x1

xn
;
x2

xn
; : : : ;

xn�1

xn

�
(9)

where g(�) is convex.

Proof. Similarly as in proposition 2,

g(x1; x2; : : :xn�1) := f(x1; x2; : : : ; xn�1; 1)

is convex. Now, for t =
1

xn
we obtain:

1

xn
� f(x1; x2; : : :xn) = f

�
x1

xn
;
x2

xn
; : : : ;

xn�1

xn
; 1

�
= g

�
x1

xn
;
x2

xn
; : : : ;

xn�1

xn

�
;

i.e.

f(x1; x2; : : : ; xn) = xn � g

�
x1

xn
;
x2

xn
; : : : ;

xn�1

xn

�
: 2
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