A NOTE ON CONNECTION BETWEEN P-CONVEX AND SUBADDITIVE FUNCTIONS

Stojan Radenović, Slavko Simić

The purpose of this paper is to establish a connection between p-convex and locally subadditive functions.

Primary tools in theory of analytic inequalities are classes of convex and subadditive functions [4].

A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if

$$
\begin{equation*}
f(s x+t y) \leq s f(x)+t f(y) \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbf{R}^{n}$ and all $s, t \in[0,1]$ with $s+t=1$.
A function $f: A \rightarrow \mathbf{R}\left(A \subset \mathbf{R}^{n}, A+A \subset A\right)$ is called locally subadditive (resp. superadditive) if for all $x, y \in A$:

$$
\begin{equation*}
f(x+y) \leq f(x)+f(y) \text { (resp. } f(x+y) \geq f(x)+f(y) \tag{2}
\end{equation*}
$$

The purpose of our work [5] was to establish a connection between those classes of functions. There we proved that every convex $g(x)$ defined on $] a, b[(-\infty \leq a<$ $b \leq+\infty)$ produces a locally subadditive function $f(x, y)$ on $C \subset \mathbf{R}^{2}$,

$$
C=\left\{(x, y): a<\frac{y}{x}<b, x>0\right\}
$$

given with:

$$
\begin{equation*}
f(x, y)=x \cdot g\left(\frac{y}{x}\right) \tag{3}
\end{equation*}
$$

A generalization of this proposition for function on \mathbf{R}^{m}, is given in following proposition 3. In this artivcle we treat so called p-convex function as a source of an enlarged class of subadditive functions in given explicit form in \mathbf{R}^{2}, which is also capable of great generalizations.

A function $f: A \rightarrow \mathbf{R}\left(A\right.$ is a cone in $\left.\mathbf{R}^{n}\right)$ is p-convex for some $\left.p \in\right] 0,1[$ if

$$
\begin{equation*}
f(s x+t y) \leq s^{p} f(x)+t^{p} f(y) \tag{4}
\end{equation*}
$$

for all $x, y \in A$ and all $s, t \in] 0,1[$ with $s+t=1$.

This definition shows wider notion of convexity, evidently, every positive convex function is p-convex, but the converse is not true. For example, function $f(x)=x^{p}, 0<p<1, x>0$, is not convex but is p-convex:

$$
\begin{equation*}
f(s x+t y)=(s x+t y)^{p} \leq(s x)^{p}+(t y)^{p}=s^{p} f(x)+t^{p} f(y) \tag{5}
\end{equation*}
$$

Also, every positive p_{2}-convex is p_{1}-convex function for $0<p_{1}<p_{2} \leq 1$.
A function $f: A \rightarrow \mathbf{R}$ (A is a cone in \mathbf{R}^{n}) is positive homogenous with degree p, if $f(t x)=t^{p} f(x) ; t, p \in \mathbf{R}^{+}$.

In propositions 1 and 2 we are dealing with necessary and suficient conditions for $f: C \rightarrow \mathbf{R}$ to be subadditive, depending of given $g:] a, b[\rightarrow \mathbf{R}$. In proposition 3 we give possible generalization in the case $p=1$.

Proposition 1. Let $g:] a, b[\rightarrow \mathbf{R}$ be p-convex function. Then

$$
\begin{equation*}
f(x, y)=x^{p} \cdot g\left(\frac{y}{x}\right) \tag{6}
\end{equation*}
$$

is positive homogenous of degree p subadditive function on

$$
C=\left\{(x, y): a<\frac{y}{x}<b, x>0\right\}
$$

Proof. Let $\left(x_{i}, y_{i}\right) \in C, i=1,2$; then

$$
\begin{aligned}
f\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)= & f\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=\left(x_{1}+x_{2}\right)^{p} \cdot g\left(\frac{y_{1}+y_{2}}{x_{1}+x_{2}}\right) \\
= & \left(x_{1}+x_{2}\right)^{p} \cdot g\left(\frac{x_{1}}{x_{1}+x_{2}} \cdot \frac{y_{1}}{x_{1}}+\frac{x_{2}}{x_{1}+x_{2}} \cdot \frac{y_{2}}{x_{2}}\right) \\
\leq & \left(x_{1}+x_{2}\right)^{p} \cdot\left(\frac{x_{1}}{x_{1}+x_{2}}\right)^{p} \cdot g\left(\frac{y_{1}}{x_{1}}\right) \\
& +\left(x_{1}+x_{2}\right)^{p} \cdot\left(\frac{x_{2}}{x_{1}+x_{2}}\right)^{p} \cdot g\left(\frac{y_{2}}{x_{2}}\right) \\
= & f\left(x_{1}, y_{1}\right)+f\left(x_{2}, y_{2}\right),
\end{aligned}
$$

i.e. $f(\cdot)$ is subadditive on C. That $f(\cdot)$ is positive homogenous of degree p is obvious.

We conclude that every p-convex function on \mathbf{R}^{+}produces subadditive function on C. Conversely:

Proposition 2. Let $f: C \rightarrow \mathbf{R}, C=\left\{(x, y): a<\frac{y}{x}<b, x>0\right\}$, be subadditive and positive homogenous function with exact degree p. Then $f(\cdot)$ has to be in the form:

$$
\begin{equation*}
f(x, y)=x^{p} \cdot g\left(\frac{y}{x}\right) \tag{7}
\end{equation*}
$$

where $g(\cdot)$ is p-convex.
Proof. First, we show that $g(y):=f(1, y)$ is p-convex. Using subadditivity of $f(\cdot)$ we get

$$
\begin{aligned}
g\left(s y_{1}+t y_{2}\right) & =f\left(1, s y_{1}+t y_{2}\right)=f\left(s+t, s y_{1}+t y_{2}\right) \\
& \leq f\left(s, s y_{1}\right)+f\left(t, t y_{2}\right)=s^{p} f\left(1, y_{1}\right)+t^{p} f\left(1, y_{2}\right)
\end{aligned}
$$

i.e. $g(\cdot)=f(1, \cdot)$ is p-convex. Now, using homogenously (with $t=\frac{1}{x}$) of $f(\cdot)$ we have:

$$
\frac{1}{x^{p}} f(x, y)=f\left(\frac{1}{x} \cdot x, \frac{1}{x} \cdot y\right)=f\left(1, \frac{y}{x}\right)=g\left(\frac{y}{x}\right)
$$

i.e.

$$
f(x, y)=x^{p} \cdot g\left(\frac{y}{x}\right)
$$

and the proof is over. We are concluding with a generalization (in the case $p=1$) of proposition cited 2 .

Proposition 3. A convex function $g: \mathbf{R}^{m} \rightarrow \mathbf{R}$ produces positive homogenous subadditive $f(\cdot)$ on $C \subset \mathbf{R}^{2}$ given with:

$$
\begin{equation*}
f(x)=\langle A, x\rangle \cdot\left(\frac{\left\langle B_{1}, x\right\rangle}{\langle A, x\rangle}, \frac{\left\langle B_{2}, x\right\rangle}{\langle A, x\rangle}, \ldots, \frac{\left\langle B_{m}, x\right\rangle}{\langle A, x\rangle}\right) \tag{8}
\end{equation*}
$$

where C is half-plane in \mathbf{R}^{m}, i.e. $C=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{m}\right),\langle A, x\rangle>0\right\}, B_{i}=$ $\left(B_{i 1}, B_{i 2}, \ldots, B_{i m}\right), i=1,2, \ldots, m$; are vectors not equal to zero, $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is constant vector in \mathbf{R}^{n}, and $\langle a, b\rangle$, as usual, defines inner product of $a, b \in \mathbf{R}^{n}$.

Proof. Since

$$
\frac{\left\langle B_{k}, x+y\right\rangle}{\langle A, x+y\rangle}=\frac{\langle A, x\rangle}{\langle A, x+y\rangle} \cdot \frac{\left\langle B_{k}, x\right\rangle}{\langle A, x\rangle}+\frac{\langle A, y\rangle}{\langle A, x+y\rangle} \cdot \frac{\left\langle B_{k}, y\right\rangle}{\langle A, y\rangle}, k=1,2, \ldots, m
$$

using convexity of $g(\cdot)$, we get:

$$
\begin{aligned}
f(x+y)= & \langle A, x+y\rangle \cdot g\left(\frac{\left\langle B_{1}, x+y\right\rangle}{\langle A, x+y\rangle}, \frac{\left\langle B_{2}, x+y\right\rangle}{\langle A, x+y\rangle}, \ldots, \frac{\left\langle B_{m}, x+y\right\rangle}{\langle A, x+y\rangle}\right) \\
\leq & \langle A, x+y\rangle \cdot s \cdot g\left(\frac{\left\langle B_{1}, x\right\rangle}{\langle A, x\rangle}, \frac{\left\langle B_{2}, x\right\rangle}{\langle A, x\rangle}, \ldots, \frac{\left\langle B_{m}, x\right\rangle}{\langle A, x\rangle}\right) \\
& +\langle A, x+y\rangle \cdot t \cdot g\left(\frac{\left\langle B_{1}, y\right\rangle}{\langle A, y\rangle}, \frac{\left\langle B_{2}, y\right\rangle}{\langle A, y\rangle}, \ldots, \frac{\left\langle B_{m}, y\right\rangle}{\langle A, y\rangle}\right) \\
= & f(x)+f(y) ; s=\frac{\langle A, x\rangle}{\langle A, x+y\rangle}, t=\frac{\langle A, y\rangle}{\langle A, x+y\rangle} .
\end{aligned}
$$

The fact that $f(\cdot)$ is positive homogenous $(p=1)$ is evident.

Proposition 4. Let $f: C \rightarrow \mathbf{R}, C=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{n}>0\right\}$ be subadditive and positive homogenous $(p=1)$. Then $f(\cdot)$ has to be in the form:

$$
\begin{equation*}
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n} \cdot g\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n-1}}{x_{n}}\right) \tag{9}
\end{equation*}
$$

where $g(\cdot)$ is convex.
Proof. Similarly as in proposition 2,

$$
g\left(x_{1}, x_{2}, \ldots x_{n-1}\right):=f\left(x_{1}, x_{2}, \ldots, x_{n-1}, 1\right)
$$

is convex. Now, for $t=\frac{1}{x_{n}}$ we obtain:

$$
\frac{1}{x_{n}} \cdot f\left(x_{1}, x_{2}, \ldots x_{n}\right)=f\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n-1}}{x_{n}}, 1\right)=g\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n-1}}{x_{n}}\right)
$$

i.e.

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n} \cdot g\left(\frac{x_{1}}{x_{n}}, \frac{x_{2}}{x_{n}}, \ldots, \frac{x_{n-1}}{x_{n}}\right) .
$$

REFERENCES

1. E. F. Beckenbach: Superadditivity inequalities, Pacific J. Math. 14 (1964), 421-438.
2. A. M. Bruckner: Test for the superadditivity of functions, Proc. Amer. Math. Soc. 13 (1962), 126-130.
3. A. M. Bruckner: Some relationships between locally superadditive functions and convex functions, Proc. Amer. Math. Soc. 15 (1964), 61-65.
4. D. S. Mitrinović: Analytic Inequalities, Springer-Verlag, 1970.
5. S. Simić, S. Radenović: A functional inequality, J. Math. Analysis Appl. 197 (1996), 489-494.

Mutapova 63, stan 1,
(Received April 28, 1998)
11000 Beograd, Yugoslavia
(Revised November 13, 1998)
radens@beotel.yu
ssimic@mi.sanu.ac.yu

