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HOSOYA POLYNOMIAL AND THE DISTANCE

OF THE TOTAL GRAPH OF A TREE

Ivan Gutman

Let G be a connected graph possessing d(G; k) vertex pairs at distance k. Its

Hosoya polynomial is H(G; �) =
P

k�1
d(G; k) �k. The distance d(G) of the

graph G is the sum of distances of all pairs of its vertices, i. e., d(G) = H0(G; 1).

Let T (G) be the total graph of G. If G is a tree, then the Hosoya polynomial of

T (G) (as well as of several other graphs derived from G) is expressed in terms of

H(G; �). As a consequence, a linear relation exists between d(T (G)) and d(G).

1. INTRODUCTION

The graph polynomial which we study in this paper was invented in 1988 by

Hosoya [1] (and was originally named the Wiener polynomial). We nevertheless

call it the Hosoya polynomial . It is de�ned as follows.

Let G be a connected graph on n vertices. The vertex and edge sets of G

are V (G) = fx1; x2; : : : ; xng and E(G) = fy1; y2; : : : ; ymg, respectively. The length
(= number of edges) of a shortest path between the vertices xi; xj 2 V (G) is their

distance and is denoted by d(xi; xj jG). The number of (unordered) pairs of vertices
of G, whose distance is k, is denoted by d(G; k).

Let D be the diameter of the graph G. Clearly, d(G; k) = 0 whenever k > D.

Furthermore, d(G; k) > 0 for all k = 1; : : : ; D and
PD

k=1
d(G; k) = n(n� 1)=2.

De�nition 1. The Hosoya polynomial of G is

H(G) = H(G; �) =

DX
k=1

d(G; k)�k(1)

or, what is the same,

H(G) = H(G; �) =
X

1�i<j�n

�d(xi; xjjG):(2)
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De�nition 2. The distance d(G) of the graph G (sometimes called the Wiener

number) is equal to the sum of distances of all pairs of vertices of G,

d(G) =
X

1�i<j�n

d(xi; xj jG):

Combining De�nitions 1 and 2 one immediately concludes that [1]

d(G) =

DX
k=1

k d(G; k)

i. e.,

d(G) = H 0(G; 1)(3)

where H 0(G; �) stands for the �rst derivative of H(G; �) with respect to �.

We now de�ne the following �ve types of graphs, derived from G.

1. The line graph L(G) ofG has as vertices the edges y1; y2; : : : ; ym ofG, V (L(G))=

E(G). Two vertices of L(G) are adjacent if, and only if, the respective edges of G

are incident.

2. The subdivision graph S(G) of G is obtained by inserting a new vertex on each

edge of G. The subdivision graph can be viewed as consisting of the vertices of both

G and L(G) , V (S(G)) = V (G)[V (L(G)). In view of this we denote the vertices

of S(G) by x1; x2; : : : ; xn; y1; y2; : : : ; ym and say that the vertices x1; x2; : : : ; xn
originate from G whereas the vertices y1; y2; : : : ; ym originate from L(G).

The vertices of the below described semi-total graphs and of the total graph

are labeled in the same manner as the vertices of the subdivision graph.

3. The �rst semi-total graph ST1(G) of G is obtained by adding new edges to S(G),

connecting all pairs of vertices originating from G and being adjacent in G. Thus

V (ST1(G)) = V (S(G)) and E(ST1(G)) = E(S(G)) [E(G).

4. The second semi-total graph ST2(G) of G is obtained by adding new edges to

S(G), connecting all pairs of vertices originating from L(G) and being adjacent in

L(G). Thus V (ST2(G)) = V (S(G)) and E(ST2(G)) = E(S(G)) [ E(L(G)).

5. The total graph T (G) of G is obtained by adding new edges to S(G), connecting

all pairs of vertices originating from G and being adjacent in G and all pairs of

vertices originating from L(G) and being adjacent in L(G). Thus V (T (G)) =

V (S(G)) and E(T (G)) = E(S(G)) [ E(G) [ E(L(G)).

An illustrative example is provided in Fig. 1.
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Fig. 1.

2. STATEMENT OF THE RESULTS

Let, as before, G be a connected graph on n vertices and let L(G), S(G),

ST1(G), ST2(G) and T (G) be respectively the line graph, the subdivision graph,

the �rst and second semi-total graph and the total graph of G.

Theorem 1. If G is an n-vertex tree, then:

H(L(G); �) =
1

�
H(G; �) � (n� 1);(4)

H(S(G); �) =

�
1 +

1

�

�2
H(G; �2)� (n� 1);(5)
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H(ST1(G); �) = 4H(G; �)� (n� 1)�;(6)

H(ST2(G); �) = �

�
1 +

1

�

�2
H(G; �)� (n� 1);(7)

H(T (G); �) =

�
3 +

1

�

�
H(G; �) � (n� 1):(8)

Theorem 2. If G is an n-vertex tree, then the distances of L(G), S(G), ST1(G),

ST2(G) and T (G) are all simple linear functions of the distance of G:

d(L(G)) = d(G)�
1

2
n(n� 1);(9)

d(S(G)) = 8 d(G)� 2n(n� 1);(10)

d(ST1(G)) = 4 d(G)� (n� 1);(11)

d(ST2(G)) = 4 d(G);(12)

d(T (G)) = 4 d(G)�
1

2
n(n� 1):(13)

It should be noted that none of the relations (4){(13) is, in the general case,

obeyed for cycle{containing graphs. In particular, all these relations are violated if

G is chosen to be the triangle.

A formula equivalent to (9) was earlier reported by Buckley [2].

3. PROOF OF THEOREMS 1 AND 2

Throughout this section it is assumed that G is an n-vertex tree. Hence,

m = n� 1.

In order to deduce Eq. (4) recall [2], [3] that in the case of trees there exists

a one{to{one correspondence between the shortest paths of length k of L(G) and

the paths of length k + 1 of G, k = 1; 2; : : : . Therefore for k � 1, d(L(G); k) =

d(G; k+1). Formula (4) follows now directly from the de�nition (1) of the Hosoya

polynomial and the fact that d(G; 1) = jE(G)j = n� 1.

In order to deduce Eqs. (5){(8) it is convenient to refer to the vertices

x1; x2; : : : ; xn of S(G); ST1(G); ST2(G) and T (G) as white and to the vertices

y1; y2; : : : ; ym as black, cf. Fig. 1.

In view of Eq. (2), the Hosoya polynomial of S(G) is decomposed into three

terms, namely into contributions of pairs of white vertices (Pww), pairs of black

vertices (Pbb) and pairs of di�erently colored vertices (Pwb):

H(S(G)) = Pww + Pbb + Pwb(14)

where

Pww =
X

1�i<j�n

�d(xi; xj jS(G)); Pbb =
X

1�r<s�m

�d(yr; ysjS(G));
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Pwb =

nX
i=1

mX
r=1

�d(xi; yrjS(G)):

From the construction of the subdivision graph it is evident that

d(xi; xj jS(G)) = 2 d(xi; xj jG); d(yr; ysjS(G)) = 2 d(yr; ysjL(G))

which implies

Pww = H(G; �2) and Pbb = H(L(G); �2) :(15)

Consider now a pair of di�erently colored vertices of S(G), say xi and yr.

Because S(G) is a tree, there is a unique path �ir , connecting xi and yr. Let yr0

be the vertex of S(G), belonging to �ir and being adjacent to xi. Let xi0 be the

vertex of S(G), not belonging to �ir and being adjacent to yr. Both xi0 and yr0 are

uniquely determined by xi and yr.

Now, the distance between xi; yr 2 V (S(G)) is by one smaller than the

distance between xi; xi0 2 V (S(G)), which on the other hand is twice the dis-

tance between xi; xi0 2 V (G). Because the same is true also for the vertex pair

xi0 ; yr0 2 V (S(G)), we arrive at the conclusion that

Pwb=2
X

1�i<i0�n

�d(xi; xi0 jS(G))�1=2
X

1�i<j�n

�2 d(xi; xi0 jG)�1=
2

�
H(G; �2) :(16)

Substituting (15) and (16) back into (14) we obtain

H(S(G); �) = H(G; �2) +H(L(G); �2) +
2

�
H(G; �2) :(17)

Combining (17) with (4) yields (5).

The derivation of formulas (6){(8) is analogous. For instance, in the case of

the total graph, for any pair of white vertices

d(xi; xj jT (G)) = d(xi; xj jG)(18)

whereas for any pair of black vertices

d(yr; ysjT (G)) = d(yr; ysjL(G)) :(19)

Using the above speci�ed notation, for the pairs xi; yr 2 V (T (G)) and xi0 ; yr0 2
V (T (G)) of di�erently colored vertices,

d(xi; yrjT (G)) = d(xi0 ; yr0 jT (G)) = d(xi; xi0 jG) :(20)

From (18){(20) follows

H(T (G); �) = H(G; �) +H(L(G); �) + 2H(G; �)



58 Ivan Gutman

and Eq. (8) is obtained using (4).

This completes the proof of Theorem 1.

The results collected in Theorem 2 are direct corollaries of formulas (4){(8),

obtained by di�erentiating the Hosoya polynomials with respect to �, by applying

Eq. (3) and by bearing in mind that H(G; 1) = n(n� 1)=2.

4. DISCUSSION

Theorems 1 and 2 show that for a large number of graphs, constructed from

a tree and being in a one{to{one correspondence with this tree, the Hosoya poly-

nomials and the distances are mutually related. In particular, the distances are

related in a linear manner.

Results of the same kind (for other types of graphs derived from trees) were

recently reported [4], and still more such results were obtained by the author. Of

them we state without proof the following.

Let Sp(G) be the p-th subdivision graph of the graphG, obtained by inserting

p vertices on each edge of G. If G is an n-vertex tree, then

d(Sp(G)) = (p+ 1)3 d(G)�
1

2
p(p+ 1)2 n(n� 1) +

1

6
p(p� 1)(p+ 1)(n� 1) :

For p = 1 the above formula reduces to Eq. (10).

It may well happen that all these relations are just special cases of some more

general connection between distance{based invariants of graphs derived from trees.

The possible discovery of this connection remains a task for the future.

Another task for the future is to �nd an explanation why nice results, as

those stated in Theorems 1 and 2, hold for distance{based invariants of graphs

originating from trees (which, nevertheless, may possess cycles), but do not hold

for graphs constructed in an analogous manner from cycle{containing graphs.
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