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EXAMPLES OF CANONICAL AND WEAK

CANONICAL REPRESENTATION OF

STOCHASTIC PROCESSES

Slobodanka S. Mitrovi�c

In this paper we consider the second-order real-valued stochastic processes x(t); t 2

(a; b) � R, with Ex(t) = 0, for each t, and analyze some characteristic examples

of such processes and the di�erence between their canonical representation in a

Cramer sense, and their representation which satis�es a weaker condition. Also,

we consider a spectral multiplicity of these processes.

Let x(t), t 2 (a; b) � R be a second-order real-valued process with Ex(t) = 0
for each t. Let H(x; t) be the linear closure generated by x(s); s 2 (a; t] in the
Hilbert space H of all random variables with �nite variance (Ex2(t) < 1). We
will suppose that x(t); t 2 (a; b) is continuous left and purely nondeterministic (i.e.

\
t>a

H(x; t) = 0). It is well known (see [1]) that there is a representation :

x(t) =

NX
n=1

Z t

a

gn(t; u) dzn(u); u = t; t 2 (a; b);(1)

where:

1. The processes zn(u); n = 1; : : : ; N are mutually orthogonal with orthogonal
increments such that Ezn(u) = 0 and Ez2n(u) = Fn(u), where Fn(u); n = 1; : : : ; N
are non decreasing functions left continuous everywhere on (a; b).

2. The non-random functions gn(t; u); u � t; are such that:

Ex2(t) =

NX
n=1

Z t

a

g2n(t; u) dFn(u) <1; for each t 2 (a; b):

3. dF1 > dF2 > � � � > dFn, where the relation > means absolute continuity between
measures.

4. H(x; t) =
NP
n=1

�H(zn; t); t 2 (a; b).

The expansion (1) satisfying the conditions 1, 2, 3 and 4 is the canonical

representation or Cramer representation for the process x(t). The number N
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(�nite or in�nite) is called the multiplicity of x(t), and N is uniquely determined
by the process x(t). But, the processes zn(u) and the functions gn(t; u) are not
uniquely determined.

For �nite N , the representation (1) is canonical if and only if the family of
functions fgn(t; u)gn=1;:::;N is complete in the space L2(dF (u)); dF = fdFngn=1;:::;N
(see Lemma 3.1 of [1]).

If condition 4 in the representation (1) is replaced by a weaker condition :

PH(x;s)x(t) =

NX
n=1

Z s

a

gn(t; u) dzn(u); for all s � t; s; t 2 (a; b);

where PH(x;s) is the projection operator on H(x; s), then (1) is said to be a weak-

canonical representation of x(t).

It is clear that the kernel fgn(t; u)gn=1;:::;N of the weak-canonical represen-
tation need not be complete in the space L2(dF (u)). Moreover, the following
statement is valid:

Every canonical representation is the weak-canonical one (see [1], p. 10) and

the converse need not hold. This fact is shown in the next simple example.

Example 1. Let x(t); a � t � b, be represented by x(t) =
sR
a

g(u) dz(u), where

z(u) is a process satisfying the condition 1, and g(u) is a function from L2(dF (u)),
such that g(u) = 0 on an arbitrary set AC of positive dF measure from (a; b). This
representation is weak-canonical because x(t) � x(s) is orthogonal on x(s) for all
s < t, and PH(x;s)x(t) = x(s). But this representation is not canonical because

H(z; t) 6� H(x; t). Instead of x(t) =
tR
a

g(u) dz(u), we may consider the process

x�(t) =

Z t

a

g(u) dz�(u);

with a canonical representation, where z�(t) =
tR
a

�A(u) dz(u), and �A(u) is a char-

acteristic function of A.

It is interesting that there exist many processes x(t) =
tR
a

g(t; u) dz(u), given

by one integral representation not satisfying property to be canonical or weak-
canonical.

Example 2. All processes given by:

xk(t) =

Z t

0

[�kt+ (k + 1)u] dz(u); u � t; u; t 2 [0; b]; k 2N;

E[z2(u)] = u, have no complete kernels gk(t; u) = �k � t+(k+1) �u, in L2(du). For
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each process xk(t), there exists a process yk(t) =
tR
0

uk�1 dz(u) 2 H(z; t), such that

E[yk � xk(s)] =

sZ
0

gk(s; u)u
k�1 du = 0; for all s 2 (0; t]:

So these representations are not canonical. They are not weak-canonical too. Even

if xk(t) �
sR
0

gk(t; u) dz(u) is orthogonal on xk(s) for all s < t; k 2 N, it is easy to

see that yk(s) is not orthogonal to
sR
0

gk(t; u) dz(u):

E[yk(s) � PH(x;s)xk(t)] =

Z s

0

gk(t; u)u
k�1 du = �tsk + sk+1 6= 0; for all s 2 (0; t);

so PH(x;s)xk(t) =
sR
0

gk(t; u) dz(u) 62 H(x; s).

Example 3. The similar holds for processes given in the form

x(t) =

Z t

0

�
p0 + p1

u

t
+ � � �+ pn

un

tn

�
dz(u); u � t; u; t 2 [0; b]; n 2N;

E[z2(u)] = u; pi = const:; i = 0; 1; : : :; n. For certain pi and n we may �nd yk =
bR
0

uk dz(u) 2 H(z), orthogonal on x(t) for all t 2 [0; b], solving the equation

Z t

0

�
p0 + p1

u

t
+ � � �+ pn

un

tn

�
uk du = 0;

by unknown k 2 N. For example x(t) =
tR
0

�
3� 12

u

t
+ 10

u2

t2

�
dz(u); u � t, u; t 2

[0; b]; E[z2(u)] = u, has representation non canonical because there exist y1 =
bR
0

u dz(u) 2 H(z), and y2 =
bR
0

u2dz(u) 2 H(z), which are orthogonal on x(t) for

all t 2 [0; b]. By the same reason like above we may prove that this representation
is not weak-canonical too. However the multiplicity of this process is equal to one
because its covariance function B(s; t) = minfs; tg, so x(t) is again a Wiener

process as x(t).

If the process x(t) given by a representation (1):

x(t) =

NX
i=1

Z t

a

gn(t; u) dzn(u); u � t; t 2 (a; b);
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where N � 2, then, it is known (see [3]) that the next statement is valid:

If the process x(t) is given by a canonical (weak-canonical) representation (1), then
each process

xn(t) =

Z t

a

gn(t; u) dzn(u); u � t; t 2 (a; b);

n = 1; : : : ; N , has a canonical (weak-canonical) representation, and the converse

need not hold.

Example 4. If we have two mutually orthogonal stationary processes given by
canonical representations:

x1(t) =

Z t

�1

g1(t�u) dz1(u); x2(t) =

Z t

�1

g2(t�u) dz2(u); u � t; u; t 2 (�1;1);

then the representation of the sum x(t) = x1(t)+x2(t), is not canonical (multiplicity
of x(t) is equal to 1). Moreover, it is weak-canonical if and only if f1(u) = a �f2(u),
where f1(u); f2(u) are spectral densities, a = const. (see [3]).

Example 5. Let

x(t) =

Z t

�1

e�c(t�u) dz1(u) +

Z t

�1

d � e�c(t�u) dz2(u); u � t; u; t 2 R;

be a process, where z1(u) and z2(u) are the mutually orthogonal processes with
orthogonal increments such that Ezn(u) = 0, Ez2n(u) = fn(u) du; n = 1; 2; c; d =
const., f1(u) = 2c, f2(u) = 2cd2. According to example 4, x(t) has a weak-canonical
representation.

Example 6. Let

x(t) =

Z t

0

dz1(u) + f(t)

Z t

0

dz2(u); u � t; t � 0;

be a process, where z1(u) and z2(u) are the mutually orthogonalWiener processes

and f(t) is absolutely continuous and f
0

(t) 2 L2([0; t]). Both processes
tR
0

dz1(u)

and f(t)
tR
0

dz2(u) are given by canonical representation. According to [2], x(t) has

a multiplicityN = 1, so the representation of x(t) is not canonical and in a general
case it is not weak-canonical too, except when f(t) =const. (see [3]).

For processes given by canonical (weak-canonical) representation, we have
a criterion to check when they have multiplicity of unity. In [5] we proved that
the certain regularity conditions for gn(t; u) and Fn(u); u � t; u; t 2 (a; b); n =
1; : : : ; N; ensure a multiplicity of unity for a process which has a weak-canonical
representation. This statement is a natural extension of Cramer's Theorem 5.1.
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(see [1]) where the regularity conditions ensure a multiplicity of unity for a process
which has a canonical representation.

There exist processes given by a non weak-canonical representation, like those
from examples 2 and 3, but having multiplicity of unity. Also, it is interesting that
processes like the one from example 3, do not satisfy the regularity conditions and
Cramer's statement (Theorem 5.2. in [1]) does not help. It means that we can use
di�erent ways to determine the multiplicity of a process. So, the problem (still open)
is to �nd out a criterion which would be depended probably on kernel functions
gn(t; u) and zn(u); u � t; t 2 (a; b); n 2 N, easy to check whether multiplicity is
equal to one or not for a wide class of processes.
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