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NON-ISOMORPHIC 4-(48,5,�) DESIGNS FROM

PSL(2,47)

Stani�sa Dautovi�c, Dragan M. Acketa, Vojislav Mudrinski

Non-isomorphic 4-(48,5,�) designs with PSL(2; 47) as automorphism group are

enumerated. It turns out that there are 12, 295, 1195 and 2368 pairwise non-

isomorphic designs in this class, with � equal to 8, 12, 16, 20, respectively. Aux-

iliary graphs serving as design invariants were used to derive this result.

1. DESIGNS

An n-set is a set of cardinality n. A t-(v; k; �) design D is a collection of
k-subsets (called blocks) of a v-set X of points, that satis�es the property that each
t-subset of points is in exactly � blocks. It is also required that no block is repeated.
A group G acting on X is an automorphism group of D if the collection of blocks
of D is a union of G-orbits of k-subsets. We also say that D arises from G.

1.1. Orbits

The projective special linear group G = PSL(2; 47) acts 3-homogeneo-

usly on the projective line 
 = f0; 1; :::; 46g[f1g. There are 33 orbits of 5-subsets
by action of G; all these orbits are of size 51888 = jGj. Orbit representatives
are listed in Table 1 below. All of them contain the points 0, 1, and 1; these
points are omitted. Each representative is preceded by the ordinal number of the
corresponding orbit:

1. 2 3 2. 2 5 3. 2 6 4. 2 7 5. 2 8 6. 2 10

7. 2 12 8. 2 13 9. 2 14 10. 2 16 11. 3 4 12. 3 7

13. 3 8 14. 3 11 15. 3 12 16. 3 13 17. 3 14 18. 3 15

19. 3 17 20. 3 19 21. 3 20 22. 3 22 3. 3 26 24. 3 39

25. 4 9 26. 4 13 27. 4 19 28. 4 20 29. 4 21 30. 4 27

31. 5 8 32. 6 10 33. 7 11

Table 1. Orbits of 5-subsets
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1.2. Designs as column combinations of the orbit incidence matrix

Let � = (�i;j) denote the orbit incidence matrix for orbits of 4-subsets
and 5-subsets by action of G; �i;j is the number of 5-subsets from the j-th orbit of
5-subsets which are supersets of a �xed 4-subset that belongs to the i-th orbit of
4-subsets.

The 10� 33 matrix � has the uniform row sum 44. To construct a 4-(48,5,�)
design with G as automorphism group, we �nd (following the Kramer-Mesner

method [3]) a proper subset S of the columns of � with uniform row sum � (this
method has been used also in [1] and [2]). Thus designs correspond to appropriate
column combinations of �. By complementation, it su�ces to look for designs with
� � 22.

Applying a very fast backtracking algorithm to the column set of �, we have
found the existence of 7740 designs (in the sense of column combinations) with
PSL(2; 47) as automorphism group. Restricting for a moment the attention to the
design parameters, we have the following result:

Theorem. There exist 4-(48; 5; �) designs, with �2f8; 12; 16; 20gand PSL(2; 47)
as automorphism group. Direct action of the group PSL(2; 47) on the projective

line does not give 4-(48; 5; �) designs with other values of �.

It turns out that only ten of the constructed designs (column combinations)
have also the general projective linear group PGL(2; 47) as automorphism group.
The data on the constructed designs are summarized in the following table:

� 8 12 16 20

with PSL(2,47) 24 590 2390 4736
also with PGL(2,47) 2 � 4 4

Table 2. The number of \successful" column combinations

We list only lexicographically the �rst column combination corresponding to
designs with a given value of �:

� = 8: 1 12 26 28 31 33

� = 12: 1 2 12 15 24 28 30 32 33

� = 16: 1 2 3 11 12 24 26 28 30 31 32 33

� = 20: 1 2 3 4 11 14 17 19 20 24 26 27 28 32 33

2. ISOMORPHISMS

Two designs are isomorphic if there is a bijection between their point-sets
that preserves the collection of blocks. A graph is an ordered pair (V;E), where V
and E are respectively the vertex-set and edge-set. The edges are some of the non-
repeating 2-subsets of vertices. Two graphs are isomorphic if there is a bijection
between their vertex-sets that preserves the collection of edges.
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Isomorphismproblem for derived 4-(48,5,�) designs will be settled by reducing
it to a simpler, graph isomorphism problem. The later problem is related to some
auxiliary graphs that are adjoined to the designs. Thus 4-(48,5,20) designs have
778320 blocks each, while the adjoined graphs on 45 vertices are regular of degree
20 and have "only" 450 edges each.

2.1. Auxiliary graphs as design invariants

Let D denote a 4-(v; 5; �) design which is a union of orbits of G-orbits of
5-subsets, for a 3-homogeneous group G. Let Graph(D; fa; b; cg) denote a graph
adjoined to the design D and to a �xed 3-subset fa; b; cg of its point-set 
 in the
following manner:

� vertices x are associated to 4-subsets of the form fa; b; c; xg, where x 2


nfa; b; cg

� edges fx; yg are associated to those blocks of D, which are of the form
fa; b; c; x; yg, where x; y 2 
nfa; b; cg.

Lemma 1. Let fa; b; cg and fa0; b0; c0g denote two 3-subsets of the point-set of

a 4-(v; 5; �) design D arising from a 3-homogeneous group G. Then the graphs

Graph(D; fa; b; cg) and Graph(D; fa0; b0; c0g) are isomorphic.

Proof. Let g denote an element of G which maps the set fa; b; cg onto fa0; b0; c0g;
the existence of such an element g is guaranteed by 3-homogenicity.

The element g maps 4- and 5-supersets of fa; b; cg onto 4- and 5-supersets
of fa0; b0; c0g. Thus the set 
 n fa; b; cg is mapped onto 
 n fa0; b0; c0g. These
two sets are vertex-sets of Graph(D; fa; b; cg) and Graph(D; fa0; b0; c0g), respec-
tively. The element g induces an isomorphism between Graph(D; fa; b; cg) and
Graph(D; fa0; b0; c0g), since it maps each edge fx; yg of the former graph to the
corresponding edge of the later. 2

Remark. Lemma 1 justi�es the notion "graph adjoined to design" and enables
the denotation Graph(D; fa; b; cg) to be shortened to Graph(D).

Lemma 2. If Graph(D1) and Graph(D2) are non-isomorphic for 4-(v; 5; �) de-

signs D1 and D2 arising from a 3-homogeneous group G, then these two designs

are also non-isomorphic.

Proof. Suppose, on the contrary, that there exists an isomorphism � mapping D1

onto D2. Let fa; b; cg denote an arbitrary 3-subset of the point-set of D1. Its 4-
supersets and blocks of D1 containing fa; b; cg are mapped by � onto those 4-sets of
points and blocks ofD2, which contain f�(a); �(b); �(c)g. The mapping � preserves
set-incidencies. Thus � maps the vertices and edges of Graph(D1; fa; b; cg) =
Graph(D1) onto the vertices and edges ofGraph(D2;f�(a);�(b);�(c)g)=Graph(D2).
This proves that Graph(D1) and Graph(D2) are isomorphic, a contradiction. 2

Consequence: The adjoined graphs can be used as design invariants.
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2.2. Graph isomorphisms

Isomorphism testing was performed within the classes of 24, 590, 2390, 4736
associated regular graphs on 45 vertices, with degrees 8, 12, 16, 20, respectively.
The common vertex-set of all these graphs was f2; 3; :::;46g; the points 0, 1 and 1
were temporarily removed from the consideration.

The following three graph functions [5] of "MathematicaTM" software package
were applied to the adjoined graphs:

1. "NumberOfSpanningTrees(Graph)" � calculates number of spanning trees of
Graph.

2. "Isomorphism(Graph1;Graph2)" � �nds an isomorphism between Graph1
and Graph2, if it exists.

3. "IsomorphismQ(Graph1; Graph2; �)" � tests whether the mapping � estab-
lishes an isomorphism between the graphs Graph1 and Graph2.

Using a polynomial algorithm, Function 1. �nds the (huge) number of span-
ning trees (a graph invariant!) very e�ciently ( this is a 70-digit number for �
= 20). It occured that each existing number of spanning trees has appeared ex-
actly twice; this implies that 12, 295, 1195 and 2368 pairwise di�erent numbers of
spanning trees have appeared in the four considered classes of graphs, respectively.

Function 2. is a time consuming one, since it is based on an (exponential)
backtracking algorithm. Several pairs of the adjoined graphs with the same num-
bers of spanning trees were treated by using this function. It occured that the
same mapping, denoted by �, has established isomorphisms with all these pairs.
After several succesful attempts, we conjectured that the mapping � establishes
isomorphisms within all the remaining pairs of the adjoined graphs with the same
numbers of spanning trees. To check this, we continued the attempts with the very
fast Function 3., which had the argument � replaced by �. It turned out that our
conjecture was true.

In this way, we have checked that the two graphs within each pair of adjoined
graphs with the same numbers of spanning trees are actually isomorphic. Thus we
have completed a computational derivation of the following result:

Theorem 2. There are 12, 295, 1195 and 2368 pairwise non-isomorphic graphs

of the form Graph(D), where D is a 4-(48; 5; �) design with PSL(2; 47) as au-

tomorphism group, for � equal to 8, 12, 16, 20, respectively. Each one of these

non-isomorphic graphs appears exactly twice within the class of all found designs

D.

Remark. Lemma 2 implies that the values mentioned in Theorem 2 are lower

bounds for the number of non-isomorphic 4-(48,5,�) designs.
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2.3. Design isomorphisms

Isomorphism between some two adjoined graphs is just a necessary condition
for isomorphism between the corresponding designs. However, it will be proved
that the graph isomorphisms established by the above mapping � can be extended
into design isomorphisms:

Theorem 3. Let D1 and D2 be two 4-(48; 5; �) designs with PSL(2; 47) as au-

tomorphism group, which satisfy that Graph(D1) and Graph(D2) are isomorphic

under the mapping �. Then the mapping � establishes an isomorphism between the

designs D1 and D2.

Throughout the proof, "PGL-orbits" and "PSL-orbits" will refer to orbits of
5-subsets under action of 5-subsets under action of PGL(2; 47) and PSL(2; 47).
We shall primarily prove the following lemma:

Lemma 3. The mapping � maps a collection of PSL-orbits onto another collection

containing the same number of PSL-orbits.

Proof of lemma. The mapping � can be written in the form:

� : x �!
x

x+ 46
:

In this way, � is a hyperbolic involution of the projective line 
. Fixed points of
this involution are 0 and 2.

Since the determinant

�
�
�
�

1 0
1 46

�
�
�
�
is not a square over the �eld GF (47), the

mapping � belongs to PGL(2; 47) n PSL(2; 47). Such a mapping preserves PGL-
orbits; each element of group G maps a G-orbit onto itself.

The group PSL(2; 47) is the subgroup of index 2 of PGL(2; 47), which con-
tains the mappings with square determinants. Let be given a 5-subset X of 
. If
there exists a mapping from the coset of mappings with non-square determinants,
which maps X onto the same PSL-orbit, then the PGL-orbit and PSL-orbit deter-
mined by X coincide. Otherwise the images of X under the mappings of the coset
constitute another PSL-orbit of the same cardinality within the same PGL-orbit.
In the �rst case, the mapping � maps the PSL-orbit determined by X onto itself;
in the second, it maps the two PSL-orbits within the PGL-orbit determined by X

onto each other. 2

Remark. The mapping � induces an involution of PSL-orbits.

Proof of Theorem 3. Note that the mapping � �xes the set F = f0; 1;1g. To-
gether with the assumption that � establishes an isomorphism between Graph(D1)
and Graph(D2), we have that � maps the subcollection of blocks of D1 containing
F onto the subcollection of blocks of D2 containing F . Both of these subcollections
are spread over the same number of PSL-orbits. Namely, 3-homogenicity of the
group PSL(2; 47) implies that each PSL-orbit has a non-empty intersection with
the collection of 5-subsets containing F ; this fact has already been used with the
choice of orbit representatives.
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We recall that both D1 and D2 are unions of the same number of PSL-orbits.
All these orbits are completely determined by their blocks containing F . Lemma
3 gives that �(D1) is a union of PSL-orbits. We conclude that �(D1) and D2 are
the same one union of PSL-orbits, which completes the proof. 2

Theorems 2 and 3 settle the enumeration problem for the non-isomorphic
designs in the considered class. Our main result reads:

Theorem 4. There exist 12, 295, 1195 and 2368 pairwise non-isomorphic 4-
(48; 5; �) designs with PSL(2; 47) as automorphism group, and with � equal to

8; 12; 16; 20, respectively.
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