UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 10 (1999), 21-26.

A CONSTRUCTION OF COMPLETELY PRIME SUBSETS ASSOCIATED WITH IDEMPOTENTS OF A SEMIGROUP WITH APARTNESS

Daniel Abraham Romano

This investigation is in constructive algebra. We shall give a construction of completely prime strongly extensional subset M(e) associated with an idempotent e of a semigroup S equiped with an apartness, such that $G_e \subseteq \overline{M(e)}$ and e # M(e), and we will give some descriptions of the family $\{M(e) : e \in E(S)\}$.

Let $(S, =, \neq, \cdot, 1)$ be a semigroup with apartness ([6], [7]) where the semigroup operation is strongly extensional in the sense

$$(\forall a, b, x, y \in S) (ax \neq by \Rightarrow a \neq b \land x \neq y).$$

Let T be a subset of S. We say that T is a left cosubsemigroup of S (or a right consistent subset of S ([2])) if and only if $(\forall x, y \in S)(xy \in T \Rightarrow y \in T)$, the set T is a right cosubsemigroup of S (or a left consistent subset of S ([2])) if and only if $(\forall x, y \in S)(xy \in T \Rightarrow x \in T)$, the set T is a cosubsemigroup of S (or a completely prime subset of S ([2])) if and only if $(\forall x, y \in S)(xy \in T \Rightarrow x \in T \lor y \in T)$, and the set T is a coideal of S (or a consistent subset of S ([2])) iff $(\forall x, y \in S)(xy \in T \Rightarrow x \in T \lor y \in T)$, and the set T is a coideal of S (or a consistent subset of S ([2]) iff $(\forall x, y \in S)(xy \in T \Rightarrow x \in T \land y \in T)$. The subset T of S is strongly extensional ([6], [7]) iff $(\forall x, y \in S)(x \in T \Rightarrow x \neq y \lor y \in T)$. Let $a \in S$. By a # T we denote $(\forall t \in T)(t \neq a)$ and by T we denote the set $\{a \in S : a \# T\}$. The subset T of S is a coequality relation on S iff q is consistent, symmetric and cotransitive relation on S ([3], [4], [5]). A coequality relation q on S is a cocongruence ([3], [5]) or q is compatible with the semigroup operation on S iff $(\forall a, b, x, y \in S)((ax, by) \in q \Rightarrow (a, b) \in q \lor (x, y) \in q)$.

For undefined notions and notations we refer to the books [1], [2], [6] and to the papers [4], [5].

Semigroups with apartness were first defined and were studied by A. HEYT-ING. W. RUITENBURG studied semigroups with apartness in his dissertation (1982) [6]. After that the author of this paper has worked on this important topic in his

¹⁹⁹¹ Mathematics Subject Classification: 03F55, 20M99

dissertation (1985) [3]. Semigroups with apartnesses were studied by A. S. TROEL-STRA and D. VAN DALEN in their monograph (1988) [7]. In this paper we give a construction of cosubsemigroups (completely prime subsets) associated with idempotents of semigroup S and describe some properties of the family of so constructed cosubsemigroups.

We start with following proposition.

Theorem 1. Let e be an idempotent of a semigroup S with apartness. Then:

- (1) $A(e) = \{a \in S : ae \neq a\}$ is a strongly extensional right consistent subset of S such that e # A(e).
- (2) $B(e) = \{b \in S : eb \neq b\}$ is a strongly extensional left consistent subset of S such that e # B(e).
- (3) $X(e) = \{a \in S : e \# Sa\}$ is a strongly extensional left ideal of S such that e # X(e).
- (4) $Y(e) = \{b \in S : e \# bS\}$ is a strongly extensional right ideal of S such that e # Y(e).
- (5) $Z(e) = \{x \in S : e \# SxS\}$ is a strongly extensional ideal of S such that e # Z(e).

Proof.

(1) Let x and a be arbitrary elements of S such that $xa \in A(e)$. Then $xae \neq xa$, whence it follows $a \in A(e)$. So, the set A(e) is a right consistent subset of S. If $a \in A(e)$, then for every $y \in S$ holds $ae \neq a \Rightarrow ae \neq ye \lor ye \neq y \lor y \neq a$. Hence $y \in A(e) \lor y \neq a$ and A(e) is a strongly extensional right consistent subset of S. If we get $a \in A(e)$, we will have $ae \neq a$. Thus $ae \neq e^2 \lor e \neq a$ and $a \neq e$.

(3) Assume $a \in X(e)$. Then e # Sa. As we have $Sxa \subseteq Sa$ for every x in S, we have e # Sxa. Thus $xa \in X(e)$ and the set X(e) is a left ideal of S. Let y be an arbitrary element of S and let a in X(e). Then e # Sa. Thus $e \neq sa(s \in S)$. From this it follows $(\forall t \in T) (e \neq ty \lor ty \neq sa)$. So, $(\forall s \in T) (e \neq sy) \lor y \neq a$. Therefore, the set X(e) is a strongly extensional subset of S. Further, if $a \in X(e)$, then e # Sa. Thus $e \neq a$. \Box

Corollary 1.1. $A(1) = \emptyset, B(1) = \emptyset$.

Corollary 1.2. $Z(e) \subseteq X(e) \cap Y(e)$.

The next theorem is one of main results of this paper: we will give a construction of a strongly extensional completely prime subset M(e) of S (cosubsemigroup of S) associated with an idempotent $e \in E(S)$, such that e # M(e).

Theorem 2. Let e be an idempotent of a semigroup S with apartness. Then the set $M(e) = A(e) \cup B(e) \cup X(e) \cup Y(e)$ is a strongly extensional cosubsemigroup of S such that e # M(e).

Proof. (1) Let $ab \in M(e)$. Then $abe \neq ab \lor eab \neq ab \lor e\#Sab \lor e\#abS$. If ab in A(e), then b is in $A(e) \subseteq M(e)$, because A(e) is a right consistent subset of S. If ab in B(e), then a is in $B(e) \subseteq M(e)$, because B(e) is a left consistent subset of S. Assume that $ab \in X(e)$, i.e. $(\forall u \in S) (uab \neq e)$. Then we have the sequence

 $\begin{array}{l} (\forall x, y \in S)(xyab \neq e) \Rightarrow \\ (\forall x, y \in S)(xyab \neq xeb \lor xeb \neq xb \lor xb \neq e) \Rightarrow \\ (\forall x, y \in S)(ya \neq e \lor eb \neq b \lor xb \neq e) \Rightarrow \\ (\forall x \in S)(xb \neq e) \lor eb \neq b \lor (\forall y \in S)(ya \neq e) \Rightarrow \\ a \in Y(e) \subseteq M(e) \lor b \in X(e) \subseteq M(e) \lor b \in B(e) \subseteq M(e). \end{array}$

Similarly, we have the implication $ab \in Y(e) \Rightarrow a \in M(e) \lor b \in M(e)$. So, M(e) is a cosubsemigroup of S such that e # M(e).

(2) Let a be an arbitrary element of $M(e) = A(e) \cup B(e) \cup X(e) \cup Y(e)$ and let b be an arbitrary element of S. Then $a \in A(e)$ or $a \in B(e)$ or $a \in X(e)$ or $a \in Y(e)$. Then $a \neq b \lor b \in M(e)$, because sets A(e), B(e), X(e) and Y(e) are strongly extensional in S. \Box

In the next theorem and few following corollaries we will describe the family $\{M(e) : e \in E(S)\}.$

Theorem 3. Let S be a semigroup with apartness and with at least two idempotents. Then

$$(\forall e, f \in E(S))(e \neq f \Rightarrow M(e) \cup M(f) = S).$$

Proof. Let a be an arbitrary element of semigroup S. Then

 $\begin{array}{l} e \neq f \Rightarrow \\ (\forall x, y \in S) \left(e \neq ax \lor ax \neq fax \lor fax \neq fe \lor fe \neq yae \lor yae \neq ya \lor ya \neq f \right) \Rightarrow \\ (\forall x, y \in S) \left(e \neq ax \lor a \neq fa \lor ax \neq e \lor f \neq ya \lor ae \neq a \lor ya \neq f \right) \Rightarrow \\ (\forall x \in S) \left(e \neq ax \right) \lor a \neq fa \lor (\forall y \in S) (f \neq ya) \lor ae \neq a \Rightarrow \\ a \in Y(e) \lor a \in B(f) \lor a \in X(f) \lor a \in A(e) \Rightarrow a \in M(e) \lor a \in M(f). \end{array}$

Corollary 3.1. Let e be an idempotent of a semigroup S with apartness. Then $G_e \subseteq \overline{M(e)}$ and $\overline{M(e)}$ is a subsemigroup of S.

Proof.

(i) We have that $e \in \overline{M(e)}$ because e # M(e). Let a and b be elements of $\overline{M(e)}$ and let u be an arbitrary element of M(e). Then $u \neq ab$ or $ab \in M(e)$ by strongly extensionality of M(e) in S. As M(e) is a cosubsemigroup of S we have $a \in M(e)$ or $b \in M(e)$. It is impossible. Hence $u \neq ab$ for each $u \in M(e)$. So, ab # M(e). Therefore, the set $\overline{M(e)}$ is a subsemigroup of S such that $e \in \overline{M(e)}$.

(ii) Let x be an arbitrary element of G_e . Then for an arbitrary element u of M(e) we have $x \neq u$ or $x \in M(e)$. The second case is impossible. So, x # M(e). Thus $G_e \subseteq \overline{M(e)}$. \Box

Corollary 3.2. Let e be an idempotent of a semigroup S with apartness. Then the relation t(e) on S, defined by $(a, b) \in t(e) \Leftrightarrow a \neq b \land (a \in M(e) \lor b \in M(e))$, is a coequality relation on S such that

 $(*) \ a \in M(e) \Rightarrow at(e) = \{x \in S : x \neq a\}, \ a \in G_e \Rightarrow at(e) = M(e) \ (**).$

Proof.

(1) Let (u, w) be an arbitrary element of t(e) and let a be an arbitrary element of S. Then $u \neq w$ and $u \in M(e) \lor w \in M(e)$. Thus, the first, we have $u \neq a \lor a \neq w$, i.e. we have $(u, w) \neq (a, a)$ what means that t(e) is a consistent relation. The second, let v be an arbitrary element of S. Then $u \neq v \lor v \neq w$ and $u \in M(e) \lor w \in M(e)$. We have, for example,

$$\begin{split} u \neq v \wedge w \in M(e) &\Rightarrow u \neq v \wedge (w \in M(e) \wedge (w \neq v \lor v \in M(e))) \\ &\Rightarrow (u \neq v \wedge (w \in M(e) \wedge w \neq v)) \lor (u \neq v \wedge (w \in M(e)) \\ &\wedge v \in M(e))) \\ &\Rightarrow (v, w) \in t(e) \lor (u, v) \in t(e); \end{split}$$

In the case $u \neq v \land u \in M(e)$ we have simply $(u, v) \in t(e)$. Analogously, we have the implications $v \neq w \land u \in M(e) \Rightarrow (v, w) \in t(e) \lor (u, v) \in t(e)$ and $v \neq w \land w \in M(e) \Rightarrow (v, w) \in t(e)$.

So, the relation t(e) is cotransitive. It is clear that t(e) is a symmetric relation. (2) The implication (*) is clear. For the proof of the implication (**) let we get $a \in G_e$ and let b in at(e). Then $a \neq b \land b \in M(e)$ because $G_e \cap M(e) = \emptyset$. So, $at(e) \subseteq M(e)$. Beside that, for $x \in M(e) \subseteq \overline{G_e}$ we have $x \neq a$. So, $(a, x) \in t(e)$ and $x \in at(e)$. Therefore at(e) = M(e). \Box

Corollary 3.3. Let e be an idempotent of a semigroup S with apartness. Then the relation $t(e)^* = \{(x, y) \in S \times S : (\exists a, b \in S) (axb \neq ayb \land (axb \in M(e) \lor ayb \in M(e)) \in t(e))\}$ is a coequality relation on S compatible with the semigroup operation on S.

Proof. See Corollary 1.7.2 in [5].

Corollary 3.4. Let e be an idempotent of a semigroup S with apartness such that the maximal sugroup G_e is detachable in S. Then the relation t(e) has the family of classes $\mathbf{V}(S, t(e)) = \{\{a \in S : a \neq x\} \mid x \in G_e\} \cup M(e).$

Proof. Let x be an element of S. Then $x \in G_e$ or $x \# G_e$. Therefore, if $x \in G_e$, then, by Corollary 3.2., we have xt(e) = M(e). Let $x \# G_e = \overline{M(e)}$. Then $x \in M(e)$ and $xt(e) = \{a \in S : a \neq x\}$. \Box

Corollary 3.5. Let e be an idempotent of a semigroup S with apartness such that the cosubsemigroup M(e) is a coideal of S. Then the relation t(e) is a cocongruence on S.

Proof. Let $(ax, by) \in t(e)$, i.e. let $ax \neq by$ and $ax \in M(e) \lor by \in M(e)$. Then $a \neq b \lor x \neq y$ and $(a \in M(e) \land x \in M(e)) \lor (b \in M(e) \land y \in M(e))$. Therefore, $(a, b) \in t(e)$ or $(x, y) \in t(e)$. \Box

Corollary 3.6. Let e and f be idempotents of a semigroup S with apartness. Then there exists a strongly extensional and embedding function $\varphi : S \to \mathbf{V}(S, t(e)) \times \mathbf{V}(S, t(f))$ such that $(\pi_e \cdot \varphi)(S) = \mathbf{V}(S, t(e))$ and $(\pi_f \cdot \varphi)(S) = \mathbf{V}(S, t(f))$.

Proof. Let a and b be elements of a semigroup S with idempotents $e, f \in E(S) \neq \{1\}$) such that $a \neq b$. Then from $S = M(e) \cup M(f)$ we conclude that $a \in M(e) \lor a \in M(f)$ and $b \in M(e) \lor b \in M(f)$. Therefore, there exist coequality relations t(e) and t(f) such that $(a,b) \in t(e)$ or $(a,b) \in t(f)$. By Theorem 1.8. in [5], there exists a strongly extensional and embedding function $\varphi : S \to \mathbf{V}(S, t(e)) \times \mathbf{V}(S, t(f))$ such that $(\pi_e \cdot \varphi)(S) = \mathbf{V}(S, t(e))$ and $(\pi_f \cdot \varphi)(S) = \mathbf{V}(S, t(f))$. \Box

Let S, K and Q be semigroups. Then S is a subdirect product of K and Q if there exists a strongly extensional and embedding homomorphims $\varphi : S \to K \times Q$ such that $\pi_K \cdot \varphi(S) = K$ and $\pi_Q \cdot \varphi(S) = Q$.

Corollary 3.7. Let e and f be idempotents of a semigroup S with apartness such that M(e) and M(f) are coideals of S. Then S is subdirect product of semigroups $\mathbf{V}(S, t(e))$ and $\mathbf{V}(S, t(f))$.

Proof. Let M(e) and M(f) be coideals of semigroup S. Then, by Corollary 3.5 in this paper, the coequality relations t(e) and t(f) are cocongruences on S and, by Corollary 1.7.1. in [5], the sets $\mathbf{V}(S, t(e))$ and $\mathbf{V}(S, t(f))$ are semigroups. Thus, by Corollary 3.6 of this paper, S is a subdirect product of semigroups $\mathbf{V}(S, t(e))$ and $\mathbf{V}(S, t(f))$. \Box

Note: Let e and f be idempotents of a semigroup S such that M(e) and M(f)are coideals of S. Then $\mathbf{V}(S, t(e))$ and $\mathbf{V}(S, t(f))$ are semigroups and the sets $\mathbf{V}(S, t(e)) \times \{M(f)\}$ and $\{M(e)\} \times \mathbf{V}(S, t(f))$ are ideals of $\mathbf{V}(S, t(e)) \times \mathbf{V}(S, t(f))$. Let $\alpha : \mathbf{V}(S, t(e)) \times \{M(f)\} \to \mathbf{V}(S, t(e))$ and $\beta : \{M(e)\} \times \mathbf{V}(S, t(f)) \to \mathbf{V}(S, t(f))$ be strongly extensional and embedding bijections. Then we have the functions $E = \alpha^{-1} \cdot \pi_e \cdot \varphi : S \to \mathbf{V}(S, t(e)) \times \{M(f)\}$ and $F = \beta^{-1} \cdot \pi_f \cdot \varphi : S \to \{M(e)\} \times \mathbf{V}(S, t(f))$ such that $E(a) = (\pi_e \cdot \varphi(a), M(f))$ and $F(a) = (M(e), \pi_f \cdot \varphi(a))$ (for every a in S). Besides, the relation $q_e = \{(a, b) \in S \times S : E(a) \neq E(b)\}$ and the relation $q_f = \{(a, b) \in S \times S : F(a) \neq F(b)\}$ are coequality relations on S. As

$$\begin{aligned} (a,b) \in t(e) &\Leftrightarrow a \neq b \land (a \in M(e) \lor b \in M(e)) \\ &\Rightarrow \varphi(a) \neq \varphi(b) \land at(e) = \{x \in S : a \neq x\}, b \in at(e) \\ &\land bt(e) = \{y \in S : b \neq y\}, a \in bt(e) \\ &\Rightarrow \pi_e \cdot \varphi(a) = at(e) \neq bt(e) = \pi_e \cdot \varphi(b) \\ &\Leftrightarrow (\pi_e \cdot \varphi(a), M(f)) \neq (\pi_e \cdot \varphi(b), M(f)) \\ &\Leftrightarrow E(a) \neq E(b) \\ &\Leftrightarrow (a,b) \in q_e. \end{aligned}$$

and similarly $t(f) \subseteq q_f$, we have, by Theorem 1.4 in [5], that the relations $t(e)/q_e$ and $t(f)/q_f$ are coequality relations on $\mathbf{V}(S, t(e))$ and $\mathbf{V}(S, t(f))$ respectively. Beside this, by Corollary 1.6.1 in [5], there exist strongly extensional bijective and embedding functions $\mathbf{V}(\mathbf{V}(S, q_e), t(e)/q_e) \to \mathbf{V}(S, t(e))$ and $\mathbf{V}(\mathbf{V}(S, q_f), t(f)/q_f) \to \mathbf{V}(S, t(f))$.

REFERENCES

- 1. E. BISHOP: Foundations of constructive analysis, McGraw-Hill, New York, 1967.
- 2. S. Bogdanović, M. Ćirić: Polugrupe, Prosveta, Niš, 1993.
- 3. D. A. ROMANO: Constructive mathematics algebraic structures, PhD. Thesis, University of Belgrade, Belgrade, 1985.
- 4. D. A. ROMANO: *Rings and fields, a constructive view*, Z. Math. Logik Grundl. Math., **34(1)** (1988), 25-40.
- D. A. ROMANO: Coequality relation, a survey, Bull. Soc. Math., Banja Luka, 3 (1996), 1-35.
- 6. W. RUITENBURG: Intuitionistic algebra, PhD. Thesis, University of Utrecht, Utrecht, 1982.
- 7. A.S. TROELSTRA, D. VAN DALEN: Constructivism in mathematics, An introduction, North-Holland, Amsterdam, 1988.

Faculty of Sciences, Department of Mathematics and Informatics, Mladena Stojanovica 2, 78000 Banja Luka, Republic of Srpska - Bosnia and Herzegovina daniel@urcbl.bl.ac.yu (Received April 22, 1997) (Revised December 12, 1998)