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TWO REPRESENTATION OF REFLEXIVE
G-INVERSES AND THEIR IMPLEMENTATION

Predrag Stanimirovié

In this paper we describe algorithms in the package for implemen-
tation of two methods for computing reflexive g-inverses. These methods are
based on the following general solution of the matrix equations (1) and (2):
G = Wl(QW1)_1(W2P)_1W2. In the first algorithm we investigate implementa-
tion of a general determinantal representation for generalized inverses, which is
introduced in [19]. These algorithms are continuation of the analogous algorithms
developed in [19], written in the programming language . The second algorithm
describes implementation of a modification of the hyper-power iterative method,

introduced in [21].

1. INTRODUCTION

Let C (resp. R) be the field of complex (resp. real) numbers and C**"
(resp. R)"*™) be the set of m x n complex (real) matrices whose rank is 7. Conju-
gate, transposed and conjugate-transposed matrix of A are denoted by A, AT and

A*, respectively. The determinant of a square matrix B is denoted by |B|, and
Tr(A) denotes the trace of A.

For a given m x n matrix A over C, let @« = {vq,..., .} and 8 = {B4,...,5-}
be subsets of {1,...,m} and {1,...,n}, respectively. Then |Ag| denotes the minor
of A determined by the rows indexed by a and the columns indexed by 3.

We use the following notation from [10]. For 1 < k < n, denote the collection
of strictly increasing sequences of k integers chosen from {1,...,n}, by

Qpn={a: a=(ar,.. . 0p), 1<a;<--<ak<n}.
Let N = Q. X Q, . For fixed o € Qp pn, € Qpp, 1 <k <7, let
L(a)={1: T€Qm, [D2a}, JP)={J: J€Qn JDP},
N(a,B) =I(a) x J(B).

If A is a square matrix, then the coefficient of a;; in the LAPLACE’s expansion

of |A| is denoted by a,j |Al.

da
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For any matrix A € C”*" the MOORE-PENROSE inverse of A is the unique
matrix, denoted by AT satisfying the following PENROSE’s equations in X:

(1) AXA=A, (2) XAX=X, (3) (AX)'=AX, (1) (XA)=XA

and if m = n, also

(5)  AX = XA.

For a sequence & of {1,2,3,4,5}, the set of matrices obeying the conditions con-
tained in § is denoted by A{S}. A matrix from A{S} is called an S-inverse of A
and denoted by A(S). In the case m = n, the group inverse of A, denoted by A#,
is the unique {1,2,5} inverse of A.

Main properties of the weighted MOORE-PENROSE inverse are investigated
n [5], [13]. By A;rw n We denote the unique solution of the equations (1), (2) and
the following equations:

(6) (MAX) = MAX (7) (NXA)* = NXA.

The methods implemented in this paper are based on the general representa-
tions of different classes of pseudoinverses, investigated in [5], [7], [13], [15], [18].

The paper is organized as follows. The second section contains implementa-
tion of the determinantal representation of generalized inverses, considered in [4],
[19], [20], [22], so called the general determinantal representation. This implemen-
tation represents a continuation of the paper [19], where a general determinantal
representation for the class of {1,2} inverses is introduced. Also, in [19] are devel-
oped algorithms in the programming language C for implementation of the general
determinantal representation.

In the third section we describe implementation in MATHEMATICA of an itera-
tive method for computing {1, 2} inverses. This method is introduced in [21], and
it 1s based on a generalization of the hyper-power method.

Several illustrative examples are given in the last section.

In this way, we obtain an extension of the programming system MATHEMA-
TICA, by means of the implemented functions for computing the rank and index
of a given matrix, and by means of the functions for computing the following
classes of pseudoinverses: MOORE-PENROSE, weighted MOORE-PENROSE inverse,
group inverse, {1,2 3}, {1,2,4}, {1,2} inverses, left/right inverses, RaDI¢’s and
SToJAKOVIEs (JosHI's) generalized inverses. It is well known that in MATHEMATICA
is available only the function Pseudolnverse for computing the MOORE-PENROSE
inverse [25], [26].
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2. IMPLEMETATION OF GENERAL DETERMINTAL
REPRESENTATION

For the sake of completeness, we restate here the general determinantal rep-
resentation from the articles [19], [20]. This representation can be obtained from
G=W1(QW1)" Y (W2 P)~1W,, where A = PQ is an arbitrary full-rank factorization
of A.

Proposition 2.1. Let A € CI'*" and A = PQ be its full-rank factorization.
Then an arbitrary {1,2} inverse G = (g;;) of A can be represented by the following
determinantal representation:

(a3 6 (a3
> |(W1W2)T@|%|A@|
(o, B)EN (j1) ! ( 1<i<n )
’ <7<m )’
> 1wawa) Y| A7 tsus
(v,0)eEN

9i; =

where W1 € C™*" and Wa € C™™ satisfy the conditions (1.1).

In [19] we introduce notions of the generalized determinant and the general
determinantal representation of different orders. For the sake of clarity we intro-
duce several notations.

The set Qi X Q¢ pn, t < r = rank(A) is denoted by N(¢). For as given
m X n complex matrix R, the generalized determinant of the order t, denoted by
DET (gr,)(A), can be expressed in this way (see [19]):

(2.1) DET(ro(A) = > [R;|l4]].
(1,6)EN(t)
Also, we introduce the following notation:
IT(aot)y={I: 1€ Qtm, IDa}, JTJB)={J: JE€Q,, JDp3},
N(a,B,t) =T(a,t) x T(B,t), t<r

Then the general determinantal representation of the order t for A € C**" can
be written as follows (see [19]):

R
DR AT
(LR (BEN() 7 1<i<n
2.2 R <i<n )
( ) gzy am DET(RJ)(A) ? ( 1<7<m )

In the case ¢ = r, we obtain well known result from [4]. Definitions of the
generalized determinant and the general determinantal representation of different
orders are useful in the case when the rank of a given matrix A is unknown. Then
we start the computation using (2.2) with ¢ = min{m, n}. Then we decrease values
for ¢, until a nonzero value of ¢ satisfying DET (g ;)(A) # 0 is reached.
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The general determinantal representation contains all known determinantal
representations of generalized inverses, introduced in the papers [3—6], [8], [12—13],
[16-17], [23-24].

A few connections between the general determinantal representation and the
corresponding results from [10], [14] are investigated in [22].

Now, we describe implementation of the general determinantal representation
of different orders, in the package MATHEMATICA. We begin by several auxiliary
procedures.

2.1. By means of the following routine can be detected square matrices.
SquareMatrixQ[a_]:=Length[al==Lengthl[al[1]]] /; MatrixQ[a]

2.2. The rank of any given matrix A is equal to the number of nonzero elements
in the reduced row echelon form of A. The result of the expression zeros[u] is 0 if
the vector u is identical to the corresponding zero vector, and 1 otherwise.

zeros[ul]:=
Block[{v=u,n,i=1,1g=0},
n=Length[v];
While[i<=n,
If[v[[i]l] ='= 0, 1g=11;
i++;
1;
1g
1;
The function rank[a] is a counter of all nonzero rows contained in the reduced
row echelon form of A.

rank[a_]:=
Block[{b=a,i,m,n,r,c},
{m,n}=Dimensions[b];
b=RowReduce[b] ;
r=Sum[zeros[b[[i]]1], {i,m}]
1; MatrixQlal

The index of a square matrix A is defined as the first integer % satisfying
rank(A*+1) =rankA*.
Index[a_]:=
Block[{b=a,c=IdentityMatrix[Length[al]l,d=a,k=0},
While[Rank[c]='=Rank[d],
d=d.b; c=c.b; k+=1
1
k
1 /; SquareMatrixQ[al
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2.3. The generalized determinant of the order ¢, defined by DET (g 1)(A) in (2.1),
can be computed by means of the following procedure GDetR. The formal pa-
rameters ¢ and r denote the matrices A and R, respectively, and the parameter ¢
denotes the size of the selected minors.
GDetR[a_,r_, t_Integer]:=
Block[{b=a, ra=r, f, s, k, 1, ma,mc},
ma=Minors[b,t]; mc=Minors([ra,t];
{f,s}=Dimensions[mal;
Sum[Conjugate[mc[[k,11]1] mallk,111, {k,f}, {1,s}]
1/; MatrixQlal && MatrixQ[r] &&
Dimensions[a]l==Dimensions[r] && Rank[a]l==Rank[r]

2.4. In order to implement the general determinantal representation, firstly we
develop two useful functions. The first function generates the submatrix of a given
matrix A, obtained by deleting its ¢-th row and j-th column.

MatrixCompl[a_, i_Integer, j_Integer]:=
Block[{b=a},
b=Drop[b,{i,i}]
b=Transpose [Drop[Transpose[bl,{j,j}1];
1/; MatrixQ[al

In the second function we generate the submatrix of A determined by the
rows p1,...,p; and columns ¢1, ..., q;.
Minor([a_, pList, g List, t_Integer]:=
Block[{b=a,i,j, c},
c=IdentityMatrix[r];
For[i=1, i<=t, i++,
For[j=1, j<=t, j++,
clli,jl1=bllpllil],ql[3111]
] 1;
c
1/; MatrixQ[al

2.5. Using an algorithm from [9], the set of all combinations of the order ¢ of the
set {1,...,n} can be implemented by the following code:
While[j>=1,
If[j>=1,
For[i=t, i>=j, i--,
pLLill=pC[jl1]+i-j+1; p1L[ill=pL[il]
] ] 1;

2.6. Finally, in the procedure RINVERSE we implement the general determinan-
tal representation of the order ¢ < r, given by (2.2). The formal parameters a and
r represent the input matrices A and R, respectively. Initial value for the order ¢
of selected minors is ¢ = min{m, n}. In the while cycle the value of ¢ is decreased

until the conditions DET g )(A) # 0 is satisfied.
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RInversela_,r_]:=
Block[{b=a,ra=r,t,p,q, m,n, w,v, i,j,k, ji, pl,ql,
pr,prl, awv,mr,mrr, mc,s,inv, sw,am},

inv=Transpose[b]; {m,n}=Dimensions[b];
t=Min[m,n]; d=GDetR[b,ra,t];

While[d==0, d=GDetR[b,ra,t]; t— 1;
p=q=Range[t]; pl=qi=q;

For[v=1, v<=n, v++,
For[w=1, w<=m, w++,
s=0;
If[t==m, j=1, j=m];
While[j>=1,
If[t==n, j1=1, ji=nl;
While[j1>=1,
pr=pri=i;
While[pr<=t && pl[lprll=!=w, pr++];
Whilel[pri<=t && qllprill=!=v, pri++l;
If[pr<=t && pri<=t,
mr=Minor[b,p,q,t];
mrr=Minor[ra,p,q,t];
mc=Conjugate [Det [mrrl];
am=Det [MatrixComp [mr,pr,pril];
awv=(-1) " (pr+prl) am mc,
awv=0
1;
s+=awv;
If[qLlt]1]==n, ji--, j1=t 1;
If[j1>=1,

For[i=t, i>=j1, i--,
qllilI=q[[j1]1]+i-j1+1;
q1l[ill=ql[[il]

] ]
1;
ql=g=Range[t];
If[pllt]ll==m, j——, j=t 1;
If[j>=1,
For[i=t, i>=j, i--,
pl[i11=p[[j1]1+i-j+1; p1[[il]=pl[[il]
] ]
1;
inv[[v,w]]l=s/d
p=q=Range[t]; pl=ql=q
1 1
inv
1/; MatrixQ[al
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Remark 2.2. Described algorithms in MATHEMATICA are simpler and more efficient
with respect to the corresponding in [19], written in C.

Computation of generalized inverses by means of the general determinantal
representation a 1s direct method, and does not use the Gaussian elimination.

3. MODIFICATION OF THE HYPER-POWER METHOD

The hyper-power iterative method was originally devised by ALTMAN [2]
for inverting of a nonsingular bounded operator in a BANACH space. In [11] the
convergence of the same method is proved under the condition which is weaker than
the one assumed in [2], and some better error estimates are derived. ZLOBEC in
[30] defined two hyper-power iterative methods of an arbitrary high order ¢ > 2.

In the paper [21] we adapt the hyper-power method to be valid for computing
all of the reflexive g-inverses.
Proposition 3.1. (see [21]) Let rank(A) = r > 2, and the matrices W, € C™*",
Ws € C™™ satisfy conditions (1.1). If ¢ > 2 is an integer, then both of the
following two iterative methods:

2
Yo = Y] = a(W AW1)* 0 <
0= Y5 = (W2 AW, s Tr((Wo AW )W AW )
Ty = I — Ve Wa AW, T, = I, — Wy AW, Y7,
Vigr =L+ Te+ o AT, S Vi =Y+ T+ + T,
X1 = WiV Wa X =Wy We k=0,1,...

generate the class of the reflexive g-inverses of A.

Under the suitable conditions, we get iterative methods for computing {1, 2,3}
or {1,2,4} inverses, the MOORE-PENROSE inverse, weighted MOORE-PENROSE in-
verse or the group inverse of A (see [21]).

3.1. Implementation of the modified hyper- power method is given in the following.
In order to compute the value o = we need a function for com-

Tr((WQAWI)*WQAwl)
puting the trace of a square matrix. This function is not built-in in MATHEMATICA.

For this purpose we can use the following one-liner idea from [1]:
trace[mat_7?MatrixQ]:=
Plus @@(IdentityMatrix[Length[mat]] mat // Flatten)
We recommend the following routine:

tracela]:=

Block[{b=a, i},

Sum[b[[i,1]1]1, {i,Length[b]}]
1/; SquareMatrixQ[a]

3.2. Now, we give the following implementation of the modified hyper-power
method. In the following procedure the parameters a, wl, w2 represent the matri-
ces A, Wy, Wy, respectively. The parameter ¢ denotes the order of the hyper-power
expansion, and numit denotes the number of iterations.
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HyperPower[a_,wl_,w2_,q_,numit_]:=
Block[{tk,tkl,b=a,wa=w1,wb=w2,e,a1pha,x,y,c=wb.b.wa, ra,s,i,k=1},
ra=rank[b];
alpha=2/trace[Conjugate[Transposelc]].c];
y=alpha Conjugate[Transpose[c]];
e=IdentityMatrix[ra]l;
While[k<numit,
tkl=tk=e-y.c; s=e;
Do[s+=tk; tk=tkl.tk,{i,q-1}1;
y=s.y; x=wa.y.wb; k+=1

4. EXAMPLES

Example 4.1. Consider the test matrix Sy from [27], in the case a = 1, i.e. S5 =

2 1 1 1 2
0O 1 1 1
1 1 2 1 1 |. Its full-rank factorization is, for example:
1 1 1 0 1
2 1 1 1 2
2ol 1 0 0 0 1
Lol 0 0 1 0 O
p=|121 1], ¢=
0 1 0 0 O
Lo 0 0 0 1 O
2 1 1 1
For the matrices W7 and W5 we can select, for example
L2 5 3 2 -2 1 1 =5
-2 0 3 3 01 4 0
W, = 2 1 0 -2 |, W=
0 2 1 3 4
0 5 0 ! 7 1 1 9 -3
7 2 =3 2
RInverse[Ss, Transpose [W1.Ws]] gives
28759 113 1 151 61317
10220 140 28 0 10220
472 399
75 T2 e
(1,2) _ 300 227
S5 = T 0 1 i3
186 113
73 1 L =2 =5
46539 253 27 131 79097
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RInverse[Ss, P.Transpose [W1]] gives

140 140 28
1
3 2 1
(1,2,3) _ 1
S - -2 1 0
1
5 -1 1
293 253 27
140 140 28

RInverse[Ss, Transpose [Ws].Q)] gives

_l2m 1 1

146 2 2
472

Ty 2 1

g1,2.4) _ _ 300 1 0
5 - 73
186

= -1 1

_l2m 1 1

146 2 2

1 1
0 3 -3
1
Loy
st=1 -1 1 0
|
1 1
0 3 -3
which is well-known result in [27].
1
Example 4.2. Consider the matrix A = | -1
0

151 123

0 140

1

1 2

1

L =3

1

-2 -1

131 223

20 140
1 127
2 146
399
1 73
227
1 73
113
-2 =%
1 127

2 1

0
0
1

. Its full-rank factorization is

P=A @Q = 1I,. If we select le(l 1),andW2:(1 0 1),application

0 1

0 1 0

of the modified hyper-power method of the order 2 leads to:
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s
nol"‘

376
0 X 0 ~ 2401 0
) 2— )
4 376 376 376
19 2401 2401 2401

1664176
X 0 ~ 5764801 0
3— )
1664176 1664176 1664176

s
nol"‘
s

nol"‘

5764801 5764801 5764801

0 __16417805178976 0
33232930569601 )

16417805178976 16417805178976 16417805178976
33232930569601 33232930569601 33232930569601

0] —Ts 0]
X — T — 821679232341479087467408576
5 » U5 = 1104427674243920646305299201 °
Ty Ty Ty

1 1 1

We have obtained sequence converging to X = ( o -ro ) € A{1,2}. The

matrix A is of full column rank, so that A(12) = 41,24 [29], and consequently

X

[

10.

11.

12.

13.

€ A{1,2,4}.
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