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TWO REPRESENTATION OF REFLEXIVE

G-INVERSES AND THEIR IMPLEMENTATION

Predrag Stanimirovi�c

In this paper we describe algorithms in the package for implemen-

tation of two methods for computing re
exive g-inverses. These methods are

based on the following general solution of the matrix equations (1) and (2):

G = W1(QW1)
�1(W2P )

�1W2. In the �rst algorithm we investigate implementa-

tion of a general determinantal representation for generalized inverses, which is

introduced in [19]. These algorithms are continuation of the analogous algorithms

developed in [19], written in the programming language . The second algorithm

describes implementation of a modi�cation of the hyper-power iterative method,

introduced in [21].

1. INTRODUCTION

Let C (resp. R) be the �eld of complex (resp. real) numbers and Cm�n
r

(resp. Rm�n
r ) be the set of m� n complex (real) matrices whose rank is r. Conju-

gate, transposed and conjugate-transposed matrix of A are denoted by A, AT and

A�, respectively. The determinant of a square matrix B is denoted by jBj, and

Tr(A) denotes the trace of A.

For a given m�n matrixA over C, let � = f�1; : : : ; �rg and � = f�1; : : : ; �rg

be subsets of f1; : : : ;mg and f1; : : : ; ng, respectively. Then jA�
� j denotes the minor

of A determined by the rows indexed by � and the columns indexed by �.

We use the following notation from [10]. For 1 � k � n, denote the collection

of strictly increasing sequences of k integers chosen from f1; : : : ; ng, by

Qk;n = f� : � = (�1; : : : ; �k); 1 � �1 < � � � < �k � ng :

Let N = Qr;m �Qr;n: For �xed � 2 Qk;m, � 2 Qk;n, 1 � k � r, let

I(�) = fI : I 2 Qr;m; I � �g ; J (�) = fJ : J 2 Qr;n; J � �g ;

N (�; �) = I(�)�J (�):

If A is a square matrix, then the coe�cient of aij in the Laplace's expansion

of jAj is denoted by @
@aij

jAj:
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For any matrix A 2 Cm�n
the Moore-Penrose inverse of A is the unique

matrix, denoted by Ay, satisfying the following Penrose's equations in X:

(1) AXA=A; (2) XAX=X; (3) (AX)�=AX; (4) (XA)�=XA

and if m = n, also

(5) AX = XA:

For a sequence S of f1; 2; 3; 4; 5g, the set of matrices obeying the conditions con-

tained in S is denoted by AfSg. A matrix from AfSg is called an S-inverse of A

and denoted by A(S). In the case m = n, the group inverse of A, denoted by A#,

is the unique f1; 2; 5g inverse of A.

Main properties of the weighted Moore-Penrose inverse are investigated

in [5], [13]. By A
y
M;N we denote the unique solution of the equations (1), (2) and

the following equations:

(6) (MAX)� = MAX (7) (NXA)� = NXA:

The methods implemented in this paper are based on the general representa-

tions of di�erent classes of pseudoinverses, investigated in [5], [7], [13], [15], [18].

The paper is organized as follows. The second section contains implementa-

tion of the determinantal representation of generalized inverses, considered in [4],

[19], [20], [22], so called the general determinantal representation. This implemen-

tation represents a continuation of the paper [19], where a general determinantal

representation for the class of f1; 2g inverses is introduced. Also, in [19] are devel-

oped algorithms in the programming language C for implementation of the general

determinantal representation.

In the third section we describe implementation in MATHEMATICA of an itera-

tive method for computing f1; 2g inverses. This method is introduced in [21], and

it is based on a generalization of the hyper-power method.

Several illustrative examples are given in the last section.

In this way, we obtain an extension of the programming system MATHEMA-

TICA, by means of the implemented functions for computing the rank and index

of a given matrix, and by means of the functions for computing the following

classes of pseudoinverses: Moore-Penrose, weighted Moore-Penrose inverse,

group inverse, f1; 2; 3g, f1; 2; 4g, f1; 2g inverses, left/right inverses, Radi�c's and

Stojakovi�c's (Joshi's) generalized inverses. It is well known that in MATHEMATICA

is available only the function PseudoInverse for computing the Moore-Penrose

inverse [25], [26].
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2. IMPLEMETATION OF GENERAL DETERMINTAL

REPRESENTATION

For the sake of completeness, we restate here the general determinantal rep-

resentation from the articles [19], [20]. This representation can be obtained from

G=W1(QW1)
�1(W2P )

�1W2, where A = PQ is an arbitrary full-rank factorization

of A.

Proposition 2.1. Let A 2 C
m�n
r , and A = PQ be its full-rank factorization.

Then an arbitrary f1; 2g inverse G = (gij) of A can be represented by the following

determinantal representation:

gij =

X
(�;�)2N (j;i)

j(W1W2)
T �
� j

@

@aji
jA�

� j

X
(
;�)2N

j(W1W2)
T 


� j jA



� j
;
�

1 � i � n

1 � j � m

�
;

where W1 2 C
n�r and W2 2 C

r�m satisfy the conditions (1:1).

In [19] we introduce notions of the generalized determinant and the general

determinantal representation of di�erent orders. For the sake of clarity we intro-

duce several notations.

The set Qt;m � Qt;n, t � r = rank(A) is denoted by N (t). For as given

m � n complex matrix R, the generalized determinant of the order t , denoted by

DET(R;t)(A), can be expressed in this way (see [19]):

(2:1) DET(R;t)(A) =
X

(
;�)2N (t)

jR



� jjA


� j:

Also, we introduce the following notation:

I(�; t) = fI : I 2 Qt;m; I � �g ; J (�; t) = fJ : J 2 Qt;n; J � �g ;

N (�; �; t) = I(�; t)�J (�; t); t � r:

Then the general determinantal representation of the order t for A 2 C
m�n
r , can

be written as follows (see [19]):

(2:2) gij = a
(y;R;t)
ij =

X
(�;�)2N (j;i;t)

jR
�

� j
@

@aji
jA�

� j

DET(R;t)(A)
;
�

1 � i � n

1 � j � m

�
:

In the case t = r, we obtain well known result from [4]. De�nitions of the

generalized determinant and the general determinantal representation of di�erent

orders are useful in the case when the rank of a given matrix A is unknown. Then

we start the computation using (2:2) with t = minfm;ng. Then we decrease values

for t, until a nonzero value of t satisfying DET(R;t)(A) 6= 0 is reached.
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The general determinantal representation contains all known determinantal

representations of generalized inverses, introduced in the papers [3{6], [8], [12{13],

[16{17], [23{24].

A few connections between the general determinantal representation and the

corresponding results from [10], [14] are investigated in [22].

Now, we describe implementation of the general determinantal representation

of di�erent orders, in the package MATHEMATICA. We begin by several auxiliary

procedures.

2.1. By means of the following routine can be detected square matrices.

SquareMatrixQ[a ]:=Length[a]==Length[a[[1]]] /; MatrixQ[a]

2.2. The rank of any given matrix A is equal to the number of nonzero elements

in the reduced row echelon form of A. The result of the expression zeros[u] is 0 if

the vector u is identical to the corresponding zero vector, and 1 otherwise.

zeros[u ]:=

Block[fv=u,n,i=1,lg=0g,

n=Length[v];

While[i<=n,

If[v[[i]] =!= 0, lg=1];

i++;

];

lg

];

The function rank[a] is a counter of all nonzero rows contained in the reduced

row echelon form of A.

rank[a ]:=

Block[fb=a,i,m,n,r,cg,

fm,ng=Dimensions[b];

b=RowReduce[b];

r=Sum[zeros[b[[i]]], fi,mg]

]; MatrixQ[a]

The index of a square matrix A is de�ned as the �rst integer k satisfying

rank(Ak+1)=rankAk.

Index[a ]:=

Block[fb=a,c=IdentityMatrix[Length[a]],d=a,k=0g,

While[Rank[c]=!=Rank[d],

d=d.b; c=c.b; k+=1

];

k

] /; SquareMatrixQ[a]
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2.3. The generalized determinant of the order t, de�ned by DET(R;t)(A) in (2.1),

can be computed by means of the following procedure GDetR. The formal pa-

rameters a and r denote the matrices A and R, respectively, and the parameter t

denotes the size of the selected minors.

GDetR[a ,r , t Integer]:=

Block[fb=a, ra=r, f, s, k, l, ma,mcg,

ma=Minors[b,t]; mc=Minors[ra,t];

ff,sg=Dimensions[ma];

Sum[Conjugate[mc[[k,l]]] ma[[k,l]], fk,fg, fl,sg]

]/; MatrixQ[a] && MatrixQ[r] &&

Dimensions[a]==Dimensions[r] && Rank[a]==Rank[r]

2.4. In order to implement the general determinantal representation, �rstly we

develop two useful functions. The �rst function generates the submatrix of a given

matrix A, obtained by deleting its i-th row and j-th column.

MatrixComp[a , i Integer, j Integer]:=

Block[fb=ag,

b=Drop[b,fi,ig]

b=Transpose[Drop[Transpose[b],fj,jg]];

]/; MatrixQ[a]

In the second function we generate the submatrix of A determined by the

rows p1; : : : ; pt and columns q1; : : : ; qt.

Minor[a , p List, q List, t Integer]:=

Block[fb=a,i,j, cg,

c=IdentityMatrix[r];

For[i=1, i<=t, i++,

For[j=1, j<=t, j++,

c[[i,j]]=b[[p[[i]],q[[j]]]]

] ];

c

]/; MatrixQ[a]

2.5. Using an algorithm from [9], the set of all combinations of the order t of the

set f1; : : : ; ng can be implemented by the following code:

While[j>=1,

If[j>=1,

For[i=t, i>=j, i--,

p[[i]]=p[[j]]+i-j+1; p1[[i]]=p[[i]]

] ] ];

2.6. Finally, in the procedure RINVERSE we implement the general determinan-

tal representation of the order t � r, given by (2:2). The formal parameters a and

r represent the input matrices A and R, respectively. Initial value for the order t

of selected minors is t = minfm;ng. In the while cycle the value of t is decreased

until the conditions DET(R;t)(A) 6= 0 is satis�ed.
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RInverse[a ,r ]:=

Block[fb=a,ra=r,t,p,q, m,n, w,v, i,j,k, j1, p1,q1,

pr,pr1, awv,mr,mrr, mc,s,inv, sw,amg,

inv=Transpose[b]; fm,ng=Dimensions[b];

t=Min[m,n]; d=GDetR[b,ra,t];

While[d==0, d=GDetR[b,ra,t]; t-- ];

p=q=Range[t]; p1=q1=q;

For[v=1, v<=n, v++,

For[w=1, w<=m, w++,

s=0;

If[t==m, j=1, j=m];

While[j>=1,

If[t==n, j1=1, j1=n];

While[j1>=1,

pr=pr1=1;

While[pr<=t && p[[pr]]=!=w, pr++];

While[pr1<=t && q[[pr1]]=!=v, pr1++];

If[pr<=t && pr1<=t,

mr=Minor[b,p,q,t];

mrr=Minor[ra,p,q,t];

mc=Conjugate[Det[mrr]];

am=Det[MatrixComp[mr,pr,pr1]];

awv=(-1)^(pr+pr1) am mc,

awv=0

];

s+=awv;

If[q[[t]]==n, j1--, j1=t ];

If[j1>=1,

For[i=t, i>=j1, i--,

q[[i]]=q[[j1]]+i-j1+1;

q1[[i]]=q[[i]]

] ]

];

q1=q=Range[t];

If[p[[t]]==m, j--, j=t ];

If[j>=1,

For[i=t, i>=j, i--,

p[[i]]=p[[j]]+i-j+1; p1[[i]]=p[[i]]

] ]

];

inv[[v,w]]=s/d

p=q=Range[t]; p1=q1=q

] ];

inv

]/; MatrixQ[a]
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Remark 2.2. Described algorithms in MATHEMATICA are simpler and more e�cient

with respect to the corresponding in [19], written in C.

Computation of generalized inverses by means of the general determinantal

representation a is direct method, and does not use the Gaussian elimination.

3. MODIFICATION OF THE HYPER-POWER METHOD

The hyper-power iterative method was originally devised by Altman [2]

for inverting of a nonsingular bounded operator in a Banach space. In [11] the

convergence of the same method is proved under the condition which is weaker than

the one assumed in [2], and some better error estimates are derived. Zlobec in

[30] de�ned two hyper-power iterative methods of an arbitrary high order q � 2.

In the paper [21] we adapt the hyper-power method to be valid for computing

all of the re
exive g-inverses.

Proposition 3.1. (see [21]) Let rank(A) = r � 2, and the matrices W1 2 C
n�r,

W2 2 Cr�m satisfy conditions (1:1). If q � 2 is an integer, then both of the

following two iterative methods:

Y0 = Y 0
0 = �(W2AW1)

�; 0 < � �
2

Tr((W2AW1)
�W2AW1)

;

8<
:

Tk = Ir � YkW2AW1;

Yk+1 = (Ir + Tk + : : :+ T
q�1
k )Yk;

Xk+1 =W1Yk+1W2

8<
:

T 0k = Ir �W2AW1Y
0
k;

Y 0
k+1 = Y 0

k(Ir + T 0k + : : :+ T 0k
q�1

);

X0
k+1 = W1Y

0
k+1W2 k = 0; 1; : : :

generate the class of the re
exive g-inverses of A.

Under the suitable conditions, we get iterative methods for computing f1; 2; 3g

or f1; 2; 4g inverses, the Moore-Penrose inverse, weighted Moore-Penrose in-

verse or the group inverse of A (see [21]).

3.1. Implementation of the modi�ed hyper-power method is given in the following.

In order to compute the value � = 2

Tr((W2AW1)�W2AW1)
, we need a function for com-

puting the trace of a square matrix. This function is not built-in in MATHEMATICA.

For this purpose we can use the following one-liner idea from [1]:

trace[mat ?MatrixQ]:=

Plus @@(IdentityMatrix[Length[mat]] mat // Flatten)

We recommend the following routine:

trace[a ]:=

Block[fb=a, ig,

Sum[b[[i,i]], fi,Length[b]g]

]/; SquareMatrixQ[a]

3.2. Now, we give the following implementation of the modi�ed hyper-power

method. In the following procedure the parameters a, w1, w2 represent the matri-

ces A,W1, W2, respectively. The parameter q denotes the order of the hyper-power

expansion, and numit denotes the number of iterations.
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HyperPower[a ,w1 ,w2 ,q ,numit ]:=

Block[ftk,tk1,b=a,wa=w1,wb=w2,e,alpha,x,y,c=wb.b.wa, ra,s,i,k=1g,

ra=rank[b];

alpha=2/trace[Conjugate[Transpose[c]].c];

y=alpha Conjugate[Transpose[c]];

e=IdentityMatrix[ra];

While[k<numit,

tk1=tk=e-y.c; s=e;

Do[s+=tk; tk=tk1.tk,fi,q-1g];

y=s.y; x=wa.y.wb; k+=1

];

x

]

4. EXAMPLES

Example 4.1. Consider the test matrix S5 from [27], in the case a = 1, i.e. S5 =0
BBB@

2 1 1 1 2
1 0 1 1 1

1 1 2 1 1

1 1 1 0 1
2 1 1 1 2

1
CCCA. Its full-rank factorization is, for example:

P =

0
BBB@

2 1 1 1

1 1 0 1

1 2 1 1
1 1 1 0

2 1 1 1

1
CCCA ; Q =

0
B@

1 0 0 0 1

0 0 1 0 0

0 1 0 0 0
0 0 0 1 0

1
CA :

For the matrices W1 and W2 we can select, for example

W1 =

0
BBB@

1 2 5 3

�2 4 0 3
2 1 0 �2
0 5 0 1

7 2 �3 2

1
CCCA ; W2 =

0
B@

2 �2 1 1 �5
3 0 1 4 0

0 2 1 3 4

7 1 1 9 �3

1
CA :

RInverse[S5 ; T ranspose [W1:W2]] gives

S
(1;2)

5 =

0
BBBBBBBBBBBB@

28759
10220

�113
140

� 1
28

151
20

�61317
10220

472
73

�2 1 �1 �399
73

�300
73

1 0 1 227
73

186
73

�1 1 �2 �113
73

�46539
10220

253
140

�27
28

�131
0

79097
10220

1
CCCCCCCCCCCCA
:
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RInverse[S5 ; P:T ranspose [W1]] gives

S
(1;2;3)
5 =

0
BBBBBBBBBBBB@

223
140

�113
140

� 1
28

151
20

�123
140

1
2

�2 1 �1 1
2

�1
2

1 0 1 �1
2

1
2

�1 1 �2 �1
2

�223
140

253
140

�27
28

�131
20

223
140

1
CCCCCCCCCCCCA
:

RInverse[S5 ; T ranspose [W2]:Q] gives

S
(1;2;4)

5 =

0
BBBBBBBBBBBB@

�127
146

1
2

�1
2

1
2

127
146

472
73

�2 1 �1 �399
73

�300
73

1 0 1 227
73

186
73

�1 1 �2 �113
73

�127
146

1
2

�1
2

1
2

127
14

1
CCCCCCCCCCCCA
:

The value of the expression RInverse[ S5; S5 ] is

S
y
5 =

0
BBBBBBBBBBBB@

0 1
2

�1
2

1
2

0

1
2

�2 1 �1 1
2

�1
2

1 0 1 �1
2

1
2

�1 1 �2 1
2

0 1
2

�1
2

1
2

0

1
CCCCCCCCCCCCA
;

which is well-known result in [27].

Example 4.2. Consider the matrix A =

 
1 0

�1 0

0 1

!
. Its full-rank factorization is

P = A, Q = I2. If we select W1 =

�
1 1

0 1

�
, and W2 =

�
1 0 1

0 1 0

�
, application

of the modi�ed hyper-power method of the order 2 leads to:
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X1=

�
0 � 4

49
0

4

49

4

49

4

49

�
; X2=

�
0 � 376

2401
0

376

2401

376

2401

376

2401

�
;

X3=

�
0 � 1664176

5764801
0

1664176

5764801

1664176

5764801

1664176

5764801

�
;

X4=

�
0 � 16417805178976

33232930569601
0

16417805178976

33232930569601

16417805178976

33232930569601

16417805178976

33232930569601

�
;

X5=

�
0 �x5 0

x5 x5 x5

�
; x5 =

821679232341479087467408576

1104427674243920646305299201
:

We have obtained sequence converging to X =

�
0 �1 0

1 1 1

�
2 Af1; 2g. The

matrix A is of full column rank, so that A(1;2) = A(1;2;4) [29], and consequently

X 2 Af1; 2; 4g.
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