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ON MINIMAL SPACE CURVES IN THE SENSE

OF BERTRAND CURVES

�Umran Pekmen

In this work, it is shown that when a minimal space curve (C) is given, a minimal

space curve (C�) can be determined so that at corresponding points the curves

have parallel tangents in the opposite directions and the distance between these

points is constant. De�ned curve pairs looks like Bertrand curves because of the

common principal normals.

PRELIMINARIES

We give the basic concepts:

De�nition 1. Let xp be a complex analytic function of a complex variable t.

Then the vector function

~x(t) =

3X
p=1

xp(t)~kp; t = t1 + it2

is called an imaginary curve, where ~x : C! C
3 and ~kp is a unit vector [3], [4].

As in [3], [4] according to the standard Eucledean metric ds2 = dx21+ dx22+
dx23.

De�nition 2. The curves, of which the square of the distance between the two

points equal to zero, are called minimal or isotropic curves.

De�nition 3. Let s denote the arc-length (see [3], [4]). A curve is a minimal

curve if and only if ds2 = 0.

Let ~x = ~x(t) be a minimal curve in space with t complex variable. Then from
De�nition 3 and De�nition 2

ds2 = d~x2 = 0:
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For every regular point, it means that

d~x

dt
= ~x0(t) 6= ~0:

Isotropic curves in space ~x = ~x(t) satisfy the di�erential equation

d~x

dt
= ~x0(t) 6= ~0; [~x0(t)]

2
= 0:

Consequently minimal curves in space satisfy the following di�erential equation

[~x0(t)]
2
= 0:

By di�erentiation
~x0(t)~x00(t) = 0:

By trivial vector calculus we have

[~x0(t) ^ ~x00(t)]
2
= 0:

It is also an isotropic vector which is perpendicular to itself. Then

~x0(t) ^ ~x00(t) = �~x0(t) � 6= 0

can be written. By vector product with ~x00(t) we �nd

�2 = � [~x00]
2
:

Then by substitution we obtain

~x0 =
~x0 ^ ~x00p
�x002

:

For another complex variable t�, t = f(t�);
df

dt�
= f. 6= 0

d~x =
~x0 ^ ~x00p
�x002

dt =
~x. ^ ~x..

p
�x..2

dt�

where ~x. = ~x0f.; ~x.. = ~x00f.2 + ~x0f..:

The equality
~x..2 = (~x00)2f.4

can be written in the following form

(�x..2)
1

4 dt� = (�~x002)
1

4 dt

If we choose t� such that ~x..2 = �1, then by integration

t� = s =

Z t

t0

(�~x002)
1

4 dt
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is obtained. It is called the pseudo arc-length of the minimal curve which is invariant
with respect to the parameter t (see [4]).

For each point N (s) of the minimal curve, an E. Cartan frame �eld is de�ned,
as follows (see [1], [4]).

~e1 = ~x.

~e2 = i~x..

~e3 = ��

2
~x. + ~x..; � = ~x...2

~ei � ~ej =
�

1 i + j = 4
0 i + j 6= 4

~ei ^ ~ej = (~ei+j�2)i (i; j = 1; 2; 3); (~e1; ~e2; ~e3) = i

(1)

s =
tR
t0

(�~x002)
1

4 dt is a pseudo arc-length also invariant with respect to the parameter

t. If we di�erentiate (1) with respect to the s, which is a pseudo arc-length of the
minimal curve, the following equations can be deduced:

~e.1 = �i~e2; ~e.2 = i(k~e1 + ~e3); ~e
.

3 = �ik~e2;(2)

where k =
�

2
is called pseudo-curvature.

These equations can be used if the minimal curve is at least of class C4. In
the solution of the problem of our paper we used also the method of [2].

MINIMAL SPACE CURVES IN THE SENSE OF BERTRAND

CURVES

Let (C) and (C�) be a pair of minimal space curves of class C4 with non-
vanishing pseudo curvature in Eucledian space. In contrast to the Bertrand
curves we shall assume that our curves have parallel tangents in opposite directions
with common principal normals, at corresponding points. According to the (1) the
square of the arc-length is ds2 = dx22 + dx1 dx3. We can write for the equation of
the curve (C�):

~�� = ~�(s) + �~e1 + �~e2 + � ~e3(3)

Di�erentiating this equation with respect to s, which is an arc-length of (C),
and using the Cartan formulas (2), we obtain,

d~��

ds
= ~e�1

ds�

ds
= ~e(1 � ki�. + �ik) + ~e2(��i � ki�. � ik�) + ~e3(�i � ki�.)

Since at the corresponding points of (C) and (C�)� ~e�1 = ~e1 we have

1� ki�. + �ik = � ds�

ds
; ��i � ki�. � �ki = 0; �i� �.ki = 0:(4)



6 �Umran Pekmen

Arc di�erential of ~e3 = ~e3(s) is d� = �
s�

d~e3

ds

�2

ds.

Let us denote the radii of pseudo curvatures of (C) and (C�) respectively by

d�

ds
= �ki = 1

�
;

d�

ds�
= �k�i = 1

��
:(5)

Hence, using (5), (4) can be writen as

� = �0 + f(�); � =
�0

�
i. � �

�
i; �0 = ��i�;(6)

where f(�) = �+ ��.. Eliminating �; � and their derivatives from the equation (6),
we get the following linear di�erential equation of the third order in �:

�000 � 2�i�0 � �i� � i�f + f 00 = 0;(7)

where a dash denotes di�erentiation with respect to �.

If the distance between corresponding points of (C) and (C�) is constant, we
may write (here the scalar product is de�ned as in (1))

k~�� � ~�k2 = k~dk2 = �2 + 2�� = constant:(8)

Di�erentiation of (8) yields

1

2

dk~dk2
d�

= ��0 + �0� + ��0 = 0:(9)

By virtue of (6), (9) is reduced to

�f = 0:(10)

Here, there are two main cases to consider: First, if f(�) = 0 then the vector ~d is
constant. To verify this fact, di�erentiate

~d = �~e1 + �~e2 + � ~e3(11)

and use (6); f(�) = 0 implies
d~d

d�
= ~0. Conversely, if

d~d

d�
= ~0, then it follows from

(6) f(�) = 0. So we can give the following theorems:

Theorem 1. The distance between corresponding points of (C) and (C�) is con-

stant if and only if f(�) = 0.

Theorem 2. (C�) is a translation of C by a constant vector if and only if f(�) = 0.
In this case, (7) reduces to the following equation:

�000 � 2�i�0 � �0i� = 0:
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Theorem 3. If (C�) is a translation of (C) by a constant vector the parameter �

in equation (3) veri�es the following di�erential equation.

�000 � 2�i�0 � �0i� = 0:(12)

Conclusion 1. In addition to f(�) = 0, in the case of � = 0; � = constant, we

have from (6)
�

�
=

l

�i
= �k = constant:

This means (C) is pseudo helix (see [4]).

Now we shall discuss the second case: � = 0. The equation (6) becomes

� = �0 + f; �� = �0i; ��i� = 0:(13)

Conclusion 2. If � = 0, from (13) we have � = 0, � = 0, f(�) = 0. The equation

(3) yields,
~�� = ~�:

That is (C) and (C�) coincide.

� = 0 implies � = constant; �0 = A � f , that is

� =

Z �

0

A d��
Z �

0

f(�) d�;

~�� = ~�+

"
A� �

Z �

0

f(�) d�

#
~e1 + A~e2;

~d2 = k~�� � ~�k2 = A2:

Then we can give the following conclusion.

Conclusion 3. When the minimal curve (C) is given, then there is an in�nite

number of minimal curves (C�). The distance between the corresponding points of

a pair of curves (C) and (C�) is A = constant.

Let (C) be an isotrop cubic (k = 0) (see [4]). From (4), we get

ds = � ds�; � = 0; � = 0:(14)

Hence, the equation of (C�) is given as follows:

~�� = ~�+ �~e3:(15)

It is obvious that when the isotrop cubic is given, an in�nite number of curves
(C�) can be derived, and the distance between the corresponding points of a pair
of curves is

k~�� � ~�k = 0:
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From the di�erentiation of (15) with respect to pseudo length of (C) and using
the Cartan formula (2) we deduce k� = 0, where � = A = constant. Therefore we
can give the following theorem.

Theorem 4. If the minimal curve (C) is an isotrop cubic under the condition

� = A = constant, C� is also an isotrop cubic.
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