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SOME PROPERTIES OF INCREASING

FUNCTIONS, ESPECIALLY THOSE RELATED

TO RECURRENTLY DEFINED SEQUENCES

Du�san Adamovi�c

In this paper one studies some properties of increasing real functions de-

�ned on real intervals, especially in connection with sets Sx and Tx, and

also monotony and convergence of sequences de�ned recurrently by such

functions.

This text comprises several results; those forming the �rst group and included

in Theorem 1 refer to di�erent properties of an increasing function f : I ! R,

while the results of the second group, colected in the formulation of Theorem 2,

treat exhaustively the question of convergence and monotony of a sequence (xn)

de�ned recurrently by means of such a function:

x1 = x; xn+1 = f(xn) (n = 1; : : :):

Here and in that which follows, R denotes the set of all real numbers and

I � R an interval which is neither empty nor singleton. As usually,N is the set of

natural numbers and N0 :=N [ f0g.

1. RESULTS

Theorem 1. Let

(1)

�
I � R be an interval which is neither empty nor singleton

and f : I ! R an increasing function (non necessarily strictly).

Under this condition:

1� If x < sup I and f(x) > x, then the set

Sx := fy : x < y 2 R ^ (x; y) � I ^ f(t) > t(x � t < y)g

is not empty and

(x;minff(x); sup Ig) � Sx; (x; supSx) � Sx;
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moreover, supSx = maxSx if sup Sx < +1. The corresponding symmetrical as-

sertions are also true. (The exact meaning of the last sentence is : retaining the

supposition that f is increasing-strictly or not, the assertions which di�er from the

previous assertions ony in the fact that right and left sides have changed places, i.e.

all inequalites have been repaced by opposite inequalites, -remain true.- The same

sentence should be repeated at several places; at any of them it will be replaced by

the sign 1.)

2� If z := sup Sx (= maxSx) 2 I, then z � f(z). If moreover z < sup I, we

have

z = f(z) = f(z � 0) = minF+

x
;

where

F+

x
:= ft : x < t ^ f(t) = tg

(so F+
x

is the set of all �xed points of f greater than x): If the set

F�
x

:= ft : t < x ^ f(t) = tg

(i.e. the set of all �xed points of f less than x) is not empty, its maximum need

not exist.

3� A su�cient, but not a necessary, condition for the existence of a �xed point

of f is the existence of numbers x; y 2 I such that x < y, f(x) > x and f(y) < y.

If this condition is satis�ed, at least one �xed point of f lies in the interval (x; y).

4� Again, let

(2)

�
x < sup I; f(x) > x;

and let Tx := ft : x < t 2 R ^ f(t � 0) = tg 6= ;:

Then there exists the minimum y of Tx. This minimum can be an accumulation

point of the set Tx. A necessary, but not a su�cient, condition for this is y 2 F+

x
.

A su�cient, but not a necessary, condition for an x 2 I with properties x < sup I

and f(x) > x to be Tx 6= ; is F+

x
6= ; (i.e. that there exists at least one �xed point

of f greater than x).

Theorem 2. Under the suppositions (1), the folowing assertions hold:

1� If the condition (2) is satis�ed, so that there exists y := minTx (assertion

4� of Theorem 1), and also the condition

(3) f(t) < y (x � t < y) _ y 2 F+

x

then by

(4) x1 = x; xn+1 = f(xn) (n = 1; : : :)
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is de�ned an in�nite sequence (xn),which increases strictly and converges to y if

the �rst part in (3) holds, and if only the second part in (3) is satis�ed, it increases

stricty for n 2 f1; : : : ;mg, with an m 2 N, and for n � m it takes constantly the

value y.

(It is not di�cult to see that the �rst part of disjunction (3) can be formulated

as follows:a left neighbourhood of the point y in which the function f should be

constant-does not exist).

1�:1 If x < sup I, f(x) > x and Tx = ;, then (4) de�nes an in�nite sequence

(xn) which increases strictly and tends to +1, or (4) de�nes only a �nite sequence

which is strictly increasing on its domain-depending on whether sup I = +1 or

sup I < +1.

2� Suppose that (2) is satis�ed and that (3) is not. Then there exists a strictly

increasing sequence

(5) y` (` = 0; 1; : : :);

�nite or in�nite, such that

(6)

�
y0 = x; with y`�1 instead of x condition (2) is satis�ed and

condition (3) is not, and y` = minTy`�1
(` = 1; : : :);

and moreover

xp` = y` (` = 0; 1; : : :); p0 = 1; p`�1 < p` (` = 1; : : :);

where xn(n = 1; : : :) is the sequence de�ned by (4). Further :

2�:1 The sequence (5) is �nite if for some `0 2N :

(7) y`0 = sup I; or

(8) y`0 < sup I ^ Ty`0 = ;, or

(9) with y`0 instead of x both conditions (2) and (3) are satis�ed.

2�:1:1 In the case (7), sequence (4) is de�ned and stricty increasing on the

set f1; : : : ; p`0 + 1g or on the set f1; : : : ; p`0g , {depending on whether sup I 2 I or

sup I 62 I.

2�:1:2 In the case (8), sequence (4) is in�nite and strictly increasingly tends

to +1, or it is �nite and strictly increasing on its domain, {depending on whether

sup I = +1 or sup I < +1.
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2�:1:3 In the case (9), sequence (4) is in�nite and strictly increasingly con-

verges to z := minTy`0 , or for some m (� p`0) is strictly increasing on the set

f1; : : : ;mg and for n � m constantly takes the value z, {depending on whether,

with y`0 , instead of y, the �rst member of the disjunction (3) is satis�ed or only its

second member holds.

2�:2 If for none `0 2 N any of conditions (7), (8) and (9) is satis�ed, then

sequence (5); and consecuently sequence (4); is in�nite, and moreover sequence (4) is

strictly increasing and converges to a number u 2 R with the property f(u�0) = u

(i.e. with the property u 2 Tx), or it is strictly increasing and tends to +1, {

depending on whether sequence (y`) is bounded or unbounded.

All previous cases are e�ectively possible. 1 (This sign refers to the whole

statement, i.e. to all assertions in 2):

3� If x = maxI and f(x) > x, sequence (4) is de�ned and strictly increasing

on the set f1; 2g. 1.

4� In order that a sequence (4), with x 2 I, is strictly increasing and conver-

gent to u 2 R it is nessesary that f(u � 0) = u. If u 2 R; inf I < u � sup I and

f(u � 0) = u, a sequence (xn) de�ned by (4), strictly increasing and tending to u

need not exist.

1.1. In particular, if the function f is strictly increasing, one can omit from previous

formuation any mention of the condition (3), all parts of the text under 1� referring

to this condition and also whole text under 2�. Therefore, in this case Theorem 2

can be repaced by the following simpler statement.

Theorem 2.1. Let the function f : I ! R be strictly increasing. Then, if (2) holds,

(4) de�nes an in�nite sequence (xn) which is strictly increasing and converges to

y = minTx. {If x < sup I, f(x) > x and Tx = ;, then by (4) is de�ned an in�nite

sequence which is strictly increasing and tends to +1, or only a �nite sequence

is de�ned and this sequence is strictly increasing on its domain, {depending on

whether sup I = +1 or sup I < +1. {If x = maxI and f(x) > x, sequence

(4) is de�ned and strictly increasing on the set f1; 2g. {For the convergence to

y 2 R of a sequence (xn) de�ned by (4) and strictly increasing, it is nessesary that

f(y � 0) = y. {If y 2 R, inf I < y � sup I and f(y � 0) = y, then a sequence

(xn) de�ned by (4) which strictly increases and converges to y {need not exist. 1

(Refers to all preceding assertions).

1.2. If the function f : I ! R is continuous, in preceding statements the points

y 2 I with the property f(y � 0) = y or f(y + 0) = y ought to be replaced by �xed

points of f , since then, obviously, any such point is �xed and every �xed point has

both previous properties, excluding one of them at the endpoint of I: Therefore,

the statement which in this case comprises all assertions of Theorems 1 and 2 could

be as follows:
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Theorem 2.2. Let the function f : I ! R be increasing and continuous. Then :

1� For any x 2 I such that f(x) > x; the set F+
x

of all �xed points of f

greater than x, provided that it is not empty, has its minimum, and the set F�
X

of

all �xed points of f less than x, if not empty, has its maximum.

2� Suppose that x < sup I and f(x) > x. Then the sequence xn(n = 1; : : :)

de�ned by (4) : if F+
x
6= ;, increases strictly and converges to y := minF+

x
, or

increases strictly on the set of indices f1; : : : ;mg and for n � m takes constantly

the value y, {depending on whether we have f(t) < y (x < t < y) or this condition

is not satis�ed; if F+

x
= ;, the sequence (4) is strictly increasing and tends to +1,

or increases strictly and converges to sup I, or is �nite and strictly increasing on

its domain, {depending on whether we have sup I = +1 or z := sup I < +1 and

f(x) < z = f(z � 0) or z < +1 and f(x) � z _ z < f(z � 0). 1

3� If x = sup I and f(x) > x, the sequence de�ned by (4) is de�ned and

increases stricty on the set f1; 2g: 1

4� For the existence of a sequence de�ned by (4), strictly monotone and con-

vergent to y 2 I {it is nessesary, but not su�cient, that y be a �xed point of f . 1

1.3. A conclusive comment. Taking into consideration the fact that, if x is

a �xed point of the mapping f , then sequence (4) constantly takes the value x,

all assertions of Theorem 2 (and partially and implicitely of Theorem 1) can be

resumed as follows:

Under the hypothesis that the function f : I ! R is increasing, sequence (4),

with x 2 I; is increasing or decreasing, depending on whether f(x) � x or f(x) � x;

in fact strictly on its whole domain, which can be �nite or in�nite, or strictly up to

a certain index m 2 N and further being constant ; if this sequence is in�nite and

strictly monotone, it can converge to a number y such that f(y�0) = y in the case

of increase and f(y+0) = y in the case of decrease, or tend in the �rst case to +1
and in the second to �1; the conditions of realization of any previous possibilities

are precisely determined by more extensive statements of Theorems 1 and 2:

2. PROOFS

Proof of Theorem 1. 1� Let x < sup I and f(x) > x. Suppose that the inclusion

(x;minff(x); sup Ig) � Sx is not true. Then there exist y 2 (x;minff(x); sup Ig)
and t 2 (x; y) such that f(t) � t, and so f(t) � t < y < f(x) and at

the same time x < t, which contradicts the supposition (1) on the function

f . Hence (x;minff(x); sup Ig) � Sx and consequently Sx 6= ;. Further, if

y 2 (x; supSx), then exists t 2 (y; sup Sx) \ Sx, and because [x; y) � [x; t) we
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have f(u) > u(x � u < y), which implies y 2 Sx. Hence (x; supSx) � Sx. It fol-

lows that f(y) > y(x � y < supSx); therefore, if sup Sx < +1 and consequently

supSx 2 R; we have sup Sx 2 Sx, i.e. sup Sx = maxSx.

2� Let us suppose that

(10) z := sup Sx 2 I:

Then we have, by the last assertion in 1�;

(11) f(t) > t (x � t < z):

Further, in this case f(z) < z would imply, with an u 2 (f(z); z); f(u) > u >

f(z), that is f(u) > f(z) and simultaneously u < z, in contradiction with our

starting supposition. Therefore,

(12) z � f(z):

In particular, if

(13) z < sup I

then f(z) > z would imply, by 10, the existence of some u > z such that f(t) >

t (x � t < u), i.e. such that z < u 2 Sx, in contradiction with (10). Hence and by

(12), f(z) = z. This and (11) imply z = minF+
x
. Finally, taking into consideration

(11), we conclude that z = f(z) � f(z � 0) � z, i.e. f(z � 0) = z.

The last assertion is proved by the example: f(t) = t� 1

4
sin 1(t � �1); f(t) =

t+ 1

4
t2 sin 1

t
(�1 < t < 0); f(t) = t+ 1 (t � 0); I = R and x = 0.

3� One can obtain both assertions, except the detail expressed by the words

\but not a necessary", by a direct application of the known theorem on �xed point

of A. Tarski [1]. Namely, under the accepted conditions, f j[x; y] is an increasing

mapping of the complete lattice [x; y] into [x; y]. The non necessity of this condition

is proved by the example of the function f(t) = 2t (t 2 R = I), or by the function

f(t) = t; (t 2 R = I).

4� Let condition (2) be satis�ed. Then y := inf Tx exists and x � y. If y is

not an accumulation point of the set Tx, we have certainly y = minTx. Let y be

an accumulation point of Tx. Then there exists to y convergent sequence (yn) of

numbers greater than y and such that f(yn � 0) = yn; (n 2N). Therefore,

f(y) � f(yn � 0) = yn ! y (n!1)

and so

(14) f(y) � y:
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This and f(x) > x imply that the equality y = x is not possible, i.e. that

(15) y > x:

The supposition that f(t) � t for some t 2 (x; y) would imply, on account of 2�,

the existence of z := maxSx and the relations z 2 (x; t] � (x; y) and z 2 Tx, in

contradiction with y = inf Tx. Hence

(16) f(t) > t (x � t < y):

It follows that

(17) f(y � 0) = lim
t!y�0

f(t) � lim
t!y�0

t = y:

From (14) and (17) follows y � f(y) � f(y � 0) � y, and so y = f(y � 0)

and f(y) = y. The �rst of these equalites means that in this sedond case we

also have y = minTx, which proves the �rst statement in this point. The second

equality proves the necessity of the condition from the second statement. {The non

su�ciency of this condition is proved by the example: I = R; f(t) = 1

2
t (t 2 R);

in this case we have T�1 = f0g;minT�1 = 0 2 F+

�1
and 0 is not an accumulation

point of the set T�1. {On the other hand, minTx can indeed be an accumulation

point of Tx as proved by the following case (I 2 R): f(t) = 1

2
t (t � 0); f(t) =

t + 1

4
t2 sin 1

t
(0 < t < 1); f(t) = t + 1

4
sin 1 (t � 1); this function is obviously

increasing on the intervals (�1; 0] and [1;+1), and on [0; 1] too, because f
0

(t) =

1 + 1

2
t sin t�1 � 1

4
cos t�1 > 1 � 1

2
� 1

4
> 0 (0 < t < 1); f(+0) = 0; f(1 � 0) =

1 + 1

4
sin 1: In this case minT�1 = 0 and T�1 = f0g [ f 1

k�
: k 2 Ng, which means

that minT�1 is an accumulation point of the set T�1. {Further, when f(x) > x

and x < sup I, the set Sx, by 1�, is not empty and then the supposition F+

x
6= ;

implies the relations x < z := supSx 2 I. Under the same supposition: if we have

z(= maxSx) < sup I, it will be, on account of 2�, f(z � 0) = z, and if z = sup I,

then we have �rst, by (11), f(z) = z, and (11) also implies f(z � 0) � z, so that

we obtain z = f(z) � f(z � 0) � z, that is f(z � 0) = z; therefore, in both cases

z 2 Tx. This means that under the cited conditions F+

x
6= ; implies Tx 6= ;.

{Finally, the example of the function f(t) = 1

2
t (t < 0); f(t) = t + 1 (t � 0),

for which T�1 = f0g and F+

�1
= ;, proves that F+

x
6= ; is not a necessary condition

for Tx 6= ;.

Proof of Theorem 2. 1� Let conditions (2) and (3) be satis�ed. If the �rst

member of the disjunction (3) is satis�ed in this case, then, as can be established

by a simple consideration which uses the inequality (16), sequence (4) is in�nite

and strictly increasing, and we also have x < xn < y(n 2 N). Hence u = lim
n!1

xn

exists and x < u � y. Since

(18) u = lim
n!1

xn = lim
n!1

xn+1 = lim
n!1

f(xn) = f(u � 0);
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i.e. u 2 Tx, the inequality u < y is not possible, and so u = y. Therefore, in this case

sequence (4) is strictly increasing and converges to y = minTx. If only the second

member of the disjunction (3) is satis�ed, then f(t) � f(y) = y (x � t < y) and

consequently sequence (4) is again in�nite, bounded from above by the number y,

and, on account of (16), increasing. Hence u = lim
n!1

xn exists and x < u � y (�rst

inequality is strict because x1 < x2). The inequality u < y is again impossible.

Namely, in the consideration expressed by the statement comprising formula (18)

we have in fact established the following:

(19)

�
if some sequence de�ned by (4) is strictly increasing

and converges to u 2 R then x < u and f(u � 0) = u:

Hence the strict increase of sequence (4) in this case implies u 2 Tx, which excludes

the possibility u < y. If sequence (4) is not strictly increasing, there exists m 2 N
such that xm = xm+1 = f(xm), and this implies xn = xm = u (n � m); it follows

f(u) = f(xm) = xm+1 = u, and this excludes the possibility of the relation u < y.

So we have also in this second case

(20) lim
n!1

xn = y:

However, since now the �rst member of disjunction (3) does not hold, there exists

u 2 [x; y) such that f(t) = y (u < t � y). On account of (20), it is not possible

that xn � u (n 2 N) and consequently there exists k 2N such that u < xk � y,

and this implies that we have, with ` = k + 1; xn = y (n � `). Denoting by

m the smallest of such numbers `, we have m � 2 (because x1 < x2 � y) and

xn < y (n = 1; : : : ;m � 1); xn = y (n � m). It is clear that sequence (xn) is

strictly increasing on the set f1; : : : ;mg.

1�:1 Suppose that x < sup I; f(x) > x and Tx = ;. By the statements 3� and

4� of Theorem 1, we have f(t) > t (x � t 2 I), which implies the strict increase

of sequence (4) on its whole domain. If sup I = +1, sequence (4) is in�nite, as

can simply be established by induction, and the inequality u := lim
n!1

xn < +1

is not possible, because this inequality would imply, by (19), x < u = f(u � 0),

i.e. u 2 Tx. Therefore, in this case lim
n!1

xn = +1. If v := sup I < +1, the

supposition xn � v (n 2 N) would imply w := lim
n!1

xn � v and further, by (19)

again, x < w = f(w � 0), that is w 2 Tx. Consequently, in this case exists an

m 2 N such that m � 2, xn 2 I (n = 1; : : : ;m � 1) and xm 62 I, which means

that sequence (4) is de�ned on the set f1; : : : ;mg only and that it strictly increases

on this set.

2� Suppose that condition (2) is satis�ed and that condition (3) is not. In

this case, on account of f(t) � f(y � 0) = y (x � t < y), there exists u 2 [x; y)

such that f(t) = y (u < t < y). Denoting by v the in�mum of the set of all such
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numbers u, we have x � v < y, f(t) < y (t 2 J) and f(t) = y (t 2 [x; y) n J),
where J denotes the interval [x; v] or the interval [x; v) (this second interval being

empty if v = x), {depending on whether f(v) < y or f(v) = y. Then we cannot

have xn 2 J (n 2 N); for, this supposition would imply, in virtue of (16), the

strict increase of sequence (4) and further x < lim
n!1

xn � v < y, which, by (19),

is impossible. Therefore, there exists m := max(f1g
S
fk : k 2 N ^ xk 2 Jg).

Sequence (4) is obviously strictly increasing on the set f1; : : : ;mg. If J = ;, we
have m = 1, x1 < y, x2 = f(x1) = y, and when J 6= ;, then xm 2 J; xm <

f(xm) = xm+1 2 (x; y) n J; xm+1 < f(xm+1) = xm+2 = y = y1. Hence, if we put

p0 = 1 and in the �rst case p1 = 2 (= m+ 1), and in the second one p1 = m + 2,

it will be p1 > 1 = p0; xp1 = y1 and sequence (4) will increase strictly on the set

f1; : : : ; p1g. It is clear, further, that either one of conditions (7), (8) and (9), with

1 instead of `0, is satis�ed, or, with y1 instead of x, condition (2) is satis�ed and

condition (3) is not. In the case (7) and (8), obviously, the continuation of the

forming of sequence (y`) with demanded properties is not possible. In the case (9)

it is possible to make at most one step yet in this forming, because, if we put in this

case y2 = minTy1 , we will have by the result under 10, xn � y2 (n 2 N). In the

last of mentioned cases, however, we have y1 2 I; f(y1) > y1 and Ty1 6= ;; hence,
putting y2 = minTy1 , one concludes, on the basis of the above analysis concerning

the same situation with the point y0 = x instead of the point y1, that there exists

p2 > p1 such that y2 = xp2 and that sequence (xn) increases strictly on the set

fp1; : : : ; p2g.

-

6

y=x

xp0

y1=xp1

y2=xp2 u

I=R

x

y

-

6

y
y=x

x
xp0

y1=xp1

y2=xp2

y`=xp`

f

f

f

f

f

I=R

Fig. 1 Fig. 2

Continuing in this way, one can establish the correctness of all statements

in 2� concerning the existing possibilities. It is not di�cult to prove by exam-

ples that each of them can e�ectively take place. Namely, the examples respec-
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tively represented by �gures 1 and 2 prove e�ective realizability of both possibili-

ties in the case 2�:2:

[ A concrete aspect of the second example gives the function (see Figure 3) f(t) =

[t]+1 (t 2 R); in this case, we have, for each x 2 R; y` = [x]+ ` (` 2 N); p` =

`+ 1 (` 2N0) and consequently x` = xp`�1
= y`�1 = [x] + ` � 1 (` � 2), which

implies x` " +1 (`!1). ]

3� This statement is obvious.

4� The assertion formulated by the

�rst sentence coincides with the state-

ment (19). The assertion contained in the

second sentence is proved by the exam-

ple of the function cited at the end of the

proof of statement 2� of Theorem 1: in

this case, for u = 0 we have f(u� 0) = u

and �1 = inf I < u < sup I = +1, and

for any real x < u such that f(x) > x

sequence (4) converges (statement 1� of

-

6

y y = x

x
�1 0 1 2 3 4 I=R

Fig. 3

Theorem 2) to the nearest �xed point of f greater then x; this �xed point, however,

is less than u.

Proof of Theorem 2.1. All statements of this theorem follow from Theorem 2,

on account of the fact that when the function f is strictly increasing the condition

(2) cannot hold without the condition (3) (more precisely, (2) cannot hold if the

�rst part of disjunction (3) does not hold simuntanously), and consequently all

assertions concerning the case when (2) ^: (3) can be omitted.

All statements of Theorem 2:2:; excepting the last one, follow from Theorems

1 and 2, with regard to the remarks which precede the formulation of this theorem.

Its last statement is proved by the example of the function f : R! R de�ned by

f(t) = t� 1

4
sin 1 (t � �1); f(t) = t+ 1

4
t2 sin 1

t
(�1 < t < 0), f(t) = t (t � 0) :

number 0 is a �xed point of the mapping f and for each x < 0 we have minF+

x
< 0,

and therefore the corresponding sequence (4) cannot converge to 0.

3. TWO SUPPLEMENTARY REMARKS

3.1. The statement 3� of Theorem 1 can be formulated (interpreted) as follows: If

the function f : I ! R is increasing, then the function g(x) = f(x) � x(x 2 I) has

the following property (of a continous function): it cannot pass from a positive to

a negative value without taking all midvalues between corresponding points.
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Let us remark that the statement which di�ers from the previous one only by

the interchange of the words \positive" and \negative" does not hold.On the other

hand,it is easy to see that in this formulation the words \positive" and \negative"

can be changed by the words, \greater" and \smaller", respectively.

3.2. All assertions in the preceding text, excepting that in 3.1, refer exclusively

to the order structure of the system of real numbers, i.e. to the set Rordered by

the relation �, {directly or through the topology generated in the usual manner

by this order (which includes convergence of sequences and limits and continuity

of functions treated here). On the other hand, it is well known (see, for example,

[2] p.151, or [3] p.217) that: every totally ordered and dense set which is condi-

tionally complete (namely, in which each nonempty set bounded from above has

its supremum), unbounded from both sides and separable (i.e. with a denumerable

everywhere dense part){is isomorphic with the set Rordered by the relation �.
Therefore:

All theorems and other statements in this paper, excepting that in 3.1., hold

for every totally ordered, dense, conditionally complete, unbounded from both sides

and separabile set{provided that convergence of sequences and limit value and con-

tinuity of functions are de�ned in the topology generated by this order.

We remark that this conclusion is in no way a�ected by the fact that the

algebraic structure of the real number system was used in some details of the

given proofs (in constructions of examples and counterexamples for particular and

negative assertions).
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