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ON POSSIBLE COMMUTING GENERALIZED

INVERSES OF MATRICES

Jovan D. Ke�cki�c

Let M be the multiplicative semigroup of all complex square matrices of a �xed

order. In this note we show that if A 2 M, then the only possibile generalized

inverse of A which commutes with A is the Drazin inverse AD.

1. LetM be the set of all complex square matrices of a �xed order. For any A 2M

and any k 2 N the system of equations in X:

(1:1) Ak+1X = Ak; AX = XA; AX2 = X

can have at most one solution.

The index of a matrix A, IndA, is de�ned as the smallest positive integer such that
rankAIndA = rankA1+IndA.

The system (1:1) is consistent if and only if IndA � k. Its unique solution is called
the Drazin inverse of A and is denoted by AD.

If A is nilpotent, than AD = 0 and if A is regular than AD = A�1. If A is neither
nilpotent nor regular there exist regular matrices S, R and a nilpotent matrix N
such that A = S(N � R)S�1. Then AD = S(0 �R�1)S�1.

All this is well known; see, for instance [1].

If we treat M as the multiplicative semigroup, than any term made up from A and
X has the form

(1:2) Am1Xn1Am2Xn2 � � �AmpXnp (mi; ni 2 N0):

We say that the equation Am1Xn1Am2Xn2 � � �AmpXnp = Am
0
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is balanced if

m1+m2+� � �+mp � (n1+n2+� � �+np) = m0
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):

A balanced equation becomes an identity if A regular and if X = A�1.
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We say that system of equations in X:

(1:3) t1(A;X) = t01(A;X); : : : ; tr(A;X) = t0
r
(A;X);

where ti, t
0

i
are terms of the form (1:2) is balanced if each one of the equations

which appear in (1:3) is balanced.

The system (1:1) is balanced and for any A 2 M it cannot have more than one
solution. Furthermore, it is consistent not only for regular but also for some singular
matrices. Hence, it de�nes a generalized inverse of A.

If system (1:3) is balanced, if for any A 2M it cannot have more than one solution,
and if it is consistent for at least one singular matrix A, we say that it de�nes a
generalized inverse of A.

In this note we investigate those systems (1:3) which de�ne a generalized inverse
of A and which contain the equation AX = XA; in other words we look for all
possible commuting generalized inverses of A (in the multiplicative semigroup M ).

2. If AX = XA, then any multiplicative term made up from A and X has the
form AmXn, and a balanced equation must be of the form Am+pXn+p = AmXn.
This means that if a system is to de�ne a commuting generalized inverse, it must
have the form

(2:1) AX = XA; Am1+p1Xn1+p1 = Am1Xn1 ; : : : ; Amr+prXnr+pr = AmrXnr ;

where mi; ni 2N0; pi 2 N.

If mi > 0 or ni > 1 for all i 2 f1; : : : ; rg the system (2:1) can have more than
one solution. Indeed, if all mi > 0, than for A = 0 arbitrary X 2 M is a solution
of (2:1). If all ni > 1, than for A = 0 all matrices X such that Xn = 0 where
n = min ni, satisfy (2:1).

We therefore suppose that there exists i 2 f1; : : : ; rg such that mi = 0 and ni � 1,
i.e. such that mi = ni = 0 or mi = 0, ni = 1. Of course, we may take i = 1.

If m1 = n1 = 0 the system (2:1) becomes

(2:2) AX = XA; Ap1Xp1 = I; Ami+piXni+pi = AmiXni (i = 2; : : : ; r):

The equation Ap1Xp1 = I implies that the system (2:2) is inconsistent if A is
singular. Hence this system does not de�ne a generalized inverse of A.

We now consider the system

(2:3) AX = XA; ApXp+1 = X; Ami+piXni+pi = AmiXni (i = 2; : : : ; r):

obtained from (2:1) for m1 = 0, n1 = 1, p1 = p.
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We distinguish between three cases. Let A be nilpotent with An�1 6= 0, An = 0. If
n � p the unique solution of ApXp+1 = X is given by X = 0. If n > p, there exists
a positive integer q such that qp < n � (q + 1)p. We then have

ApXp+1 = X ) An�pApXp+1 = An�pX = 0;
ApXp+1 = X ) An�2pApXp+1 = An�2pX = 0;

...
ApXp+1 = X ) An�qpApXp+1 = An�qpX = 0;

and so we again get X = ApXp+1 = A(q+1)p�n(An�qpX)Xp = 0. Hence, if (2:3) is
consistent, it has unique solution: X = 0.

If A is regular, the sistem (2:3) becomes

(2:4) AX = XA; ApXp+1 = X; ApiXni+pi = Xni (i = 2; : : : ; r)

and unless ni = 0 for some i 2 f2; : : : ; rg, it has at least two solutions: X = 0 and
X = A�1.

Suppose that A is neither nilpotent nor regular. Then there exist regular matrices
S;R and a nilpotent matrix N such that A = S(N � R)S�1. Let

(2:5) X = S

 P U

V Q

S�1

where P and N , and Q and R are of the same order.

From the equation AX = XA we get NP = PN , NU = UR, RV = V N , RQ =
QR. However,

NU=UR) U =NUR�1=N (NUR�1)R�1=N2UR�2=N3UR�3= : : :=0;

since N is nilpotent, and similarly we get V = 0. Hence, X = S(P � Q)S�1 and
NP = PN , RQ = QR.

From the equation ApXp+1 = X we get NpP p+1 = P and RpQp+1 = Q. The �rst
of those two equations implies

P = NpP p+1 = NpPP p = Np(NpP p+1)P = N2pP 2p+1 = N3pP 3p+1 = : : : = 0;

since N is nilpotent.

Hence, (2:5) becomes X = S(0�Q)S�1 and for the matrix Q from (2:3) we obtain
the following system of equations

RpQp+1 = Q; RpiQni+pi = Qni (i = 2; : : : ; r)

and unless ni = 0 for some i 2 f2; : : : ; rg it has at least two solutions: Q = 0 and
Q = R�1.

3. Therefore, let m2 6= 0, n2 = 0. The system (2:3) becomes

(3:1) AX=XA; ApXp+1=X; Am2+p2Xp2 =Am2 ; Ami+piXni+pi=AmiXni

where i = 3; : : : ; r.
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If A is nilpotent, we know that ApXp+1 = X implies X = 0, and hence the system
(3:1), if consistent, has unique solution.

If A is regular, the third equation of (3:1) reduces to Ap2Xp2 = I, which means
that X is also regular and (3:1) becomes

(3:2) AX = XA; ApXp = I; ApiXpi = I (i = 2; : : : ; r)

Denote by (p1; p2; : : : ; pr) the highest common factor of p1; : : : ; pr. The system
(3:2) has unique solution if and only if (p; p2; : : : ; pr) = 1. Indeed, if (p�; p�) = 1
there exist positive integers u and v such that up� � vp� = 1. Hence,

AX = (AX)p�u�p�v = ((AX)p� )u((AX)p� )�v = I;

and so X = A�1. If (p; p2; : : : ; pr) > 1 the system (3:2) can have more than one
solution.

If A is neither nilpotent nor regular, let A = S(N � R)S�1, where S, N , R are as
before. Then, as we know X = S(0 � Q)S�1, where

(3:3) RQ = QR; RpQp+1 = Q; Rp2Qp2 = I; RpiQni+pi = Qni (i = 3; : : : ; r):

However, the equality Rp2Qp2 = I implies that Q is regular and the system (3:3)
reduces to

RQ = QR; RpQp = I; RpiQpi = I (i = 2; : : : ; r)

and it has unique solution Q = R�1 provided, as before, that (p; p2; : : : ; pr) = 1.

We have therefore proved the following

Theorem 1. The system (2:1) de�nes a generalized inverse of A if and only if:

(i) there exist i; j 2 f1; : : : ; rg, i 6= j, such that mi = 0, ni = 1, mj 6= 0, nj = 0;

(ii) (p1; : : : ; pr) = 1.

4. Consider now the system

(4:1)

(
AX = XA; ApXp+1 = X; Ami+piXpi = Ami (i = 1; : : : ; t)

Ami+piXni+pi = AmiXni (i = t+ 1; : : : ; r)

where m1; : : : ;mt � 1, nt+1; : : : ; nr � 1 p; p1; : : : ; pr � 1; and let

(4:2) IndA � min(m1; : : : ;mt):

If A is nilpotent and if (4:2) holds, then Ami = 0 for all i = 1; : : : ; t and a solution
of (4:1) is given by X = 0.
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If A is regular, then Ind A = 0, and (4:2) is true. A solution of (4:1) is given by
X = A�1.

If A = S(N � R)S�1, where N is nilpotent and S, R are regular the �rst two
equations of (4:1) imply X = S(0 �Q)S�1. From the remaining equations we get

(4:3) Nmi = 0 (i = 1; : : : ; t)

and
RpiQpi = I (i = 1; : : : ; r)

and (4:1) has a solution, e.g. X = S(0�R�1)S�1, if and only if the equalities (4:3)
hold.

Therefore, we have

Theorem 2. The system (4:1) is consistent if and only if (4:2) is true.

We have seen that if the system (4:1) is consistent and if it has unique solution,
this solution is given by X = AD. Hence, we have

Theorem 3. If (p1; : : : ; pr) = 1 the system (4:1) is equivalent to the system (1:1)
where k = min (m1; : : : ;mt).

From Theorems 1, 2 and 3 we conclude that in the multiplicative semigroup
M the Drazin inverse AD is the only possible generalized inverse which commutes
with A.
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