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ON POSSIBLE COMMUTING GENERALIZED
INVERSES OF MATRICES

Jovan D. Keékié

Let M be the multiplicative semigroup of all complex square matrices of a fixed
order. In this note we show that if A € M, then the only possibile generalized

inverse of A which commutes with A is the Drazin inverse A”.

1. Let M be the set of all complex square matrices of a fixed order. For any A € M
and any k& € N the system of equations in X:

(1.1) AFFIX = A% AX = XA, AX?=X
can have at most one solution.

The index of a matrix A, Ind A, is defined as the smallest positive integer such that
rank ATd4 — papnk Al+indA4,

The system (1.1) is consistent if and only if Ind A < k. Tts unique solution is called
the DRAZIN inverse of A and is denoted by AP.

If A is nilpotent, than A” = 0 and if A is regular than A”? = A=, If A is neither
nilpotent nor regular there exist regular matrices S, R and a nilpotent matrix N

such that A = S(N @ R)S™!. Then AP = S(0® R™1)S~ L
All this is well known; see, for instance [1].

If we treat M as the multiplicative semigroup, than any term made up from A and
X has the form

(1.2) AT XA X2 AT X (my ny € Ng).

We say that the equation A”1X71A™2X"2. .. A7 X 7P = ATLXMIAMEX S AT X
is balanced if

mi4ma- - my — (ningt- - Any) = mhFmy 4 my — (] Fnh4- 0.

A balanced equation becomes an identity if A regular and if X = A~!.

1991 Mathematics Subject Classification: 15A09

19



20 Jovan D. Keckié

We say that system of equations in X:
(1.3) (A, X) =t1(A,X),... (4, X) =1.(A, X),

where ¢;, t} are terms of the form (1.2) is balanced if each one of the equations
which appear in (1.3) is balanced.

The system (1.1) is balanced and for any A € M it cannot have more than one
solution. Furthermore, it is consistent not only for regular but also for some singular
matrices. Hence, it defines a generalized inverse of A.

If system (1.3) is balanced, if for any A € M it cannot have more than one solution,
and 1if it is consistent for at least one singular matrix A, we say that it defines a
generalized inverse of A.

In this note we investigate those systems (1.3) which define a generalized inverse
of A and which contain the equation AX = X A; in other words we look for all
possible commuting generalized inverses of A (in the multiplicative semigroup M ).

2. If AX = XA, then any multiplicative term made up from A and X has the

form A7 X", and a balanced equation must be of the form AP X"+tP = Am X7,
This means that if a system is to define a commuting generalized inverse, it must

have the form
(2.1) AX = XA, AMitpL ynitpr — Amrxmt AMrtpr xRrtpr — Amr X
where m;,n; € Ng, p; € N.

If miy > 0ormn; > 1forallie {1,...,7} the system (2.1) can have more than
one solution. Indeed, if all m; > 0, than for A = 0 arbitrary X € M is a solution
of (2.1). If all n; > 1, than for A = 0 all matrices X such that X™ = 0 where
n = min n;, satisfy (2.1).

We therefore suppose that there exists ¢ € {1,...,7} such that m; =0 and n; < 1,
1.e. such that m; = n; = 0 or m; = 0, n; = 1. Of course, we may take ¢ = 1.

If my = ny = 0 the system (2.1) becomes
(2.2) AX =XA, AnXPr =] AR NP — A X (i=2,...,r).

The equation APt XPt = [ implies that the system (2.2) is inconsistent if A is
singular. Hence this system does not define a generalized inverse of A.

We now consider the system
(2.3) AX = XA, APXPHL =X AT aXmtPi — AMiX™ (1=2,...7).

obtained from (2.1) for m;y =0, n1 =1, p1 = p.
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We distinguish between three cases. Let A be nilpotent with A~ #£ 0, A® = 0. If
n < p the unique solution of AP XP+! = X is given by X = 0. If n > p, there exists
a positive integer ¢ such that ¢p < n < (¢ + 1)p. We then have

APXPH = X = AP "PAPXPHL — APPX =),
APXPH = X = AP AP XPHL = AP X = (),

APXPHL = X = An-@0 AP XPHL = An-a X — (),

and so we again get X = AP XPT! = Alatlp—n(4n=a X)XP = (. Hence, if (2.3) is
consistent, it has unique solution: X = 0.

If A is regular, the sistem (2.3) becomes
(2.4) AX = XA, APXPHL = X APiX™i¥Pi = XM (1=2,...7)

and unless n; = 0 for some 7 € {2,...,r}, it has at least two solutions: X = 0 and

X =A""1.

Suppose that A is neither nilpotent nor regular. Then there exist regular matrices
S, R and a nilpotent matrix N such that A = S(N & R)S™!. Let

P U
vV Q
where P and N, and @ and R are of the same order.

From the equation AX = XA we get NP = PN, NU =UR, RV =VN, RQ =
@ R. However,

NU=UR=U=NUR'=N(NURHR '=N*UR?*=N*UR?=...=0,
since N is nilpotent, and similarly we get V' = 0. Hence, X = S(P & Q)S~! and
NP =PN, RQ =QR.

From the equation A? XP*! = X we get N? PPl = P and RPQPT! = . The first

of those two equations implies

P = NPPPtl — NPPPP = NP(NPPPTY P = N2 p2tl — N3P piptl —  — ()

(2.5) X=5 H St

since N is nilpotent.

Hence, (2.5) becomes X = S(04Q)S~! and for the matrix @ from (2.3) we obtain
the following system of equations

RPQMHY =@, RPQMTP=Q"  (i=2,...7)
and unless n; = 0 for some i € {2,...,r} it has at least two solutions: @ = 0 and
Q=R"1
3. Therefore, let my # 0, ng = 0. The system (2.3) becomes
(3.1) AX=XA, APXPTL=X =~ AM2tPaXPz— gAmz2  AMAPiXnitPi - gmi xn

where ¢ = 3,..., 7.
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If A is nilpotent, we know that AP XP*! = X implies X = 0, and hence the system
(3.1), if consistent, has unique solution.

If A is regular, the third equation of (3.1) reduces to AP2XP2 = J which means
that X is also regular and (3.1) becomes

(3.2) AX = XA, APXP =] AVXPi=] (i=2.. .7

Denote by (p1,p2,...,pr) the highest common factor of py,...,p,. The system
(3.2) has unique solution if and only if (p,p2,...,pr) = 1. Indeed, if (p,,p,) =1
there exist positive integers u and v such that up, — vp, = 1. Hence,

AX = (AX)H = (A (AX)) ™ = 1

and so X = A7L. If (p,pa,...,pr) > 1 the system (3.2) can have more than one
solution.

If A is neither nilpotent nor regular, let A = S(N & R)S™!, where S, N, R are as
before. Then, as we know X = S(0® Q)S™!, where

(33) RQ:QR, Rpr+1:Q, RPQQP2:I, Rp’Qn’+p’:Qn’ (i:3,...,7°).

However, the equality RP2QP2 = | implies that @ is regular and the system (3.3)
reduces to

RQ=QR, RPQ* =1, RPQV =1 (i=2,...,7)
and it has unique solution = R™! provided, as before, that (p, p2,...,pr) = 1.

We have therefore proved the following

Theorem 1. The system (2.1) defines a generalized inverse of A if and only if
(¢) there existi,j € {1,...,r}, 1 # j, such that m; =0, n; =1, m; #0, n; = 0;
(i) (p1,-..,pr) = 1.

4. Consider now the system

) AX = XA, APXPHL = X ATFPiXPi = AT (1=1,.. 1)
' Amitpi XnitPe = AMiXNe (G=t41,...,7)

where mqy,...,me > 1, ngqq, ..., > 1 pypr, ..o, pr > 1, and let
(4.2) Ind A < min(my, ..., mg).

If A is nilpotent and if (4.2) holds, then A™+ =0 for all i = 1,...,t and a solution
of (4.1) is given by X = 0.
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If A is regular, then Ind A = 0, and (4.2) is true. A solution of (4.1) is given by
X =A""

If A= S(N & R)S™!, where N is nilpotent and S, R are regular the first two
equations of (4.1) imply X = S(0 ¢ Q)S~!. From the remaining equations we get

(4.3) N™=0 (i=1,...1)
and
RQr =1 (i=1,...,r)
and (4.1) has a solution, e.g. X = S(0& R™1)S~! if and only if the equalities (4.3)
hold.
Therefore, we have

Theorem 2. The system (4.1) is consistent if and only if (4.2) is true.

We have seen that if the system (4.1) is consistent and if it has unique solution,
this solution is given by X = AP . Hence, we have

Theorem 3. If (p1,...,pr) = 1 the system (4.1) is equivalent to the system (1.1)
where k = min (my,...,my).

From Theorems 1, 2 and 3 we conclude that in the multiplicative semigroup
M the DRAZIN inverse AP is the only possible generalized inverse which commutes

with A.
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