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EXTENSIONS OF AN INEQUALITY

Murray S. Klamkin

We discuss several extensions of inequality (1).

The inequality
a b ¢ 1 1 1
1 e b e
(1) 3<b+c+a)_(a+ +C)<a+b+c)

holds for sides of a triangle since 1t can be rewritten in the form

i

(1) (b+c—a)(c—a)? + (c+a—>b)(a—0b)* + (a+b—c)(b—c)>>0.

Since the inequality cannot be extended to arbitrary non-negative numbers a, b, ¢,
I had proposed the problem (£2064) [1] of proving that a valid extension is

a b ¢ b a ¢ 1 1 1
(2) 3max{<3+2+5)’<5+2+z)}Z(a“’“) <E+E+Z)'

Actually, (2) can be strengthened to
b ¢ c

a b a 1 1 1
(3) 3<E+E+E+E+E+b)ZQ(a—I—b-I-C)(E-I-E-FE)

since 1t 1s equivalent to

) (oo ()¢ (5 )=

and which was noted by a number of solvers of the problem as well as muself.

One of the solvers CHRISTOPHER BRADLEY proved that (1) even holds when-
ever \/a, Vb, /¢ are sides of a triangle by employing equivalently the known triangle
inequality

(4) 2?4+ 4% 4 2% > 2yzcos A+ 2zx cos B 4 2xycos C,

where z, y, z are arbitrary real numbers and A, B, C are angles of a triangle. When
I had submitted the problem of inequality (2), T had forgotten the BRADLEY result
which is equivalent to

a? b2 c? 1 1 1
(5) 3<b—2+c—2+a—2)2(a2+b2+c2)<a—2+b—2+c—2)
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for a,b, ¢ being sides of a triangle was noted in a paper of mine [2] and had been
proposed previously by A. W. WALKER [3]. My proof was by showing (5) was
equivalent to

i

(5) 3(AQ?* + BQ? + CQ%) > (a* + b + %)

where €2 is a BROCARD point of triangle ABC'. Actually the latter is valid for any
point £ in the plane or out of the plane of ABC' and follows from the obvious
inequality

(tA+yB +:0)* >0,
where A, B, C are vectors from an arbitrary point P to the vertices A, B, C, respec-
tively, and z,y, z are arbitrary real numbers. Expanding out, the latter inequality
reduces to the known polar moment of inertia inequality

(6) (x+y+2)(xPA* + yPB? + 2PC?) > yza® + zab® + xyc?

(now just set & = y = z). There is equality in (51) (excluding degenerate triangles)
if and only if € coincides with the centroid and this only occurs if the triangle is
equilateral.

We now extend (2) by determining all triples a, b, ¢ of positive numbers such
that

. a b ¢ b a ¢ 1 1 1
(7) 3mm{<g+;+g),<g+z+g)}Z(a—l—b-l-c)(E-i-Z—l—z).

Since the inequality is homogeneous, we can assume without loss of genera-

lity that ¢ > b > ¢ =1 (here (% + é + 2) < (% + % + %)) Now letting,

b=1+4s5, a=14 s+ r where r,s > 0, (7) reduces after some algebra to
(7) (1 —s) +rs+s>+ s> >0.
Clearly if s < 1, the latter holds for all ». For s > 1, (71) will be valid only if

8) r < #(1%/452—3)
- 2(s=1)
which is gotten by solving the quadratic in r. As an example, setting s = 2, r <
14++13,soif weset c=1, b =3, and a = 4+ /13, we get equality in (7).
Using (8) we can obtain another proof that (7) is valid if /a, Vb, \/c are

sides of a triangle. The extreme case here is if the sides are 1, t* and (t + 1)?,
so that 1 +s = t*(> 2) and 1 + s+ = (¢ + 1)%. Since this requires that » =

(1 + s+ 1)2 — s — 1, 1t suffices to show that

(1+ Vs+1) —s—lgﬁ (14 Vas2=3) .

On replacing s by t? — 1 and squaring we obtain
t* = 2)(t* =3t —1)> >0
and there is equality if £ is the positive root ¢, of the cubic and is ~ 1.879389017.
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In the solution of problem 2064 [1], BILL SANDSs (University of Calgary) had
raised the following two interesting open problems:
(9)  Find the largest ¢ so that

G- (2 D) e (S Y s Lo (La byl
_ a4z 2424z Z(a Al 42
a b ¢ b b a) 3 a b ¢
(here as before a > b > ¢ > 0);
(10) find the smallest ¢ so that (7) holds whenever a’, b’ cf, are the sides of a
triangle (or equivalently the largest n such that
3<a” b” c”) a” + b 4 "

- P - >—
b”+c”+a” =1 1 1’

where a, b, ¢ are sides of a triangle).
For (9), we show that ¢ must be at most 2/3 and to prove this we proceed as
before by letting c = 1,6 =14 s,a = 1+ r + s so that (9) becomes

2r%s + 3rs? + 57 4+ 57 4 rs 412 > 3t (rs? 4 rls).

2

Since by a proper choice of r and s, r°s can be the dominant term, ¢ is at most

2/3.
For (10), we show the smallest ¢ is 1/2 or equivalently the largest n is 2.
Before we showed that if 1+ s =¢,2, then

(11) (1+\/3+1)2—5—1:ﬁ(1—1—\/452—3).

Nowlet c=1,b=2"=1+s=1t2 a=(x+1)" =1+s+7r for n > 2, so that
r’:(l—i—(l—l—s)l/") —s—1

and which by a previous analysis must be < the right hand side of (11). But since
r is an increasing function of n for s > 1 (just consider the derivative with respect
to n), it will be greater than the left hand side of (11).

Left open is more general problem of determining conditions on {z;} with
1> x3 > ... > &, > 0 such that

(12) n<ﬂ+2—|—~~—|— x_”) > (l‘1+l‘2—|—~~~—|—l‘n) <i+i++i)
L2 T3 L1 L1 L2 Tn

Note that requiring here that the z;’s are sides of a polygon is not sufficint. As

an example, for n = 4, take (z1, 2, #3,24) = (4,3,2,1). However, (vV/4,v/3,/2,1)

and (\/g, 1,1,1) are valid sets and these are such that the squares are sides of a

quadrilateral.
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