Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. 9 (1998), 15-18

EXTENSIONS OF AN INEQUALITY

Murray S. Klamkin

We discuss several extensions of inequality (1).
The inequality

$$
\begin{equation*}
3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \geq(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{1}
\end{equation*}
$$

holds for sides of a triangle since it can be rewritten in the form

$$
(b+c-a)(c-a)^{2}+(c+a-b)(a-b)^{2}+(a+b-c)(b-c)^{2} \geq 0
$$

Since the inequality cannot be extended to arbitrary non-negative numbers a, b, c, I had proposed the problem $(\sharp 2064)$ [$\mathbf{1}]$ of proving that a valid extension is

$$
\begin{equation*}
3 \max \left\{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right),\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\right\} \geq(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{2}
\end{equation*}
$$

Actually, (2) can be strengthened to

$$
\begin{equation*}
3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right) \geq 2(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{3}
\end{equation*}
$$

since it is equivalent to

$$
\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right) \geq 6
$$

and which was noted by a number of solvers of the problem as well as muself.
One of the solvers Christopher Bradley proved that (1) even holds whenever $\sqrt{a}, \sqrt{b}, \sqrt{c}$ are sides of a triangle by employing equivalently the known triangle inequality

$$
\begin{equation*}
x^{2}+y^{2}+z^{2} \geq 2 y z \cos A+2 z x \cos B+2 x y \cos C \tag{4}
\end{equation*}
$$

where x, y, z are arbitrary real numbers and A, B, C are angles of a triangle. When I had submitted the problem of inequality (2), I had forgotten the Bradley result which is equivalent to

$$
\begin{equation*}
3\left(\frac{a^{2}}{b^{2}}+\frac{b^{2}}{c^{2}}+\frac{c^{2}}{a^{2}}\right) \geq\left(a^{2}+b^{2}+c^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right) \tag{5}
\end{equation*}
$$

1991 Mathematics Subject Classification: 26D07, 51M16
for a, b, c being sides of a triangle was noted in a paper of mine [2] and had been proposed previously by A. W. Walker [3]. My proof was by showing (5) was equivalent to

$$
3\left(A \Omega^{2}+B \Omega^{2}+C \Omega^{2}\right) \geq\left(a^{2}+b^{2}+c^{2}\right)
$$

where Ω is a Brocard point of triangle $A B C$. Actually the latter is valid for any point Ω in the plane or out of the plane of $A B C$ and follows from the obvious inequality

$$
(x \boldsymbol{A}+y \boldsymbol{B}+z \boldsymbol{C})^{2} \geq 0
$$

where $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are vectors from an arbitrary point P to the vertices A, B, C, respectively, and x, y, z are arbitrary real numbers. Expanding out, the latter inequality reduces to the known polar moment of inertia inequality

$$
\begin{equation*}
(x+y+z)\left(x P A^{2}+y P B^{2}+z P C^{2}\right) \geq y z a^{2}+z x b^{2}+x y c^{2} \tag{6}
\end{equation*}
$$

(now just set $x=y=z$). There is equality in (5^{\prime}) (excluding degenerate triangles) if and only if Ω coincides with the centroid and this only occurs if the triangle is equilateral.

We now extend (2) by determining all triples a, b, c of positive numbers such that

$$
\begin{equation*}
3 \min \left\{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right),\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\right\} \geq(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{7}
\end{equation*}
$$

Since the inequality is homogeneous, we can assume without loss of generality that $a \geq b \geq c=1 \quad\left(\right.$ here $\left.\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \leq\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\right)$. Now letting, $b=1+s, a=1+s+r$ where $r, s \geq 0,(7)$ reduces after some algebra to

$$
r^{2}(1-s)+r s+s^{2}+s^{3} \geq 0
$$

Clearly if $s \leq 1$, the latter holds for all r. For $s>1$, $\left(7^{\prime}\right)$ will be valid only if

$$
\begin{equation*}
r \leq \frac{s}{2(s-1)}\left(1+\sqrt{4 s^{2}-3}\right) \tag{8}
\end{equation*}
$$

which is gotten by solving the quadratic in r. As an example, setting $s=2, \quad r \leq$ $1+\sqrt{13}$, so if we set $c=1, b=3$, and $a=4+\sqrt{13}$, we get equality in (7).

Using (8) we can obtain another proof that (7) is valid if $\sqrt{a}, \sqrt{b}, \sqrt{c}$ are sides of a triangle. The extreme case here is if the sides are $1, t^{2}$ and $(t+1)^{2}$, so that $1+s=t^{2}(>2)$ and $1+s+r=(t+1)^{2}$. Since this requires that $r=$ $(1+\sqrt{s+1})^{2}-s-1$, it suffices to show that

$$
(1+\sqrt{s+1})^{2}-s-1 \leq \frac{s}{2(s-1)}\left(1+\sqrt{4 s^{2}-3}\right) .
$$

On replacing s by $t^{2}-1$ and squaring we obtain

$$
\left(t^{2}-2\right)\left(t^{3}-3 t-1\right)^{2} \geq 0
$$

and there is equality if t is the positive root t_{r} of the cubic and is ~ 1.879389017.

In the solution of problem 2064 [1], Bill Sands (University of Calgary) had raised the following two interesting open problems:
(9) Find the largest t so that

$$
(1-t)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)+t\left(\frac{a}{b}+\frac{b}{b}+\frac{c}{a}\right) \geq \frac{1}{3}(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

(here as before $a \geq b \geq c>0$);
(10) find the smallest t so that (7) holds whenever a^{t}, b^{t}, c^{t}, are the sides of a triangle (or equivalently the largest n such that

$$
3\left(\frac{a^{n}}{b^{n}}+\frac{b^{n}}{c^{n}}+\frac{c^{n}}{a^{n}}\right) \geq \frac{a^{n}+b^{n}+c^{n}}{\frac{1}{a^{n}}+\frac{1}{b^{n}}+\frac{1}{c^{n}}},
$$

where a, b, c are sides of a triangle).
For (9), we show that t must be at most $2 / 3$ and to prove this we proceed as before by letting $c=1, b=1+s, a=1+r+s$ so that (9) becomes

$$
2 r^{2} s+3 r s^{2}+s^{3}+s^{2}+r s+r^{2} \geq 3 t\left(r s^{2}+r^{2} s\right)
$$

Since by a proper choice of r and $s, r^{2} s$ can be the dominant term, t is at most $2 / 3$.

For (10), we show the smallest t is $1 / 2$ or equivalently the largest n is 2 . Before we showed that if $1+s=t_{r}{ }^{2}$, then

$$
\begin{equation*}
(1+\sqrt{s+1})^{2}-s-1=\frac{s}{2(s-1)}\left(1+\sqrt{4 s^{2}-3}\right) \tag{11}
\end{equation*}
$$

Now let $c=1, b=x^{n}=1+s=t_{r}{ }^{2}, a=(x+1)^{n}=1+s+r^{\prime}$ for $n>2$, so that

$$
r^{\prime}=\left(1+(1+s)^{1 / n}\right)^{n}-s-1
$$

and which by a previous analysis must be \leq the right hand side of (11). But since r^{\prime} is an increasing function of n for $s>1$ (just consider the derivative with respect to n), it will be greater than the left hand side of (11).

Left open is more general problem of determining conditions on $\left\{x_{i}\right\}$ with $x_{1} \geq x_{2} \geq \ldots \geq x_{n}>0$ such that

$$
\begin{equation*}
n\left(\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{3}}+\cdots+\frac{x_{n}}{x_{1}}\right) \geq\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) \tag{12}
\end{equation*}
$$

Note that requiring here that the x_{i} 's are sides of a polygon is not sufficint. As an example, for $n=4$, take $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(4,3,2,1)$. However, $(\sqrt{4}, \sqrt{3}, \sqrt{2}, 1)$ and $(\sqrt{3}, 1,1,1)$ are valid sets and these are such that the squares are sides of a quadrilateral.

REFERENCES

1. Crux Mathematicorum, (1996).
2. M. S. Klamkin: Asymmetric triangle inequalities, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., №357-№380 (1971), 33-44.
3. A. W. Walker: Problem 774, Math. Mag. 43 (1970), 226.

Department of Math.Sci.,
(Received August 23, 1996)
Faculty of Science,
University of Alberta,
Edmonton, Alberta,
Canada T6G 2G1

