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EXTENSIONS OF AN INEQUALITY

Murray S. Klamkin

We discuss several extensions of inequality (1).

The inequality
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holds for sides of a triangle since it can be rewritten in the form

(1
0

) (b+ c� a)(c� a)2 + (c+ a� b)(a� b)2 + (a+ b� c)(b� c)2 � 0:

Since the inequality cannot be extended to arbitrary non-negative numbers a; b; c;
I had proposed the problem (]2064) [1] of proving that a valid extension is
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Actually, (2) can be strengthened to
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since it is equivalent to
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and which was noted by a number of solvers of the problem as well as muself.

One of the solvers Christopher Bradley proved that (1) even holds when-
ever

p
a,
p
b,
p
c are sides of a triangle by employing equivalently the known triangle

inequality

(4) x2 + y2 + z2 � 2yz cosA+ 2zx cosB + 2xy cosC;

where x; y; z are arbitrary real numbers and A;B;C are angles of a triangle. When
I had submitted the problem of inequality (2), I had forgotten the Bradley result
which is equivalent to
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for a; b; c being sides of a triangle was noted in a paper of mine [2] and had been
proposed previously by A. W. Walker [3]. My proof was by showing (5) was
equivalent to

(5
0

) 3(A
2 +B
2 +C
2) � (a2 + b2 + c2)

where 
 is a Brocard point of triangle ABC. Actually the latter is valid for any
point 
 in the plane or out of the plane of ABC and follows from the obvious
inequality

(xA+ yB + zC)2 � 0;

where A;B;C are vectors from an arbitrary point P to the vertices A;B;C; respec-
tively, and x; y; z are arbitrary real numbers. Expanding out, the latter inequality
reduces to the known polar moment of inertia inequality

(6) (x+ y + z)(xPA2 + yPB2 + zPC2) � yza2 + zxb2 + xyc2

(now just set x = y = z). There is equality in (5
0

) (excluding degenerate triangles)
if and only if 
 coincides with the centroid and this only occurs if the triangle is
equilateral.

We now extend (2) by determining all triples a; b; c of positive numbers such
that
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Since the inequality is homogeneous, we can assume without loss of genera-

lity that a � b � c = 1
�
here
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. Now letting,

b = 1 + s; a = 1 + s+ r where r; s � 0; (7) reduces after some algebra to

(7
0

) r2(1� s) + rs + s2 + s3 � 0:

Clearly if s � 1; the latter holds for all r: For s > 1; (7
0

) will be valid only if

(8) r � s
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which is gotten by solving the quadratic in r. As an example, setting s = 2; r �
1 +

p
13, so if we set c = 1; b = 3; and a = 4 +

p
13, we get equality in (7).

Using (8) we can obtain another proof that (7) is valid if
p
a;
p
b;
p
c are

sides of a triangle. The extreme case here is if the sides are 1; t2 and (t + 1)2,
so that 1 + s = t2(> 2) and 1 + s + r = (t + 1)2. Since this requires that r =�
1 +

p
s + 1

�2 � s � 1, it su�ces to show that
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On replacing s by t2 � 1 and squaring we obtain

(t2 � 2)(t3 � 3t� 1)2 � 0

and there is equality if t is the positive root tr of the cubic and is � 1:879389017.



Extensions of an inequality 17

In the solution of problem 2064 [1], Bill Sands (University of Calgary) had
raised the following two interesting open problems:

(9) Find the largest t so that
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(here as before a � b � c > 0);

(10) �nd the smallest t so that (7) holds whenever at; bt; ct; are the sides of a
triangle (or equivalently the largest n such that
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where a; b; c are sides of a triangle).

For (9), we show that t must be at most 2=3 and to prove this we proceed as
before by letting c = 1; b = 1 + s; a = 1 + r + s so that (9) becomes

2r2s+ 3rs2 + s3 + s2 + rs+ r2 � 3t (rs2 + r2s):

Since by a proper choice of r and s; r2s can be the dominant term, t is at most
2=3:

For (10), we show the smallest t is 1=2 or equivalently the largest n is 2.
Before we showed that if 1 + s = t 2r ; then
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Now let c = 1; b = xn = 1 + s = t 2r ; a = (x+ 1)n = 1 + s + r0 for n > 2, so that

r0 =
�
1 + (1 + s)1=n

�n
� s � 1

and which by a previous analysis must be � the right hand side of (11). But since
r

0

is an increasing function of n for s > 1 (just consider the derivative with respect
to n), it will be greater than the left hand side of (11).

Left open is more general problem of determining conditions on fxig with
x1 � x2 � : : : � xn > 0 such that
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Note that requiring here that the xi's are sides of a polygon is not su�cint. As
an example, for n = 4; take (x1; x2; x3; x4) = (4; 3; 2; 1). However, (

p
4;
p
3;
p
2; 1)

and (
p
3; 1; 1; 1) are valid sets and these are such that the squares are sides of a

quadrilateral.
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