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A QUALITATIVE STUDY ABOUT
LOBACHEVSKY’S FUNCTIONAL
EQUATION OF VECTORIAL ARGUMENT

Nicolae Neamiu

The purpose of this paper is to give some properties of the solutions of
Lobachevsky’s functional equation in the case: f : E” — R, E"-Euclidean n-
dimensional real space and to establish the connections of this equation with

some other functional equations in the same case.

1. Let E™ be a Euclidean real n-dimensional space in which we have
e= (160 ), y=h 0t ) ER k=1, .. n;
x,y are two vectors of E"
Ogn = (0,0,...,0), z=y & & =nfork=1,...n,

ety=(E 4018407 "), de = (A NP
for all x,y € E", A € R,

n
(x,y) = > & is the scalar product of vectors x,y € E™,
k=1

d(z,y) =, /kz_:l (€% — *)2 is the Euclidean distance between =,y € E™,

[|lz]| = v/{z,z) = />  (£¥)? is the Euclidean norm of vector € E™.
k=1

BS. =[e1,ea,...,e,] is the orthonormal basis of E", where ¢; = (1,0,0,

...,0,0),e2 =(0,1,0,...,0,0), ..., e, = (0,0,0,...,0,1) are unit vectors;

[{z, )| <|lz]|]|y]| is CAUCHY—SCHWARZ—BUNIAKOWSKY inequality,

B(a;r) = {x € E™|d(x,a) < r} is open sphere (globe).
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2. Let f be a function
FAE" SR z= (6. ,8") = fla) = f(e1,€7, .. €.

The functional equation

2
Etnt E4? €”+77”)

(1) f(€1a€2a~~~a€n)'f(ﬁlaﬁza~~~a77n):f< 9 ’ 9 [ 9

or shortly,

(1) s = £ (25Y)

for all ,y € E™, is an extension of LOBACHEVSKY’s functional equation [1] in the
case z,y € R. We highlight some properties of the solution f of functional equation
(1) which are analogous to the one dimensional case [3].

Lemma 1. Let f be a solution of (1). If there exists g € E™ so that f(xg) = 0,
then f(x) =0, for all € E™ and if f(Og~) # 0, then

(2) sgn f(x) = sgn f(0gn),

for all x € E™.

Proof. From (1) we obtain f(xq)f(22 — o) = f(2)?; i.e. f(z) =0, for all x € E™.
If f(Ogn) # 0, then f(Og«)f(z) = f(x/2)? > 0 which implies (2).

Lemma 2. Let f, f(0g~) # 0 be a solution of (1). The function f is continuous
wm E™ if and only if f is continuous in Ogn.

Proof. The implication = is obvious. The implication <= results in the following
way: from (1) and Lemma 1 we have

(3) f(@) = fzo) =

f(—l‘o)

Because f is continuous in O« it results that f? is continuous in Og« and from (3)
we obtain that f is continuous for all x € E”.

Lemma 3. Let f, f(O0g=) # 0 be a solution of (1). If f is bounded in B(Og=;r) C

E™, then f is continuous in E™.
Proof. We consider the case f(Og=) > 0. From (1) we successively obtain

X

F(5) =20 1 () =1 () 500 2= 1) 0



A qualitative study about Lobachevsky’s functional equation ... 9

and by induction
i 1/2" 1-1/2™
(4) 7 (35) = 1@ f(0pn) =2

Because f is bounded in B(Og»;r), we have for all

veBl0gnir) & llol]= [ L€ <r = f@) < M)

and lim — = Og= for all € B(0g~;r). Indeed, d (i,OEn)<77<:> M< -

on’

<7
or 2" > z, i.e. exists N(n) = log? r + 1 so that for n > N(n) = d( OEn) <,
n n

for all x € B(0g~;r) with /2" < 5. On the other side, we have

A(7 (& £08)) = |£ () = £O2)| < |F@) 4 F080) =" = F00)
:f(OE")‘< F(x) )1/2 N

< f(0E~)

M1/2"—1‘.
f(Ogr)

Because lim M/?" = 1for alle > 0, exits N(g) so that for d (;, OEn) <7,
n—r 00 n
€ x
_f e o lim (—) = f(0gn) &
705 im o f0p+) & f
z € B(0gn;r)

is continuous in Og». By Lemma 2. f is continuous in E™. The case f(Og) < 0 is
analogous. By induction we have

6) 7(55) = ~F@ O 17 1F0p =

n > N(e) we have |[M'/?" —1| <

Passing to limit in (5), we have lim f (2%) = f(0g~), i.e. fis contin-
n — o0
z € B(Ogn;r)
uous in Og» and by Lemma 2. f is continuous in E™.

Proposition 1. Let f: E" = R, f(0g=) # 0 be a solution of (1). If [ is bounded
in B(Ogn;7), then f is differentiable at Og~ and

Of (o HOm) | S
(6) ger 0) = = gp > log 1k_1,..., ,
z) = Bel®®) g = Er), 0 = ——— - En
™) it ; gel féO )a=fgry - 08
(8) %(r): f{ézi)%(om), for all z € B,
ololy _ (S N oy
O Gy = (opy) @ e

where x € B, a, e N (k=1,...,n), a = (a1,...,ap), |o| = a1+ ...+ oy €N,
e, feCpn.
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Proof.

af . fltex) — f(Ogn
ger (Ve) = lim, o t el
t#£0

(10)

is the derivative of f at Og~ along the unit vector e;. Taking into account Lemma

3, (4) and
IGIT AN

we obtaln

f(Eer)
f(0pn)

= log

k
¢ )_ ! (2_”%)_1
F(See) =108 T )
fk/Q” gk 1/2n ) o
¢ f(ete >)”2 B
/ (2) T2 1o, (f(OEn) !
gk E’k 1
T 2

if €k £ 0, f(0gn) >0

gk
. " S(Ogr f(€ aof
w i = ) tog (L8] = 2L (0,
0
where k = 1,...,n. From (6) we have
1 of
s = 0mm o (7 (¢ 7000201 ) )

flx) = (Z {kek) = f(Ogn)exp (f(OlEn) Z ¢k ggi (0 )) — el

i.e. (7). The differential df(0g=) Z 35’“ (0pn)dé® exists because the partial

derivatives g?j; (0g«) are continuous (see (6)), ¥ # 0 and f(€¥ey) is continuous by
f(z)

f(0gn)

flz +tes) = f(2) 1 flter/2) — f(Opn)

t = 7oy (Ften/2) 4 1(0m) ) ZHE 22

Lemma 3, > 0. The case f(0g~) < 0 is analogoues. For (8)—(9) we have
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 fatte) = f@)  fOs) OF . f@)Of
My 1 = i) aer 0Bn) = gy ger (0en)s L (8)
t#0
of . . . . .
and W (z), k =1,...,n are continuous. By induction successively using
9 f@) o

we obtain (9).

The following results are almost evident.

3. Lemma 4. If f: E" - R, f(0g~) # 0 is a solution of (1), then

(13) g=yg(x) = f{()(zi) B 5 R

is a solution for CAUCHY s multiplicative functional equation [1]

(14) glx +y) =g(x) gy

for all x,y € E™ and conversely, if g : E™ = R is a solution of (14), then

(15) f(&) = By(x), B = F(0r) #0

is a solution of (1).

Proposition 2. By the same assumptions as in Proposition 1. the solution of (14)
15

(16) g(x) — 0T — e(a,x) — ea1§1+a2§2+~..+an§n

Lemma 5. If f : E" =5 R, f(0g=) # 0 is a solution of (11), then

f(z)
f(0E~)

is a solution for CAUCHY s additive functional equation [1]

(17) h = h(z) = log BT S R
(18) h(z +y) = h(x) + h(y)
for all &,y € E™ and conversely, if h : E™ — R is a solution of (18), then

(19) fz) = 8™ B = f(0pa) #0

is a solution of (1).
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Proposition 3. By the same assumptions as in Proposition 1, the solution of (18)
15

(20) hz) =ax={a,z)= kz: o ek,

Lemma 6. If f : E" > R, f(0g=) > 0 is a solution of (1), then
(21) ¢ =p(x)=log f(z): E" = R

is a solulion for JENSEN’s functional equation [1]

(22) o () = 5 )+ o)
and conversely, if p(x) is a solution of (22), then

(29) o) = )

is a solution of (1).

Proposition 4. If f : E" = R, f(0g=) > 0 is bounded in B(Og=;r), then the
solution of (22) is

n

(24)  ple)=ar+y=(a,2)+y= 3 o"¢" +7, v =log f(0p~) = log §.
k=1

Lemma 7. If f : E" > R, f(0g=) # 0 is a solution of (1), then

verify

(26) 9(0gn) =1, h(0g») =0, g(—2) = g(x), h(—x) = —h(x),
(27) g(x)* = h(z)* =1,

(28) () + h(z)* = g(22),

(29) 2h(x)g(x) = h(2),

(30) g(x +y) = g(x)g(y) + h(x)h(y),
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(31) h(z +y) = h(z)g(y) + h(y)g(z),
(32) 29(2)” = 1+ g(22), 2h(x)” = g(22) — 1,

(33)  g(z+y) +g(x—y) =29(x)g9(y), 9(x +y) —g(x —y) = 2h(x)h(y)
and conversely, if (g(x), h(y)) is a solution of (30) — (31), then

(34) fla) =B (g(x) + h(z)), 8= f(0p-)

is a solution of (1).

Proof. From (1) and (25) results (26)-(29). For (30)-(31), we have

x—i—yz x—i—yz
(5 )+f(— )

oEn

(35) - ,
f 2
2( ( ) 1—2g x“’ —1

glr+y) =

oEn

_|_

(36) g(x)g(y) + = 2g

which imply (30). On the other side, from (31) we obtain

(37) h(z +y) = 2g (x—;y)h<x;y)
and
(38) 9(@)h(y) + g(y)h(x) = 29 ( : y) h ( 3 y)

whence it results (31). The relations (32)—(33) are consequences of previous rela-
tions. Conversely, from (34), we obtain

F@)f(y) = f(0p)*(g(x) + h(x)) - (9(v) + h(y)) = F(0-)*(9(z + y) + h(z + v)),
(39) (@) f(y) = F(Op=)f(z +y)
From (26) and (31) results

(40) g(x —y) = g(x)g(y) — h(z)h(y)
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Now to demonstrate

(1) / (x;y)z = F(05)f (@ + )

Using (34) and (35), (37), (27), we obtain

f (x;y)z = f(0gn)? (g (gcQﬂ) +h (x;y))z

F(0gn)? (g(x +y) +h(z+ y)) = f(0p)f(z +y).

From (39) and (41) we have (1).

Proposition 5. Let f, f(Og~) = 1 be a solution of (1). If f is bounded in
B(0gn;r), then the functions

g:g(m):%:chdd;:Ch(ZOxk&k),
(12) S
h:h(a:):%:shax:sh(iakﬁk) E" 5 R,
k=1

verify relations (26) — (33).
The proof results from Lemma 7 and Proposition 1.

4. Acknowledgements. I would like to express my gratitude to Prof. Dr. B.
CRrsTicI for his competent guidance.

REFERENCES

1. J. AczEL: Lectures On Functional Equations And Their Applications, Academic
Press, 1966.

2. G. M. FiHTENHOLT: Curs de calcul diferential si integral, vol. I, Editura
Tehnica, Bucuresti 1964, 249-250.

3. N. NEAMTU: A Qualitative Study About LOBACHEVSKY s Functional Equation,
Buletinul Stiintific al Universitatii Tehnice din Timigoara, Tom 38 (53) (1994),
Matematica-Fizica, 26-35.

Catedra de Matematici Nr. 1, (Received June 10, 1996)
Universitatea ”Politehnica”, (Revised September 26, 1996)
Piata Horatiu Nr. 1,

1900 Timigoara,

Romania



