Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (1998), 7-14.

## A QUALITATIVE STUDY ABOUT LOBACHEVSKY'S FUNCTIONAL EQUATION OF VECTORIAL ARGUMENT

## Nicolae Neamtu

The purpose of this paper is to give some properties of the solutions of Lobachevsky's functional equation in the case:  $f:E^n\to\mathbb{R},\ E^n$ -Euclidean n-dimensional real space and to establish the connections of this equation with some other functional equations in the same case.

1. Let  $E^n$  be a Euclidean real n-dimensional space in which we have

$$x = (\xi^1, \xi^2, \dots, \xi^n), y = (\eta^1, \eta^2, \dots, \eta^n); \xi^k, \eta^k \in \mathbf{R}, k = 1, \dots, n;$$

x, y are two vectors of  $E^n$ 

$$0_{E^n} = (0, 0, \dots, 0), \quad x = y \Leftrightarrow \xi^k = \eta^k \text{ for } k = 1, \dots, n,$$
  
$$x + y = (\xi^1 + \eta^1, \xi^2 + \eta^2, \dots, \xi^n + \eta^n), \ \lambda x = (\lambda \xi^1, \lambda \xi^2, \dots, \lambda \xi^n)$$
  
for all  $x, y \in E^n, \lambda \in \mathbf{R}$ ,

$$\langle x,y\rangle = \sum_{k=1}^n \xi^k \eta^k$$
 is the scalar product of vectors  $x,y \in E^n$ ,

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (\xi^k - \eta^k)^2}$$
 is the Euclidean distance between  $x, y \in E^n$ ,

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^{n} (\xi^k)^2}$$
 is the Euclidean norm of vector  $x \in E^n$ .

$$B_{E^n}^C = [e_1, e_2, \dots, e_n]$$
 is the orthonormal basis of  $E^n$ , where  $e_1 = (1, 0, 0, \dots, 0, 0)$ ,  $e_2 = (0, 1, 0, \dots, 0, 0)$ , ...,  $e_n = (0, 0, 0, \dots, 0, 1)$  are unit vectors;  $|\langle x, y \rangle| < ||x|| ||y||$  is CAUCHY-SCHWARZ-BUNIAKOWSKY inequality,

$$B(a;r) = \{x \in E^n | d(x,a) < r\}$$
 is open sphere (globe).

**2.** Let f be a function

$$f: E^n \to \mathbf{R}, \ x = (\xi^1, \xi^2, \dots, \xi^n) \to f(x) = f(\xi^1, \xi^2, \dots, \xi^n)$$

The functional equation

(1) 
$$f(\xi^1, \xi^2, \dots, \xi^n) \cdot f(\eta^1, \eta^2, \dots, \eta^n) = f\left(\frac{\xi^1 + \eta^1}{2}, \frac{\xi^2 + \eta^2}{2}, \dots, \frac{\xi^n + \eta^n}{2}\right)^2$$

or shortly,

(1') 
$$f(x) \cdot f(y) = f\left(\frac{x+y}{2}\right)^2,$$

for all  $x, y \in E^n$ , is an extension of LOBACHEVSKY's functional equation [1] in the case  $x, y \in \mathbf{R}$ . We highlight some properties of the solution f of functional equation (1) which are analogous to the one dimensional case [3].

**Lemma 1.** Let f be a solution of (1). If there exists  $x_0 \in E^n$  so that  $f(x_0) = 0$ , then f(x) = 0, for all  $x \in E^n$  and if  $f(0_{E^n}) \neq 0$ , then

(2) 
$$\operatorname{sgn} f(x) = \operatorname{sgn} f(0_{E^n}),$$

for all  $x \in E^n$ .

**Proof.** From (1) we obtain  $f(x_0)f(2x-x_0) = f(x)^2$ ; i.e. f(x) = 0, for all  $x \in E^n$ . If  $f(0_{E^n}) \neq 0$ , then  $f(0_{E^n})f(x) = f(x/2)^2 > 0$  which implies (2).

**Lemma 2.** Let f,  $f(0_{E^n}) \neq 0$  be a solution of (1). The function f is continuous in  $E^n$  if and only if f is continuous in  $0_{E^n}$ .

**Proof.** The implication  $\Rightarrow$  is obvious. The implication  $\Leftarrow$  results in the following way: from (1) and Lemma 1 we have

(3) 
$$f(x) - f(x_0) = \frac{f\left(\frac{x - x_0}{2}\right)^2 - f(0)^2}{f(-x_0)}.$$

Because f is continuous in  $0_{E^n}$  it results that  $f^2$  is continuous in  $0_{E^n}$  and from (3) we obtain that f is continuous for all  $x \in E^n$ .

**Lemma 3.** Let f,  $f(0_{E^n}) \neq 0$  be a solution of (1). If f is bounded in  $B(0_{E^n}; r) \subset E^n$ , then f is continuous in  $E^n$ .

**Proof.** We consider the case  $f(0_{E^n}) > 0$ . From (1) we successively obtain

$$f\left(\frac{x}{2}\right) = f(x)^{1/2} f(0_{E^n})^{1/2}, \quad f\left(\frac{x}{2^2}\right) = f\left(\frac{x}{2}\right)^{1/2} f(0_{E^n})^{1/2} = f(x)^{1/2^2} f(0_{E^n})^{1-1/2^2}$$

and by induction

(4) 
$$f\left(\frac{x}{2^n}\right) = f(x)^{1/2^n} f(0_{E^n})^{1-1/2^n}.$$

Because f is bounded in  $B(0_{E^n}; r)$ , we have for all x

$$x \in B(0_{E^n}; r) \iff ||x|| = \sqrt{\sum_{k=1}^n (\xi^k)^2} \le r \implies f(x) \le M f(0_{E^n})$$

and  $\lim_{n\to\infty}\frac{x}{2^n}=0_{E^n}$  for all  $x\in B(0_{E^n};r)$ . Indeed,  $d\left(\frac{x}{2^n},0_{E^n}\right)<\eta\Leftrightarrow \frac{||x||}{2^n}<\frac{r}{2^n}<\eta$  or  $2^n>\frac{r}{\eta}$ , i.e. exists  $N(\eta)=\log^2\frac{r}{\eta}+1$  so that for  $n>N(\eta)\Rightarrow d\left(\frac{x}{2^n},0_{E^n}\right)<\eta$ , for all  $x\in B(0_{E^n};r)$  with  $r/2^n<\eta$ . On the other side, we have

$$d\left(f\left(\frac{x}{2^{n}}, f(0_{E^{n}})\right)\right) = \left|f\left(\frac{x}{2^{n}}\right) - f(0_{E^{n}})\right| \le \left|f(x)^{1/2^{n}} f(0_{E^{n}})^{1-1/2^{n}} - f(0_{E^{n}})\right|$$
$$= f(0_{E^{n}}) \left|\left(\frac{f(x)}{f(0_{E^{n}})}\right)^{1/2^{n}} - 1\right| \le f(0_{E^{n}}) \left|M^{1/2^{n}} - 1\right|.$$

Because  $\lim_{n\to\infty} M^{1/2^n} = 1$  for all  $\varepsilon > 0$ , exits  $N(\varepsilon)$  so that for  $d\left(\frac{x}{2^n}, 0_{E^n}\right) < \eta$ ,  $n > N(\varepsilon)$  we have  $|M^{1/2^n} - 1| < \frac{\varepsilon}{f(0_{E^n})}$ , i.e.  $\Leftrightarrow \lim_{\substack{n\to\infty\\x\in B(0_{E^n}\mid r)}} f\left(\frac{x}{2^n}\right) = f(0_{E^n}) \Leftrightarrow f$ 

is continuous in  $0_{E^n}$ . By Lemma 2. f is continuous in  $E^n$ . The case  $f(0_{E^n}) < 0$  is analogous. By induction we have

(5) 
$$f\left(\frac{x}{2^n}\right) = -f(x)f(0_{E^n})^{1/2^n}|f(0_{E^n})|^{1-1/2^{n-1}}.$$

Passing to limit in (5), we have  $\lim_{\substack{n \to \infty \\ x \in B(0_{E^n};r)}} f\left(\frac{x}{2^n}\right) = f(0_{E^n})$ , i.e. f is contin-

uous in  $0_{E^n}$  and by Lemma 2. f is continuous in  $E^n$ .

**Proposition 1.** Let  $f: E^n \to \mathbf{R}$ ,  $f(0_{E^n}) \neq 0$  be a solution of (1). If f is bounded in  $B(0_{E^n}; r)$ , then f is differentiable at  $0_{E^n}$  and

(6) 
$$\frac{\partial f}{\partial \xi^k}(0_{E^n}) = \frac{f(0_{E^n})}{\xi^k} \log \frac{f(\xi^k e_k)}{f(0_{E^n})} \qquad k = 1, \dots, n,$$

(7) 
$$f(x) = \beta e^{\langle a, x \rangle}, \beta = f(0_{E^n}), a = \frac{1}{f(0_E^n)} \cdot df(0_{E^n}),$$

(8) 
$$\frac{\partial f}{\partial \xi^k}(x) = \frac{f(x)}{f(0_{E^n})} \frac{\partial f}{\partial \xi^k}(0_{E^n}), \text{ for all } x \in E^n,$$

(9) 
$$\frac{\partial^{|\alpha|} f}{(\partial \xi^1)^{\alpha_1} \dots (\partial \xi^n)^{\alpha_n}}(x) = \left(\frac{f(x)}{f(0_{E^n})}\right)^{|\alpha|} \cdot \frac{\partial^{|\alpha|} f}{(\partial \xi^1)^{\alpha_1} \dots (\partial \xi^n)^{\alpha_n}}(0_{E^n}),$$

where  $x \in E^n$ ,  $\alpha_k \in \mathbf{N}$  (k = 1, ..., n),  $\alpha = (\alpha_1, ..., \alpha_n)$ ,  $|\alpha| = \alpha_1 + ... + \alpha_n \in \mathbf{N}$ , i.e,  $f \in C_{E^n}^{\infty}$ 

Proof.

(10) 
$$\frac{\partial f}{\partial \xi^k}(0_{E^n}) = \lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(te_k) - f(0_{E^n})}{t}$$

is the derivative of f at  $0_{E^n}$  along the unit vector  $e_k$ . Taking into account Lemma 3, (4) and

(11) 
$$\lim_{n \to \infty} \frac{\left(\frac{f(\xi^k e_k)}{f(0_{E^n})}\right)^{1/2^n} - 1}{1/2^n} = \log \frac{f(\xi^k e_k)}{f(0_{E^n})},$$

we obtain

$$\frac{f\left(\frac{\xi^{k}}{2^{n}}e_{k}\right) - f(0_{E^{n}})}{\xi^{k}/2^{n}} = \frac{f(0_{E^{n}})}{\xi^{k}} \frac{\frac{f\left(\frac{\xi^{k}}{2^{n}}e_{k}\right) - 1}{f(0_{E^{n}})}}{1/2^{n}}, \quad \text{i.e.}$$

$$\frac{f\left(\frac{\xi^{k}}{2^{n}}e_{k}\right) - f(0_{E^{n}})}{\frac{\xi^{k}}{2^{n}}} = \frac{f(0_{E^{n}})}{\xi^{k}} \frac{\left(\frac{f(\xi^{k}e_{k})}{f(0_{E^{n}})}\right)^{1/2^{n}} - 1}{\frac{1}{2^{n}}}$$

if  $\xi^k \neq 0$ ,  $f(0_{E^n}) > 0$ 

(12) 
$$\lim_{\substack{n \to \infty \\ \xi^k \neq 0}} \frac{f\left(\frac{\xi^k}{2^n}e_k\right) - f(0_{E^n})}{\xi^k/2^n} = \frac{f(0_{E^n})}{\xi^k} \log\left(\frac{f(\xi^k e_k)}{f(0_{E^n})}\right) = \frac{\partial f}{\partial \xi^k}(0_{E^n}),$$

where k = 1, ..., n. From (6) we have

$$f(\xi^k e_k) = f(0_{E^n}) \exp\left(\frac{1}{f(0_{E^n})} \left(\xi^k \frac{\partial f}{\partial \xi^k}(0_{E^n})\right)\right),$$

$$f(x) = f\left(\sum_{k=1}^n \xi^k e_k\right) = f(0_{E^n}) \exp\left(\frac{1}{f(0_{E^n})} \sum_{k=1}^n \xi^k \frac{\partial f}{\partial \xi^k}(0_{E^n})\right) = \beta e^{\langle a, x \rangle}$$

i.e. (7). The differential  $df(0_{E^n}) = \sum_{k=1}^n \frac{\partial f}{\partial \xi^k}(0_{E^n}) d\xi^k$  exists because the partial derivatives  $\frac{\partial f}{\partial \xi^k}(0_{E^n})$  are continuous (see (6)),  $\xi^k \neq 0$  and  $f(\xi^k e_k)$  is continuous by Lemma 3,  $\frac{f(x)}{f(0_{E^n})} > 0$ . The case  $f(0_{E^n}) < 0$  is analogoues. For (8)–(9) we have

$$\frac{f(x+te_k)-f(x)}{t} = \frac{1}{2f(-x)} \Big( f(te_k/2) + f(0_{E^n}) \Big) \frac{f(te_k/2) - f(0_{E^n})}{t/2} + \frac{f(x+te_k) - f(x)}{t} + \frac{f(x+te_k) - f(x)}{t$$

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f(x + te_k) - f(x)}{t} = \frac{f(0_{E^n})}{f(x)} \frac{\partial f}{\partial \xi^k}(0_{E^n}) = \frac{f(x)}{f(0)} \frac{\partial f}{\partial \xi^k}(0_{E^n}), \text{ i.e. (8)}$$

and  $\frac{\partial f}{\partial \xi^k}(x)$ ,  $k=1,\ldots,n$  are continuous. By induction successively using

$$\frac{\partial}{\partial \xi^k}()(x) = \frac{f(x)}{f(0_{E^n})} \frac{\partial}{\partial \xi^k}()(0_{E^n}),$$

we obtain (9).

The following results are almost evident.

**3. Lemma 4.** If  $f: E^n \to \mathbf{R}$ ,  $f(0_{E^n}) \neq 0$  is a solution of (1), then

(13) 
$$g = g(x) = \frac{f(x)}{f(0_{E^n})} : E^n \to \mathbf{R}$$

is a solution for CAUCHY's multiplicative functional equation [1]

$$(14) g(x+y) = g(x) \cdot g(y)$$

for all  $x, y \in E^n$  and conversely, if  $g: E^n \to \mathbf{R}$  is a solution of (14), then

(15) 
$$f(x) = \beta g(x), \ \beta = f(0_{E^n}) \neq 0$$

is a solution of (1).

**Proposition 2.** By the same assumptions as in Proposition 1. the solution of (14) is

(16) 
$$g(x) = e^{ax} = e^{\langle a, x \rangle} = e^{\alpha^1 \xi^1 + \alpha^2 \xi^2 + \dots + \alpha^n \xi^n}$$

**Lemma 5.** If  $f: E^n \to \mathbf{R}$ ,  $f(0_{E^n}) \neq 0$  is a solution of (11), then

(17) 
$$h = h(x) = \log \frac{f(x)}{f(0_{E^n})} : E^n \to \mathbf{R}$$

is a solution for CAUCHY's additive functional equation [1]

(18) 
$$h(x+y) = h(x) + h(y)$$

for all  $x, y \in E^n$  and conversely, if  $h: E^n \to \mathbf{R}$  is a solution of (18), then

(19) 
$$f(x) = \beta e^{h(x)}, \ \beta = f(0_{E^n}) \neq 0$$

is a solution of (1).

**Proposition 3.** By the same assumptions as in Proposition 1, the solution of (18) is

(20) 
$$h(x) = a x = \langle a, x \rangle = \sum_{k=1}^{n} \alpha^{k} \xi^{k}.$$

**Lemma 6.** If  $f: E^n \to \mathbf{R}$ ,  $f(0_{E^n}) > 0$  is a solution of (1), then

(21) 
$$\varphi = \varphi(x) = \log f(x) : E^n \to \mathbf{R}$$

is a solution for Jensen's functional equation [1]

(22) 
$$\varphi\left(\frac{x+y}{2}\right) = \frac{1}{2}\left(\varphi(x) + \varphi(y)\right)$$

and conversely, if  $\varphi(x)$  is a solution of (22), then

$$(23) f(x) = e^{\varphi(x)}$$

is a solution of (1).

**Proposition 4.** If  $f: E^n \to \mathbf{R}$ ,  $f(0_{E^n}) > 0$  is bounded in  $B(0_{E^n}; r)$ , then the solution of (22) is

(24) 
$$\varphi(x) = ax + \gamma = \langle a, x \rangle + \gamma = \sum_{k=1}^{n} \alpha^{k} \xi^{k} + \gamma, \ \gamma = \log f(0_{E^{n}}) = \log \beta.$$

**Lemma 7.** If  $f: E^n \to \mathbf{R}$ ,  $f(0_{E^n}) \neq 0$  is a solution of (1), then

(25) 
$$g = g(x) = \frac{f(x) + f(-x)}{2f(0_{E^n})}, \ h = h(x) = \frac{f(x) - f(-x)}{2f(0_{E^n})} : E^n \to \mathbf{R}$$

verify

(26) 
$$g(0_{E^n}) = 1, \ h(0_{E^n}) = 0, \ g(-x) = g(x), \ h(-x) = -h(x),$$

$$g(x)^2 - h(x)^2 = 1,$$

(28) 
$$g(x)^2 + h(x)^2 = g(2x),$$

$$(29) 2h(x)g(x) = h(2x),$$

(30) 
$$g(x + y) = g(x)g(y) + h(x)h(y),$$

(31) 
$$h(x + y) = h(x)g(y) + h(y)g(x),$$

(32) 
$$2g(x)^2 = 1 + g(2x), \ 2h(x)^2 = g(2x) - 1,$$

(33) 
$$g(x+y) + g(x-y) = 2g(x)g(y), g(x+y) - g(x-y) = 2h(x)h(y)$$

and conversely, if (g(x), h(y)) is a solution of (30) - (31), then

(34) 
$$f(x) = \beta \left( g(x) + h(x) \right), \ \beta = f(0_{E^n})$$

is a solution of (1).

**Proof.** From (1) and (25) results (26)-(29). For (30)-(31), we have

$$g(x+y) = \frac{f\left(\frac{x+y}{2}\right)^2 + f\left(-\frac{x+y}{2}\right)^2}{2f(0_{E^n})}$$

$$= 2\left(\frac{f\left(\frac{x+y}{2}\right) + f\left(-\frac{x+y}{2}\right)}{2f(0_{E^n})}\right)^2 - 1 = 2g\left(\frac{x+y}{2}\right)^2 - 1$$

$$(36) \qquad g(x)g(y) + h(x)h(y) = 2g\left(\frac{x+y}{2}\right)^2 - 1$$

which imply (30). On the other side, from (31) we obtain

(37) 
$$h(x+y) = 2g\left(\frac{x+y}{2}\right)h\left(\frac{x+y}{2}\right)$$

and

(38) 
$$g(x)h(y) + g(y)h(x) = 2g\left(\frac{x+y}{2}\right)h\left(\frac{x+y}{2}\right)$$

whence it results (31). The relations (32)–(33) are consequences of previous relations. Conversely, from (34), we obtain

$$f(x)f(y) = f(0_{E^n})^2 \big(g(x) + h(x)\big) \cdot \big(g(y) + h(y)\big) = f(0_{E^n})^2 \big(g(x+y) + h(x+y)\big),$$

i.e

(39) 
$$f(x)f(y) = f(0_{E^n})f(x+y)$$

From (26) and (31) results

(40) 
$$g(x - y) = g(x)g(y) - h(x)h(y)$$

Now to demonstrate

(41) 
$$f\left(\frac{x+y}{2}\right)^2 = f(0_{E^n})^2 f(x+y)$$

Using (34) and (35), (37), (27), we obtain

$$f\left(\frac{x+y}{2}\right)^{2} = f(0_{E^{n}})^{2} \left(g\left(\frac{x+y}{2}\right) + h\left(\frac{x+y}{2}\right)\right)^{2}$$
$$= f(0_{E^{n}})^{2} \left(g(x+y) + h(x+y)\right) = f(0_{E^{n}})f(x+y).$$

From (39) and (41) we have (1).

**Proposition 5.** Let f,  $f(0_{E^n}) = 1$  be a solution of (1). If f is bounded in  $B(0_{E^n}; r)$ , then the functions

(42) 
$$g = g(x) = \frac{e^{ax} + e^{-ax}}{2} = \operatorname{ch} ax = \operatorname{ch} \left( \sum_{k=1}^{n} \alpha^{k} \xi^{k} \right),$$
$$h = h(x) = \frac{e^{ax} - e^{-ax}}{2} = \operatorname{sh} ax = \operatorname{sh} \left( \sum_{k=1}^{n} \alpha^{k} \xi^{k} \right) : E^{n} \to \mathbf{R},$$

verify relations (26) - (33).

The proof results from Lemma 7 and Proposition 1.

**4. Acknowledgements.** I would like to express my gratitude to Prof. Dr. B. CRSTICI for his competent guidance.

## REFERENCES

- J. Aczél: Lectures On Functional Equations And Their Applications, Academic Press, 1966.
- 2. G. M. Fihtenholt: Curs de calcul diferențial și integral, vol. I, Editura Tehnică, București 1964, 249-250.
- 3. N. Neamţu: A Qualitative Study About Lobachevsky's Functional Equation, Buletinul Ştiinţific al Universităţii Tehnice din Timişoara, Tom 38 (53) (1994), Matematică-Fizică, 26-35.

Catedra de Matematici Nr. 1, Universitatea "Politehnica", Piaţa Horaţiu Nr. 1, 1900 Timişoara, România (Received June 10, 1996) (Revised September 26, 1996)