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DOUBLY STOCHASTIC GRAPH MATRICES

Russell Merris

Let L(G) be the n � n Laplacian matrix of graph G: This note introduces

the positive de�nite doubly stochastic matrix 
(G) =
�
In + L(G)

�
�1

:

Let G = (V;E) be a (simple) graph with vertex set V = fv1; v2; : : : ; vng and
edge set E of cardinality o(E) = m: Let D(G) be the diagonal matrix whose (i; i)-

entry is d(vi); the degree of vertex vi: Denote by A(G) the n� n adjacency matrix

whose (i; j)-entry is 1 if fvi; vjg 2 E; and 0 otherwise. The Laplacian matrix is

L(G) = D(G) � A(G): By Ger�sgorin's Theorem, L(G) is positive semide�nite.

Because its rows sum to zero, it is a singular M -matrix. Denote the eigenvalues of

L(G) by �1 � �2 � � � � � �n�1 � �n = 0: Then, either from Kirchhoff's Matrix-

Tree Theorem [2; 16] or the general theory of M -matrices [1, p.156; 10], �n�1 > 0

if and only if G is connected, if and only if L(G) is irreducible. This observation

led Fiedler [7] to de�ne a(G) = �n�1; calling it the algebraic connectivity of G:

Numerous variations on the theme if \inverting" L(G) have appeared in the

recent literature. (See, for example, [9], [13], [14], [17], and [21].) The purpose of

this note is to introduce another.

1. De�nition. If G is a graph on n vertices, de�ne


(G) =
�
In + L(G)

��1
:

2. Proposition. If G is a graph on n vertices, then 
(G) is a positive de�nite

doubly stochastic matrix that is entrywise positive if and only if G is connected.

Proof. Because M (G) = In + L(G) is a symmetric positive de�nite matrix, it is

invertible and its inverse is positive de�nite. Indeed, the eigenvalues of 
(G) are

(1) 1 � 1

1 + a(G)
� � � � � 1

1 + �1
> 0:

Because M (G) is anM -matrix, its inverse is entrywise nonnegative. Because M (G)

is irreducible if and only if G is connected [8, Chap. 3], it follows from the general
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theory of M -matrices [1, p.141] that 
(G) is entrywise positive if and only if G is

connected.

Let e be the n-by-1 matrix each of whose entries is 1. Because e is an eigen-

vector of L(G) corresponding to �n = 0; it is an eigenvector of 
(G) corresponding

to the Perron eigenvalue 1. (Indeed, the eigenvectors of 
(G) and L(G) are iden-

tical.) Hence, 
(G)e = e; proving that 
(G) is row stochastic. Beacuse 
(G) is

symmetric, the proof is complete 2

Recall that a symmetric matrix is doubly positive (nonnegative) if it is en-

trywise positive (nonnegative) and positive (semi)de�nite. Thus, 
(G) is a doubly

nonnegative, doubly stochastic matrix which is doubly positive if and only if G is

connected. It turns out that doubly nonnegative, doubly stochastic matrices have

been the subject of several recent articles (see, e.g., [11] and [19]); M -matrices

whose inverses are stochastic were studied in [20]. Moreover, 
(G) is not the �rst

doubly stochastic matrix to be associated with G: If � is the largest vertex degree

of (a nontrivial graph) G; then In ���1L(G) is doubly stochastic.

Denote by G_ u the graph on n+ 1 vertices and m+ n edges obtained from

G by joining each of its vertices to a new vertex u: (A vertex adjacent to every

other vertex of a graph is said to be dominating vertex.) Observe that In + L(G)

is the n � n principal submatrix of L(G _ u) obtained by deleting the row and

column corresponding to u: Let us take a moment to consider Proposition 2 from

this perspective.

Let H be a �xed but arbitrary graph on n + 1 vertices, fv1; v2; : : : ; vn+1g:
Denote by Li(H) the principal submatrix of L(H) obtained by deleting row and

column i: (It seems that
n+1P
i=1

Li(H)

is known in the chemical literature as an \Eichinger matrix" [15].)

A real matrix P is said to be doubly superstochastic if there exists a doubly

stochastic matrix S such that every element of P is greater than or equal to the cor-

responding element of S: Evidently, for a nonnegative matrix to be superstochastic

each of its row and column sums must be at least 1. As the matrix

A =

0
@ 0 0 1

0 0 1

1 1 0

1
A

shows, however, this necessary condition is not su�cient. Indeed [4], a nonnegative

n � n matrix is doubly superstochastic if and only if the sum of the elements of

every p� q submatrix is at least p+ q � n:

3. Proposition. Let H be a connected graph on n+1 vertices, fv1; v2; : : : ; vn+1g:
Then Li(H)�1 is a positive de�nite doubly superstochastic matrix. It is doubly

stochastic if and only if vi is a dominating vertex. It is entrywise positive if and

only if the graph H � vi (obtained by deleting vertex vi and all the edges incident

with it) is connected.
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Proof. Because H is connected, Li(H) is positive de�nite. Hence, it is invertible

and its inverse is positive de�nite. Let Ĥ be the graph obtained from H by adding

edges, if necessary, so that vi becomes a dominating vertex. then Li(Ĥ) = D +

Li(H); where D is an n � n matrix whose only nonzero entries (if any) are 1's

on the diagonal. In particular, each entry of the M -matrix B = Li(Ĥ) is bigger

than or equal to the corresponding entry of the M -matrix A = Li(H): It follows

from the general theory of M -matrices [10; 12, Thm 2.5.4] that A�1 � B�1 (in

the entrywise sense), with equality if and only if D = 0: Hence, the result is a

consequence of Proposition 2 and the fact that A is irreducible if and only if H�vi
is connected. 2

If H is a tree and d(vi) = 1; then each entry of A = Li(H)�1 is a positive

integer. In particular, A � S for every n� n doubly stochastic matrix S:

A general graph{theoretic interpretation for the entries of Li(H)�1 can be

obtained from the \all minors Matrix-Tree Theorem" [2]. Speci�cally, the (r; s)-

entry of the classical adjoint adj
�
Li(H)

�
is the number of 2-tree spanning forests of

H in which vr and vs lie in one tree and vi in the other. (If r = s and " = fvr; vig
is an edge of H; this is the number of spanning trees of H that contain "; an

observation �rst made in [16, Thm. 2].) Of course, det
�
Li(H)

�
= t(H); the

number of spanning trees in H:

4. Corollary. Suppose H is a connected graph on n + 1 vertices. Fix i and let

�1 � �2 � � � � � �n � 0 be the eigenvalues of Li(H): Then �n � 1 with equality if

and only if vi is a dominating vertex.

Proof. 1=�n is the largest eigenvalue of the doubly superstochastic matrix

Li(H)�1: 2

We now return to 
(G):

5. De�nition. Let G = (V;E) be a graph with vertex set V = fv1; v2; : : : ; vng
and edge set E: Denote by FG the family consisting of all disconnected spanning

forests of G: For each F 2 FG; let 
(F ) be the product of the numbers of vertices

in the connected components of F and 
i(F ) the product of the numbers of vertices

in the connected components of F that do not contain vertex vi: Finally, de�ne

FG(i; j) = fF 2 FG : vi and vj belong to the same component of Fg:

6. Proposition. Suppose G is a graph with n � 2 vertices and t(G) spanning

trees. Then the (i; j)-entry of 
(G) is a fraction whose numerator is

(2) t(G) +
P

F2FG(i;j)


i(F );

and whose denominator is

(3) nt(G) +
P

F2FG


(F ):

Proof. Let H = G _ u; vhere u is viewed as the (n + 1)st vertex of H: Then, as

we have observed, Ln+1(H) = In + L(G): Thus, 
(G) = adj
�
Ln+1(H)

�
=t(H):
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To each spanning tree of G there correspond n di�erent spanning trees of

H (obtained by joining u to each of the n vertices of G). Thus, of the spanning

trees T of H; exactly nt(G) have the property that T � u is connected. If T is a

spanning tree of H such that F = T � u is a disconnected spanning forest of G;

then u can/must be adjacent in T to exactly one vertex in each component of F:

This gives 
(F ) possibilities for T: Hence, t(H) is given by Formula (3).

To each spanning tree T of G; there corresponds one 2-component spanning

forest of H in which u is an isolated vertex, namely, T + u: To each F 2 FG(i; j);

there correspond 
i(F ) 2-component spanning forests of H in which vi and vj lie in

one component and u in the other. (They arise by joining u to one vertex in each

of the components of F that do not contain vi and vj:) Hence, by the all minors

Matrix-Tree Theorem, the numerator of 
(G) is given by Formula (2). 2

7. Corollary. Suppose G is a graph on vertex set fv1; v2; : : : ; vng; where n � 2:

Let 
(G) = (!ij): Then

(i) !ij = 0 if and only if vi and vj lie in di�erent connected com-

ponents of G;

(ii) !ii > !ij; for all j 6= i; 1 � i � n;

(iii) !ii � 1=
�
1 + d(vi)

�
; and

(iv)
nP
j=1

P
F2FG(i;j)


i(F ) =
P

F2FG


(F ):

Proof. A consequence of Formula (2), part (i) is a strengthening of the \entrywise

positive" part of Proposition 2. Because FG(i; j) is a proper subset of FG(i; i);

part (ii) follows from Formula (2). Part (iii) follows from a result of Fiedler

[6] relating the corresponding diagonal entries of two mutually inverse positive

de�nite matrices. While part (iv) can be proved directly by means of an elementary

counting argument, it is an immediate consequence of Proposition 6 and the fact

that 
(G) is doubly stochastic. 2

Consider the characteristic polynomial of L(G);

pG(x) = det
�
xIn � L(G)

�
= (x� �1)(x� �2) � � � (x� �n):

The sum of the absolute values of the coe�cients of pG(x) is

(�1)npG(�1) = (1 + �1)(1 + �2) � � � (1 + �n)

(4) = det
�
In + LG)

�

(5) = det
�
Ln+1(G _ u)

�
:

8. Corollary. Let G be a graph on n � 2 vertices. Then
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(i) det
�

(G)

�
= (�1)n=pG(�1); and

(ii) (�1)npG(�1) = nt(G) +
P

F2FG


(F ):

Proof. Part (i) follows from Equation (4). Part (ii) is a consequence of Equation

(5) and the fact that Formula (3) is the number of spanning trees in G _ u: (Part
(ii) also follows from a result of Kel'mans [5, Thm. 1.4].) 2

The second largest eigenvalue of 
(G) is 1=
�
1 + a(G)

�
; where a(G) is the

algebraic connectivity of G: In particular,

(6)
1

1 + a(G)
= max x
(G)xt;

where the maximum is over all real unit vectors x the sum of whose coordina-

tes is 0.

9. Corollary. Let G be a graph on n � 3 vertices with doubly stochastic graph

matrix 
(G) = (!ij): If 1 � i < j � n; then

(7)
1

1 + a(G)
� !ii + !jj � 2!ij

2
:

Proof. Let x = (ei � ej)=
p
2; where ei is the

ith standard basis vector in Rn: Then (7) is

equivalent to 1=
�
1 + a(G)

�
� x
(G)xt:

1 2 3 4

5

Figure l

10. Example. If G is the graph illustrated in Figure 1, then


(G) =
1

52

0
BBBB@

32 12 4 2 2

12 24 8 4 4

4 8 20 10 10

2 4 10 31 5

2 4 10 5 31

1
CCCCA

and the value of the right-hand side of (7) is exhibited in position (i; j) of the matrix

B =
1

104

0
BBBB@

� 32 44 59 59

32 � 28 47 47

44 28 � 31 31

59 47 31 � 52

59 47 31 52 �

1
CCCCA :

By Corollary 9, each o� diagonal entry of B is a lower bound for 1=
�
1 + a(G)

� :
=

0:658: (The biggest lower bound emerging from this calculation is 59=104
:
= 0:567:

In general, it seems that the best choice for i and j corresponds to the position

of a smallest entry in 
(G):) The reason for exhibiting both the lower and upper

triangular parts of matrix B is that it is the analog of the \resistance distance"

matrix [14], in which 
(G) replaces a generalized inverse of L(G):
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11. De�nition. Let G be a graph. De�ne FG[i; j] = FG nFG(i; j) = fF 2 FG : vi
and vj lie in di�erent components of Fg: For each F 2 FG[i; j]; denote by o(Fi) the

number of vertices in the component of F containing vi and by 
i;j(F ) the product

of the numbers of vertices in the connected components of F that contain neither

vi nor vj (with the understanding that the empty product is 1).

12. Corollary. Let G be a graph on n � 3 vertices. If 1 � i < j � n; then

(8)
X

F2FG [i;j]

�
o(Fi) + o(Fj)

�

i;j(F ) �

2(�1)npG(�1)
1 + a(G)

:

Proof. Inequality (8) is just a rearrangement of terms when the values from

Proposition 6 and Corollary 8 (ii) are substituted into Inequality (7). 2

If A = (aij) is a real n� n matrix, its permanent is de�ned by

per (A) =
X
�2Sn

nQ
i=1

ai�(i):

Dating from the publications of [22], there has been a great deal of interest

in permanents of doubly stochastic matrices.

13. Proposition. Let G be a graph on n vertices. Then

per
�

(G)

�
� [n!e]

(n+ 1)n
;

with equality if and only if G = Kn; the complete graph, where [�] is the greatest

integer function and e is the base of the natural logarithms.

Proof. As the result is easily veri�ed for n � 2; we assume n > 2: Suppose u and

v are nonadjacent vertices of G: Let G0 be the graph obtained from G by adding

a new edge, fu; vg: Then L(G0) = L(G) + Q; where Q is permutation similar to

the direct sum of

�
1 �1

�1 1

�
and the (n� 2)-square zero matrix. In particular,

L(G0) � L(G) in the positive semide�nite sense. Therefore, 
(G) � 
(G0); and [3]

per
�

(G)

�
> per

�

(G0)

�
: Thus, it remains to show that per

�

(Kn)

�
= [n!e]=(n+

1)n: Because, In +L(Kn) = (n+ 1)In� Jn; 
(Kn) = (In + Jn)=(n+ 1); where Jn
is the n� n matrix each of whose entries is 1.

Let Qk;n be the set of all
�
n

k

�
strictly increasing sequences of length k chosen

from f1; 2; : : : ; ng: If A and B are n� n matrices, then [18, p.17]

per (A +B) =

nX
k=0

X
�;�2Qk;n

per
�
A[�j�]

�
per
�
B(�j�)

�
;

where A[�j�] is the submatrix lying in rows � and columns �; and B(�j�) is

submatrix of B obtained by deleting rows � and columns �: In particular,

(n + 1)n per
�

(Kn)

�
= per (In + Jn)
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=

nX
k=0

X
�2Qk;n

per
�
Jn(�j�)

�
= n!

nX
k=0

1=k! : 2

The same proof will show that d�
�

(G)

�
> d�

�

(Kn)

�
for any of a whole

family of \generalized matrix functions".

Added in proof. The author is grateful to D. J. Klein for pointing out that

portions of Proposition 3 and Corollary 8 overlap results previously obtained in V.

E. Golender, V. V. Drboglav, A. B. Rosenblit: Graph potentials method

and its application for chemical information processing. J. Chem. Inf. Comput.

Sci. 21 (1981), 126{204.
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