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DOUBLY STOCHASTIC GRAPH MATRICES

Russell Merris

Let L(G) be the n x n Laplacian matrix of graph G. This note introduces
1

the positive definite doubly stochastic matrix Q(G) = ([n + L(G))_ .

Let G = (V, E) be a (simple) graph with vertex set V' = {v1,va,...,v,} and
edge set E of cardinality o(F) = m. Let D(G) be the diagonal matrix whose (4, )-
entry is d(v;), the degree of vertex v;. Denote by A(G) the n x n adjacency matrix
whose (7, j)-entry is 1 if {v;,v;} € E, and 0 otherwise. The Laplacian matriz is
L(G) = D(G) — A(G). By GERSGORIN’s Theorem, L(() is positive semidefinite.
Because its rows sum to zero, it 1s a singular M-matrix. Denote the eigenvalues of
L(G) by Ay > A2 > -+ > A1 > Ay = 0. Then, either from KIRCHHOFF’s Matrix-
Tree Theorem [2; 16] or the general theory of M-matrices [1, p.156; 10], A,—1 > 0
if and only if G is connected, if and only if L(G) is irreducible. This observation
led FIEDLER [7] to define a(G) = Ap—_1, calling it the algebraic connectivity of G.

Numerous variations on the theme if “inverting” L(G) have appeared in the
recent literature. (See, for example, [9], [13], [14], [17], and [21].) The purpose of
this note is to introduce another.

1. Definition. If G is a graph on n vertices, define
QG) = (I + L(G)) ™

2. Proposition. If G is a graph on n vertices, then Q(G) is a positive definite
doubly stochastic matriz that is entrywise positive if and only f G s connected.
Proof. Because M(G) = I,, + L(G) is a symmetric positive definite matrix, it is
invertible and its inverse is positive definite. Indeed, the eigenvalues of Q(G) are

1 1

(1) 12m2“'2

T+ N > 0.

Because M (G) is an M-matrix, its inverse is entrywise nonnegative. Because M (G)
is irreducible if and only if G is connected [8, Chap. 3], it follows from the general
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theory of M-matrices [1, p.141] that Q(G) is entrywise positive if and only if G is
connected.

Let e be the n-by-1 matrix each of whose entries is 1. Because e is an eigen-
vector of L((G) corresponding to A, = 0, it is an eigenvector of Q(G) corresponding
to the PERRON eigenvalue 1. (Indeed, the eigenvectors of Q(G) and L(G) are iden-
tical.) Hence, Q(G)e = e, proving that Q(G) is row stochastic. Beacuse (G) is
symmetric, the proof is complete a

Recall that a symmetric matrix is doubly positive (nonnegative) if it is en-
trywise positive (nonnegative) and positive (semi)definite. Thus, Q(G) is a doubly
nonnegative, doubly stochastic matrix which 1s doubly positive if and only if GG is
connected. It turns out that doubly nonnegative, doubly stochastic matrices have
been the subject of several recent articles (see, e.g., [11] and [19]); M-matrices
whose inverses are stochastic were studied in [20]. Moreover, () is not the first
doubly stochastic matrix to be associated with G. If A is the largest vertex degree
of (a nontrivial graph) G, then I, — A™'L(() is doubly stochastic.

Denote by GV u the graph on n + 1 vertices and m + n edges obtained from
(i by joining each of its vertices to a new vertex u. (A vertex adjacent to every
other vertex of a graph is said to be dominating vertez.) Observe that I, + L(G)
is the n x n principal submatrix of L(G V u) obtained by deleting the row and
column corresponding to u. Let us take a moment to consider Proposition 2 from
this perspective.

Let H be a fixed but arbitrary graph on n + 1 vertices, {v1,va, ..., vpy1}-
Denote by L;(H) the principal submatrix of L(H) obtained by deleting row and
column ¢. (It seems that

n+1
et

is known in the chemical literature as an “Eichinger matrix” [15].)

A real matrix P is said to be doubly superstochastic if there exists a doubly
stochastic matrix S such that every element of P is greater than or equal to the cor-
responding element of S. Evidently, for a nonnegative matrix to be superstochastic
each of its row and column sums must be at least 1. As the matrix

0 01
A=10 0 1
1 10

shows, however, this necessary condition is not sufficient. Indeed [4], a nonnegative
n X n matrix is doubly superstochastic if and only if the sum of the elements of
every p X ¢ submatrix is at least p+ ¢ — n.

3. Proposition. Let H be a connected graph on n+ 1 vertices, {v1,va, ..., vpy1}-
Then L;(H)™! is a positive definite doubly superstochastic matriz. It is doubly
stochastic if and only if v; is a dominating vertex. It is entrywise positive if and
only if the graph H — v; (obtained by deleting verter v; and all the edges incident
with it) is connected.



66 Russell Merris

Proof. Because H is connected, L;(H) is positive definite. Hence, it is invertible
and its inverse is positive definite. Let H be the graph obtained from H by adding
edges, if necessary, so that v; becomes a dominating vertex. then Lz(f]) =D+
L;(H), where D is an n x n matrix whose only nonzero entries (if any) are 1’s
on the diagonal. In particular, each entry of the M-matrix B = Lz(f]) is bigger
than or equal to the corresponding entry of the M-matrix A = L;(H). Tt follows
from the general theory of M-matrices [10; 12, Thm 2.5.4] that A= > B! (in
the entrywise sense), with equality if and only if D = 0. Hence, the result is a
consequence of Proposition 2 and the fact that A is irreducible if and only if H — v;
is connected. ad

If H is a tree and d(v;) = 1, then each entry of A = L;(H)™! is a positive
integer. In particular, A > S for every n x n doubly stochastic matrix S.

A general graph-theoretic interpretation for the entries of L;(H)~! can be
obtained from the “all minors Matrix-Tree Theorem” [2]. Specifically, the (r, s)-
entry of the classical adjoint adj (LZ(H)) is the number of 2-tree spanning forests of
H in which v, and v; lie in one tree and v; in the other. (If r = s and ¢ = {v,, v;}
is an edge of H, this is the number of spanning trees of H that contain ¢, an
observation first made in [16, Thm. 2].) Of course, det (LZ(H)) = {(H), the
number of spanning trees in H.

4. Corollary. Suppose H s a connected graph on n 4+ 1 vertices. Fiz i and let

H1 > pig > oo > pp > 0 be the eigenvalues of Li(H). Then p, < 1 with equality if

and only if v; is a dominating verter.

Proof. 1/u, is the largest eigenvalue of the doubly superstochastic matrix

L; (H)_l. O
We now return to Q(G).

5. Definition. Let G = (V, E) be a graph with vertex set V. = {v1,va,..., 05}
and edge set E. Denote by Fg the family consisting of all disconnected spanning
forests of G. For each F € Fg, let v(F) be the product of the numbers of vertices
in the connected components of F' and ~; (F) the product of the numbers of vertices
i the connected components of F' that do not contain vertex v;. Finally, define
Fali, j) =4{F € Fg : v; and v; belong to the same component of F}.

6. Proposition. Suppose G is a graph with n > 2 vertices and t(G) spanning
trees. Then the (i,j)-entry of Q(G) is a fraction whose numerator is

(2) U+ X wu(F),

FETG( 7])
and whose denominator 1is
(3) nt(G)+ > y(F).
FeFg

Proof. Let H = GV u, vhere u is viewed as the (n + 1)st vertex of H. Then, as
we have observed, Ly41(H) = I, + L(G). Thus, Q(G) = ad] (Ln_H(H))/t(H).
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To each spanning tree of (G there correspond n different spanning trees of
H (obtained by joining u to each of the n vertices of ). Thus, of the spanning
trees T of H, exactly nt((G) have the property that 7' — w is connected. If T is a
spanning tree of H such that F = T — u is a disconnected spanning forest of G,
then u can/must be adjacent in T' to exactly one vertex in each component of F.
This gives y(F) possibilities for T. Hence, ¢t(H) is given by Formula (3).

To each spanning tree T' of (7, there corresponds one 2-component spanning
forest of H in which u is an isolated vertex, namely, T + u. To each F' € Fg (i, j),
there correspond +;(F') 2-component spanning forests of H in which v; and v; lie in
one component and w in the other. (They arise by joining u to one vertex in each
of the components of F' that do not contain v; and v;.) Hence, by the all minors
Matrix-Tree Theorem, the numerator of Q(G) is given by Formula (2). a

7. Corollary. Suppose G is a graph on vertex set {vy,va, ..., v,}, where n > 2.
Let Q(G) = (wij). Then

(1)  wij =0 if and only if v; and v; lie in different connected com-
ponents of Gi;

(1)  wis > wiy, forall j#£4, 1 <i<n;
(i) wi > 1/(1 + d(vi)); and
v Y T wF)= % )

i=1 FeFqg(ij) FeFq

Proof. A consequence of Formula (2), part (i) is a strengthening of the “entrywise
positive” part of Proposition 2. Because Fg(4,j) is a proper subset of Fg(i, i),
part (ii) follows from Formula (2). Part (iii) follows from a result of FIEDLER
[6] relating the corresponding diagonal entries of two mutually inverse positive
definite matrices. While part (iv) can be proved directly by means of an elementary
counting argument, it is an immediate consequence of Proposition 6 and the fact
that (G) is doubly stochastic. a

Consider the characteristic polynomial of L(G),
pa(x) = det (l‘[n — L(G)) =(x—=A)(x—=A2) (&= Ap).
The sum of the absolute values of the coefficients of pg(z) is
(—l)npg(—l) = (1 + /\1)(1 + /\2) s (1 + /\n)
(4) =det (1, + Lg))

(5) = det (Ln_H(G \v u))

8. Corollary. Let G be a graph on n > 2 vertices. Then



68 Russell Merris

(1) det(Q(G)) =(=1)"/pg(-1); and

() () pel-1) =@ + 5 A(F)
FeFa
Proof. Part (i) follows from Equation (4). Part (ii) is a consequence of Equation
(5) and the fact that Formula (3) is the number of spanning trees in G'V u. (Part
(ii) also follows from a result of KEL'MANS [5, Thm. 1.4].) O
The second largest eigenvalue of Q(G) is 1/(1 + a(G)), where a(G) is the

algebraic connectivity of GG. In particular,

(6) !

S — Q t
5 a0 max z(G)z’,

where the maximum 1s over all real unit vectors z the sum of whose coordina-
tes 1s 0.

9. Corollary. Let G be a graph on n > 3 vertices with doubly stochastic graph
matriz Q(G) = (wi;). If 1 < i< j < n, then

5
(7) 1 > Wig +Wjj — 2(.02']' .
1+ a(G) 2
Proof. Let z = (e; — ej)/\/i, where ¢; is the 1 2 3 4
ith standard basis vector in R™. Then (7) is .
Figure 1

equivalent to 1/(1 + a(G)) > zQ(G)z".
10. Example. If (G is the graph illustrated in Figure 1, then

32 12 4 2 2

12 24 8 4 4
QG =—1] 4 8 20 10 10
2 4 10 31 5
2 4 10 5 31

and the value of the right-hand side of (7) is exhibited in position (¢, j) of the matrix

* 32 44 59 39
32 % 28 47 47
44 28 x 31 31
59 47 31 x 52
59 47 31 52

1
104

By Corollary 9, each off diagonal entry of B is a lower bound for 1/(1 + a(G)) =
0.658. (The biggest lower bound emerging from this calculation is 59/104 = 0.567.
In general, it seems that the best choice for ¢ and j corresponds to the position
of a smallest entry in €(G).) The reason for exhibiting both the lower and upper
triangular parts of matrix B is that it is the analog of the “resistance distance”
matrix [14], in which Q(G) replaces a generalized inverse of L(G).



Doubly stochastic graph matrices 69

11. Definition. Let G be a graph. Define Fgli, j]l = Fa\Fa(i,j) ={F € Fg: v
and v; lie in different components of F'}. For each F € Fg[i, j], denote by o( F;) the
number of vertices in the component of F containing v; and by ~; ;(F) the product
of the numbers of vertices in the connected components of F' that contain neither
v; nor v; (with the understanding that the empty product is 1).

12. Corollary. Let G be a graph on n > 3 vertices. If 1 <1 < j <mn, then
2(_1)an(_1)

8 E I . A (F) <

( ) (O( )+O( ]))77]( )_ 1—|—a(G)

FeFgli g

Proof. TInequality (8) is just a rearrangement of terms when the values from
Proposition 6 and Corollary 8 (ii) are substituted into Inequality (7). a

If A= (a;;) is areal n x n matrix, its permanent is defined by

per( ): Z Hawz

og€S, i=

Dating from the publications of [22], there has been a great deal of interest
in permanents of doubly stochastic matrices.

13. Proposition. Let G be a graph on n vertices. Then

[nle]
er (QG)) > —————

p ( ( )>_(n—|—1)”

with equality if and only if G = K,, the complete graph, where [] is the greatest
winteger function and e is the base of the natural logarithms.

Proof. As the result is easily verified for n < 2, we assume n > 2. Suppose u and
v are nonadjacent vertices of GG. Let G’ be the graph obtained from G by adding
a new edge, {u,v}. Then L(G') = L(G) + @, where @ is permutation similar to
the direct sum of _1 _1 and the (n — 2)-square zero matrix. In particular,
L(G") > L(G) in the positive semidefinite sense. Therefore, Q(G) > Q(G'), and [3]
per (Q(G)) > per (Q(G’)) Thus, it remains to show that per (Q(Kn)) = [nle]/(n+
1)". Because, I, + L(Kp) = (n+ 1)1 — Jn, Q(Kn) =+ Js)/(n+1), where J,

1s the n x n matrix each of whose entries i1s 1.

Let Q » be the set of all (Z

from {1,2,...,n}. If A and B are n x n matrices, then [18, p.17]

) strictly increasing sequences of length & chosen

per (A + B) Z Z per |ﬁ)per( (O‘W))’

k=0 a,0€Qk,n

where Ala|f] is the submatrix lying in rows « and columns 4, and B(a|f) is
submatrix of B obtained by deleting rows a and columns 3. In particular,

(n+1)" per (Q(Kn)) = per (In + J»n)
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= Z Z per(Jn(a|a)):n!ZI/k!. 0

k=0 a€Qi,n

The same proof will show that d, (Q(G)) > dy (Q(Kn)) for any of a whole

family of “generalized matrix functions”.

Added in proof. The author is grateful to D. J. KLEIN for pointing out that
portions of Proposition 3 and Corollary 8 overlap results previously obtained in V.
E. GOLENDER, V. V. DrBoGLAV, A. B. ROSENBLIT: Graph potentials method
and its application for chemical information processing. J. Chem. Inf. Comput.

Sci. 21 (1981), 126-204.
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