A NOTE ON MOHR'S PAPER

Adem Çelik

In this paper we establish the inequalities for maximum values of polynomials which have the zero as a simple root and as a multiple root on the unit circle.

Let $f(z)$ and $g(z)$ be two polynomials on the circle $|z|=1$ with degree $m \geq 1$ and $n \geq 1$ respectively. The formula $M_{f g} \geq \nu M_{f} M_{g}$ given in [$\left.\mathbf{1}\right]$ has been strengthened in [2] by $M_{f g}>\nu_{1} M_{f} M_{g}$, where $M_{f}=\max _{|z|=1}|f(z)|, \nu=\sin ^{m} \frac{\pi}{8 m} \sin ^{n} \frac{\pi}{8 n}$ and $\nu_{1}=\frac{1}{2^{m}} \frac{1}{2^{n}}>\nu$.

In this paper we show that, for a polynomial $f(z)$ of degree m having the point zero as a k-multiple root $(k<m)$, and for a polynomial $g(z)$ of degree n of which the zero is an r-multiple root $(r<n)$, we have

$$
M_{f g} \geq \delta M_{f} M_{g}
$$

where $\delta=\frac{1}{2^{m-k}} \frac{1}{2^{n-r}}>\nu_{1}$.

1. Maximum values of polynomials which have the zero as a simple root on the unit circle

For $m, n, \ell>1$ consider the following polynomials

$$
\begin{align*}
& f(z)=z^{m}+\sum_{i=1}^{m-1} a_{i} z^{i}=z\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{m-1}\right) \tag{1}\\
& g(z)=z^{n}+\sum_{j=1}^{n-1} b_{j} z^{j}=z\left(z-\beta_{1}\right) \cdots\left(z-\beta_{n-1}\right) \\
& h(z)=z^{\ell}+\sum_{k=1}^{\ell-1} c_{k} z^{k}=z(z-1) \cdots\left(z-z_{\ell-1}\right) \quad\left(\left|z_{1}\right| \leq 1, \ldots,\left|z_{\ell-1}\right| \leq 1\right)
\end{align*}
$$

[^0]From (3) it follows

$$
M_{h}=\max _{|z|=1}\left\{\left|\frac{h(z)}{z^{\ell}}\right|\right\}=\max _{|z|=1}\left|\left(1-\frac{z_{1}}{z}\right) \cdots\left(1-\frac{z_{\ell-1}}{z}\right)\right| .
$$

If we take $s(t)=\left(1-z_{1} t\right) \cdots\left(1-z_{\ell-1} t\right)$ with $t=1 / z$, we can rewrite M_{h} as follows:

$$
M_{h}=\max _{|t| \leq 1}|s(t)| \quad(s(0)=1)
$$

By the maximum modulus principle we have $M_{h} \geq 1$ and from definition of M_{h}, $M_{h} \leq 2^{\ell-1}$.

By similar arguments, we obtain

$$
M_{f} \leq 2^{m-1}, \quad M_{g} \leq 2^{n-1}
$$

But in the case $z_{1}=z_{2}=\cdots=z_{\ell-1}=e^{i \theta_{0}} \quad\left(\theta_{0} \in \mathbf{R}\right)$, we have $M_{h}=2^{\ell-1}$. Since $|\bar{\gamma}|>1$ for $|\gamma|>1,|1 / \bar{\gamma}|$ is in the unit circle. Now consider as in [2]

$$
(z-\gamma)=\left(z-\frac{1}{\bar{\gamma}}\right) \cdot \bar{\gamma} \cdot \frac{\gamma-z}{1-\bar{\gamma} z}, \quad\left(\left|\frac{\gamma-z}{1-\bar{\gamma} z}\right|=1, \quad|z|=1\right)
$$

In order to form the polynomials the ordering of roots as follows

$$
\begin{array}{ll}
0, \alpha_{1}, \ldots, \alpha_{p-1} / \alpha_{p}, \ldots, \alpha_{m-1} & ;\left|\alpha_{p}\right|>1, \ldots\left|\alpha_{m-1}\right|>1 \\
0, \beta_{1}, \ldots, \beta_{q-1} / \beta_{q}, \ldots, \beta_{n-1} & ;\left|\beta_{q}\right|>1, \ldots\left|\beta_{n-1}\right|>1
\end{array}
$$

and write

$$
\begin{align*}
& F(z)=z\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{p-1}\right)\left(z-\frac{1}{\bar{\alpha}_{p}}\right) \cdots\left(z-\frac{1}{\bar{\alpha}_{m-1}}\right) \tag{4}\\
& G(z)=z\left(z-\beta_{1}\right) \cdots\left(z-\beta_{q-1}\right)\left(z-\frac{1}{\bar{\beta}_{q}}\right) \cdots\left(z-\frac{1}{\bar{\beta}_{n-1}}\right) \tag{5}
\end{align*}
$$

Now we have the new forms of

$$
f(z)=A F(z) \prod_{p}^{m-1}\left(\frac{\alpha_{\mu}-z}{1-\bar{\alpha}_{\mu} z}\right), \quad g(z)=B G(z) \prod_{q}^{n-1}\left(\frac{\beta_{\eta}-z}{1-\bar{\beta}_{\eta} z}\right)
$$

where $A=\bar{\alpha}_{p} \cdots \bar{\alpha}_{m-1}, B=\bar{\beta}_{q} \cdots \bar{\beta}_{n-1}$. Hence it is clear that

$$
M_{f}=|A| M_{F}, \quad M_{g}=|B| M_{G}, \quad M_{f g}=|A||B| M_{F G}
$$

Combining these last equalities we find

$$
\begin{equation*}
\frac{M_{f g}}{M_{f} M_{g}}=\frac{M_{F G}}{M_{F} M_{G}} \tag{6}
\end{equation*}
$$

On the other hand, the polynomials $F(z)$ and $G(z)$ are of the type (3). Then we can say $M_{F} \leq 2^{m-1}, M_{G} \leq 2^{n-1}$ and $M_{F G} \geq 1$. Thus, by (6) we will have

$$
\begin{equation*}
M_{f g} \geq \nu_{2} M_{f} M_{g} \tag{7}
\end{equation*}
$$

where $\nu_{2}=\frac{1}{2^{m-1}} \frac{1}{2^{n-1}}$. The fact that $\nu_{2}>\nu_{1}$ is obvious.
Result. Let $f(z)$ and $g(z)$ be given as (1) and (2). Suppose that $f_{1}(z)$ and $g_{1}(z)$ are polynomials on the unit circle $D=\{z:|z| \leq 1, z \in \mathbf{C}\}$ of degrees $m-1$ and $n-1$, respectively, for which the zero point is not their root. Then we have

$$
M_{f_{1}} M_{g_{1}} M_{f} M_{g} \leq \nu_{2}^{-2} M_{f_{1} g_{1}} M_{f g}
$$

Proof. Since $f(z)$ and $g(z)$ are polynomials satisfying (7), we will have $\nu_{2}=$ $\frac{1}{2^{m-1}} \frac{1}{2^{n-1}}$. But at the same time for $f_{1}(z)$ and $g_{1}(z), \nu_{1}=\frac{1}{2^{m-1}} \frac{1}{2^{n-1}}$ holds in view of [2]. In other words, $\nu_{1}=\nu_{2}$.
2. Maximum values of polynomials which have the zero as a multiple root on the unit circle

Theorem. Let $f(z)=z^{k}\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{m-k}\right)$ and $g(z)=z^{r}\left(z-\beta_{1}\right) \cdots\left(z-\beta_{n-r}\right)$ be two polynomials in D. Then

$$
\begin{equation*}
M_{f g} \geq \delta M_{f} M_{g} \tag{8}
\end{equation*}
$$

where $\delta=\frac{1}{2^{m-k}} \frac{1}{2^{n-r}}$.
Proof. Consider on D the polynomial $h(z)=z^{k}\left(z-z_{1}\right) \cdots\left(z-z_{w-k}\right)$ of degree w. It is clear that we have $M_{h} \leq 2^{w-k}, M_{f} \leq 2^{m-k}$ and $M_{g} \leq 2^{n-r}$. Similar to (4) and (5), we form

$$
\begin{aligned}
& F(z)=z^{k}\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{p-1}\right)\left(z-\frac{1}{\bar{\alpha}_{p}}\right) \cdots\left(z-\frac{1}{\bar{\alpha}_{m-k}}\right) \\
& G(z)=z^{r}\left(z-\beta_{1}\right) \cdots\left(z-\beta_{q-1}\right)\left(z-\frac{1}{\bar{\beta}_{q}}\right) \cdots\left(z-\frac{1}{\bar{\beta}_{n-r}}\right)
\end{aligned}
$$

Then

$$
f(z)=A F(z) \prod_{p}^{m-k}\left(\frac{\alpha_{\mu}-z}{1-\bar{\alpha}_{\mu} z}\right), \quad g(z)=B G(z) \prod_{q}^{n-r}\left(\frac{\beta_{\eta}-z}{1-\bar{\beta}_{\eta} z}\right)
$$

where $A=\bar{\alpha}_{p} \cdots \bar{\alpha}_{m-k}, B=\bar{\beta}_{q} \cdots \bar{\beta}_{n-r}$. Hence, we have on the circle $|z|=1$

$$
M_{G}=|A| M_{F}, \quad M_{g}=|B| M_{G}, \quad M_{f g}=|A||B| M_{F G}
$$

Besides, one has $M_{F} \leq 2^{m-k}, M_{G} \leq 2^{n-r}$ and $M_{F G} \geq 1$. Thus, for $\delta=$ $\frac{1}{2^{m-k}} \frac{1}{2^{n-r}}$ we obtain (8).

Corollary. For δ to be equal to 1 it is necessary and sufficient that the polynomials $f(z)$ and $g(z)$ have the zero as m multiple root and $g(z)$ has n multiple root respectively.
Proof. Immediate from Theorem.

REFERENCES

1. A. M. Ostrowski: Notiz über Maximalwerte Von polynomen auf dem Einheitskreis. Univ. Beograd, Publ. Elektrotehn. Fak., ser. Mat-Fiz. No. 634-No. 677 (1979), 55-56.
2. E. Mohr: Bemerkung zu der Arbeit von A. M. Ostrowski - Notiz über Maximalwerte von Polynomen auf dem Einheitskreis. Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. 3 (1992), 3-4.

Department of Mathematics, (Received September 6, 1996) Ege University, 35100 Izmir, Turkey

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 26DO5

