NOTE ON THE BEHAVIOR OF SOLUTIONS OF DIFFERENCE EQUATIONS OF ARBITRARY ORDER

Blażej Szmanda

The nonlinear difference equation of the form

$$
\begin{equation*}
\Delta^{m}\left(u_{n}+p_{n} u_{n-k}\right)+q_{n} f\left(u_{\tau_{n}}\right)=0 \quad(m \geq 1, n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

is considered, where Δ^{m} is the m-order forward difference operator; $\left(p_{n}\right)$ and (q_{n}) are sequences of real numbers with $q_{n} \geq 0$ eventually, $\left(\tau_{n}\right)$ is a sequence of integers with $\tau_{n} \leq n$ and $\tau_{n} \rightarrow \infty$ as $n \rightarrow \infty, k$ is a positive integer. The function f is real valued function satisfying $u f(u)>0$ for $u \neq 0$. The asymptotic properties of nonoscillatory solutions of (1) are studied. Sufficient conditions are also given to insure that all solutions of (1) when m is even, are oscillatory.

1. INTRODUCTION

In this paper we study the asymptotic behavior of the solutions of the nonlinear difference equation of the form

$$
\begin{equation*}
\Delta^{m}\left(u_{n}+p_{n} u_{n-k}\right)+q_{n} f\left(u_{\tau_{n}}\right)=0 \quad(m \geq 1, n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

where Δ is the forward difference operator, i.e.

$$
\Delta v_{n}=v_{n+1}-v_{n} \text { and } \Delta^{i} v_{n}=\Delta\left(\Delta^{i-1} v_{n}\right) \quad\left(i=1, \ldots, m, \quad \Delta^{0} v_{n}=v_{n}\right)
$$

$\left(p_{n}\right)$ and $\left(q_{n}\right)$ are sequences of real numbers with $q_{n} \geq 0$ eventually, $\left(\tau_{n}\right)$ is a sequence of integers with $\tau_{n} \leq n$ and $\tau_{n} \rightarrow \infty$ as $n \rightarrow \infty, k$ is a positive integer. The function f is real valued function satisfying $u f(u)>0$ for $u \neq 0$.

[^0]By a solution of (1) we mean a sequence (u_{n}) which is defined for all $n \geq$ $\min _{i \geq 0}\left\{i-k, \tau_{i}\right\}$ and satisfies (1) for n sufficiently large. We consider only such solutions which are nontrivial for all large n. A solution $\left(u_{n}\right)$ of (1) is said to be nonoscillatory if the terms u_{n} of the sequence are eventually positive or eventually negative. Otherwise it is called oscillatory.

Recently, there has been an increasing interest in the study of oscillation and asymptotic behavior of solutions "delay" and "neutral delay" type difference equations. Most of the known results are related to the equations of type (1) in the case $m=1$ or $m=2$; see for example [4], [5], $[\mathbf{7 - 1 2]},[\mathbf{1 4}],[\mathbf{1 6}],[\mathbf{1 7}]$. Some results concerning oscillatory and asymptotic behavior of solutions of difference equations of higher order have been established in papers $[\mathbf{1}-\mathbf{3}],[\mathbf{6}],[\mathbf{1 3}],[\mathbf{1 5}]$.

Our purpose in this paper is to study the asymptotic behavior of nonoscillatory solutions of equation (1). Also, we give oscillation theorem for (1) when m is even. The obtained results extend some of those contained in [11].

2. MAIN RESULTS

Troughout this paper we assume that the following assumptions are satisfied:
(2) $\quad f(u)$ is bounded away from zero if u is bounded away from zero,

$$
\begin{equation*}
\sum_{n=0}^{\infty} q_{n}=\infty \tag{3}
\end{equation*}
$$

Let $\left(u_{n}\right)$ be a solution of (1). Set

$$
\begin{equation*}
z_{n}=u_{n}+p_{n} u_{n-k} \tag{4}
\end{equation*}
$$

We begin with two lemmas that are useful in proving a number of our asymptotic results. All proofs in this note will be done only for the case when a nonoscillatory solution of (1) is eventually positive, since the proof for an eventually negative solution is similar.
Lemma 1. If $\left(u_{n}\right)$ is an eventually positive (negative) solution of (1), then
(a) $\left(\Delta^{m-1} z_{n}\right)$ is eventually nonincreasing (nondecreasing) and $\Delta^{m-1} z_{n} \rightarrow$ $L<\infty(>-\infty)$ as $n \rightarrow \infty$,
(b) if $L>-\infty(<\infty)$, then $\liminf _{n \rightarrow \infty}\left|u_{n}\right|=0$,
(c) if $z_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $\left(\Delta^{i} z_{n}\right)$ is monotonic and

$$
\begin{equation*}
\Delta^{i} z_{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { and } \Delta^{i} z_{n} \Delta^{i+1} z_{n}<0 \tag{5}
\end{equation*}
$$

for $i=0,1, \ldots, m-1$ with $\Delta^{m} z_{n} \leq 0$.
(d) Let $z_{n} \rightarrow 0$ as $n \rightarrow \infty$. If m is even, then $z_{n}<0\left(z_{n}>0\right)$ for $u_{n}>0$
$\left(u_{n}<0\right)$. If m is odd, the $z_{n}>0\left(z_{n}<0\right)$ for $u_{n}>0\left(u_{n}<0\right)$.

Proof. Let $\left(u_{n}\right)$ be an eventually positive solution of (1). Then there exists a positive integer n_{0} such that $u_{n-k}>0$ and $u_{\tau_{n}}>0$ for $n \geq n_{0}$. From (1) and (4) $\Delta^{m} z_{n}=-q_{n} f\left(u_{\tau_{n}}\right) \leq 0$, so $\left(\Delta^{m-1} z_{n}\right)$ is nonincreasing and converges to $L<\infty$. Thus, (a) holds.

If $L>-\infty$, then summing (1) from n_{0} to n and then letting $n \rightarrow \infty$, we have

$$
\sum_{i=n_{0}}^{\infty} q_{i} f\left(u_{\tau_{i}}\right)=\Delta^{m-1} z_{n_{0}}-L<\infty
$$

The last inequality, together with (2) and (3) implies $\liminf _{n \rightarrow \infty}=0$ and so (b) holds.
Now suppose $z \rightarrow 0$ as $n \rightarrow \infty$. Then we see that $\Delta^{i} z_{n} \rightarrow 0$ as $n \rightarrow \infty$ for $i=1,2, \ldots, m-1$. By (a), ($\left.\Delta^{m-1} z_{n}\right)$ is nonincreasing and since $q_{n} \not \equiv 0$ eventually we see that $\Delta^{m-1} z_{n}>0$ for $n \geq n_{0}$. Hence, if $m \geq 2$, then $\left(\Delta^{m-2} z_{n}\right)$ is increasing and so $\Delta^{m-2} z_{n}<0$ for $n \geq n_{0}$. Continuing in this manner we obtain (c).

Part (d) follows immediately from (c).
In our next result we will ask that there exist constants P_{1} and P_{2} such that either

$$
\begin{align*}
& P_{1} \leq p_{n} \leq 0 \tag{6}\\
& -1 \leq p_{n} \leq 0 \tag{7}
\end{align*}
$$

or

$$
\begin{equation*}
P_{2} \leq p_{n} \leq-1 \tag{8}
\end{equation*}
$$

Lemma 2. Let $\left(u_{n}\right)$ be a nonoscillatory solution of (1). Thet the following statements are true:
(a) If (6) holds and $\left(u_{n}\right)$ is eventually positive (negative), then $\left(\Delta_{i} z_{n}\right)$ is monotonic and either

$$
\begin{equation*}
\Delta^{i} z_{n} \rightarrow-\infty\left(\Delta^{i} z_{n} \rightarrow \infty\right) \text { as } n \rightarrow \infty \text { for } i=0,1, \ldots, m-1 \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta^{i} z_{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { and } \Delta^{i} z_{n} \Delta^{i+1} z_{n}<0 \tag{10}
\end{equation*}
$$

for $i=0,1, \ldots, m-1$ with $\Delta^{m} z_{n} \leq 0$.
(b) Let (6) holds. If m is even, then $z_{n}<0\left(z_{n}>0\right)$ for $u_{n}>0\left(u_{n}<0\right)$. If m is odd and (10) holds, then $z_{n}>0\left(z_{n}<0\right)$ for $u_{n}>0\left(u_{n}<0\right)$.
(c) If (7) holds, then (10) holds.
(d) If (8) holds, m is odd and $u_{n}>0\left(u_{n}<0\right)$, then $\Delta^{i} z_{n} \rightarrow-\infty\left(\Delta^{i} z_{n} \rightarrow\right.$ $\infty)$ as $n \rightarrow \infty$ for $i=0,1, \ldots, m-1$.

Proof. If $\left(u_{n}\right)$ is an eventually positive solution of (1), then there exists n_{0} such that $u_{n-k}>0$ and $u_{\tau_{n}}>0$ for $n \geq n_{0}$. From (a) and (b) of Lemma 1, we have that $\left(\Delta^{m-1} z_{n}\right)$ is nonincreasing for $n \geq n_{0}, \Delta^{m-1} z_{n} \rightarrow L \geq-\infty$ as $n \rightarrow \infty$, and $\liminf _{n \rightarrow \infty} u_{n}=0$ if $L>-\infty$. If $L=-\infty$, then clearly (9) holds. If $-\infty<L<0$, then a summation shows that $z_{n} \leq L_{1}$ for some constant $L_{1}<0$. But from (6) we have

$$
P_{1} u_{n-k} \leq p_{n} u_{n-k}<z_{n} \leq L_{1}<0
$$

which contradicts $\liminf _{n \rightarrow \infty}=0$. Thus $L \geq 0$. If $L>0$, then we have $\Delta^{m-1} z_{n} \geq L$ and a summation shows that $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Since $u_{n} \geq z_{n}$ hence $u_{n} \rightarrow \infty$ as $u_{n} \rightarrow \infty$, a contradiction. Therefore $L=0$, i.e. $\Delta^{m-1} z_{n} \rightarrow 0$ as $n \rightarrow \infty$. Moreover, $\Delta^{m-1} z_{n}>0$ since $\left(\Delta^{m-1} z_{n}\right)$ is nonincreasing and $q_{n} \not \equiv 0$ eventually. Hence $\left(\Delta^{m-2} z_{n}\right)$ is increasing. Also, $\Delta^{m-2} z_{n}<0$ since otherwise $\left(\Delta^{m-2} z_{n}\right)$ is eventually positive and increasing, which implies $\left(z_{n}\right)$ has a positive lower bound, contradicting $\liminf _{n \rightarrow \infty} u_{n}=0$. Furthermore, if $\Delta^{m-2} z_{n} \rightarrow L_{2}<0$ as $n \rightarrow \infty$, then $\Delta^{m-2} z_{n} \leq L_{2}$ and a summation shows that eventually $z_{n} \leq L_{3}$ for some negative constant L_{3}. But this again contradicts $\liminf _{n \rightarrow \infty} u_{n}=0$. Therefore, $\left(\Delta^{m-2} z_{n}\right)$ is increasing and tends to zero as $n \rightarrow \infty$. Continuing in this manner we see that (10) holds and this completes the proof of (a).

To prove (b) for $u_{n}>0$ we need only observe that either (9) or (10) implies $z_{n}<0$ when m is even, and (10) implies $z_{n}>0$ when m is odd.

Now suppose (7) holds. If (10) does not hold, then by (a), (9) holds, so $z_{n}<0$ for all large n. By (7), we have

$$
u_{n}<-p_{n} u_{n-k} \leq u_{n-k}
$$

for all large n. But the last inequality implies that $\left(u_{n}\right)$ is bounded which contradicts (9).

For the proof of (d), again assume that $\left(u_{n}\right)$ is eventually positive. If (9) does not hold, then (10) holds, which implies that $\liminf _{n \rightarrow \infty} u_{n}=0$. From (b) we have $z_{n}>0$ for $n \geq n_{1} \geq n_{0}$. Thus, by (8), $u_{n}>-p_{n} u_{n-k} \geq u_{n-k}$ which condradicts $\liminf _{n \rightarrow \infty} u_{n}=0$.

Theorem 1. Let $p_{n} \geq 0$. Then every nonoscillatory solution $\left(u_{n}\right)$ of (1) satisfies the following:
(i) $\left|u_{n}\right| \leq b n^{m-1}$ for some constant $b>0$ and all large n,
(ii) if n^{m-1} / p_{n} is bounded, then $\left(u_{n}\right)$ is bounded,
(iii) if $n^{m-1} / p_{n} \rightarrow 0$ as $n \rightarrow \infty$, then $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let (u_{n}) be an eventually positive solution of (1). As before, from (1) we have $\Delta^{m} z_{n} \leq 0$ eventually, so $z_{n} \leq W(n)$, where $W(n)$ is a polynomial of degree less than or equal to $m-1$. Hence, there exist constants $b>0$ and n_{1} such that $z_{n} \leq b n^{m-1}$ for $n \geq n_{1}$. Clearly (i) follows since $p_{n} \geq 0$. Also, $p_{n} u_{n-k} \leq b n^{m-1}$ and hence (ii) and (iii) follow.

By imposing a stronger condition on $\left(p_{n}\right)$, namely, that there exists a constant $P_{3}>0$ such that

$$
\begin{equation*}
0 \leq p_{n} \leq P_{3}<1 \tag{11}
\end{equation*}
$$

we can obtain much sharper results on the behavior of the solution of (1), than those obtained in Theorem 1.

Theorem 2. Assume that (11) holds.
(i) If m is even, then every solution of (1) is oscillatory.
(ii) If m is odd, then every nonoscillatory solution of (1) tends to zero as $n \rightarrow \infty$.

Proof. If (u_{n}) is an eventually positive solution of (1), say $u_{n-k}>0$ and $u_{\tau_{n}}>0$ for $n \geq n_{0}$, then, by (a) of Lemma 1, we have that $\left(\Delta^{m-1} z_{n}\right)$ is nonincreasing and converges to $L \geq-\infty$ as $n \rightarrow \infty$. Moreover, it is easy to see that if $L<0$, then $\left(z_{n}\right)$ is eventually negative contradicting $u_{n}>0$. Thus, $L \geq 0$, and from (b) of Lemma 1 , we have $\liminf _{n \rightarrow \infty} u_{n}=0$. It is clear since $\Delta^{m} z_{n} \leq 0$, that $\Delta^{i} z_{n}$ is monotonic for $i=0,1, \ldots, m-1$. Since $\left(z_{n}\right)$ is monotonic, then $z_{n} \rightarrow \ell$ as $n \rightarrow \infty$. Observe that $\ell \geq 0$ since $\ell<0$ implies $u_{n}<0$. Suppose $\ell>0$. For the case (z_{n}) increasing, we have

$$
z_{n}=u_{n}+p_{n} u_{n-k} \leq u_{n}+p_{n} z_{n-k} \leq u_{n}+P_{3} z_{n},
$$

so $z_{n}\left(1-P_{3}\right) \leq u_{n}$, which, in view of (11), contradicts $\liminf _{n \rightarrow \infty} u_{n}=0$. If $\left(z_{n}\right)$ is decreasing, let $1-P_{3}=\varepsilon>0$. Then $z_{n} \leq u_{n}+P_{3} z_{n-k}$, and since ℓ is finite

$$
\begin{equation*}
\frac{z_{n}}{z_{n-k}} \leq \frac{u_{n}}{\ell}+P_{3} . \tag{12}
\end{equation*}
$$

Since $P_{3}+\frac{\varepsilon}{2}<1$, so there exists $n_{1}>n_{0}$ such that $z_{n} / z_{n-k} \geq P_{3}+\frac{\varepsilon}{2}$ for $n \geq n_{1}$. Hence from (12) we get $u_{n} \geq \frac{\ell \varepsilon}{2}$ contradicting $\liminf _{n \rightarrow \infty} u_{n}=0$. Thus, we have $z_{n} \rightarrow 0$ as $n \rightarrow \infty$, which implies, by (c) of Lemma 1, that (5) holds. Now observe that part (d) of Lemma 1 implies that $z_{n}<0$ for m even and $z_{n}>0$ for m odd. But $z_{n}<0$ contradicts $u_{n}>0$ and $p_{n} \geq 0$, so (i) holds. For m odd, $z_{n}>0$, so $u_{n} \leq z_{n} \rightarrow 0$ as $n \rightarrow \infty$ and (ii) holds.

In our next two theorems the sequence $\left(p_{n}\right)$ is allowed to oscillate.
Theorem 3. If $\left(p_{n}\right)$ is not eventually negative, then any solution $\left(u_{n}\right)$ of (1) is either oscillatory or satisfies $\liminf _{n \rightarrow \infty}\left|u_{n}\right|=0$.
Proof. Assume $\left(u_{n}\right)$ is a solution of (1) that is eventually positive. Then as before, by (a) of Lemma $1, \Delta^{m-1} z_{n} \rightarrow L<\infty$ as $n \rightarrow \infty$, and by (b) of Lemma 1 , $\liminf _{n \rightarrow \infty} u_{n}=0$ if $L>-\infty$. If $L=-\infty$, then clearly $z_{n} \rightarrow-\infty$ contradicting $u_{n}>0$ since $\left(p_{n}\right)$ is not eventually negative.

Theorem 4. If there exists a constant P_{4} such that

$$
\begin{equation*}
p_{n} \geq P_{4} \tag{13}
\end{equation*}
$$

then any nonoscillatory solution $\left(u_{n}\right)$ of (1) satisfies either $\left|u_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ or $\liminf _{n \rightarrow \infty}\left|u_{n}\right|=0$. Moreover, if $P_{4} \geq-1$, then the second conclusion holds.
Proof. Let $\left(u_{n}\right)$ be an eventually positive solution of (1). As in the proof of Theorem 3, we see that $\Delta^{m-1} z_{n} \rightarrow L<\infty$, and that if $L>-\infty$, then $\liminf _{n \rightarrow \infty} u_{n}=$ 0 . Furthermore, if $L=-\infty$, then $z \rightarrow-\infty$ as $n \rightarrow \infty$. Thus, it follows from (13) that

$$
P_{4} u_{n-k} \leq u_{n}+p_{n} u_{n-k}=z_{n} \rightarrow-\infty \text { as } n \rightarrow \infty
$$

so $p_{n}<0$ and $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
If $P_{4} \geq-1$, then clearly either $\liminf _{n \rightarrow \infty} u_{n}=0$, or $u_{n}+p_{n} u_{n-k}=z_{n}<0$ for all large n. Therefore, $u_{n}<-p_{n} u_{n-k} \leq u_{n-k}$ for all large n, which implies that (u_{n}) is bounded. But $\left(u_{n}\right)$ bounded contradicts $L=-\infty$ and the proof is complete.
Theorem 5. Assume that (8) holds. If m is odd and $\left(u_{n}\right)$ is a nonoscillatory solution of (1), then $\left|u_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
Proof. Let (u_{n}) be nonoscillatory solution of (1) and assume that $\left(u_{n}\right)$ is eventually positive. By (d) of Lemma 2, $z_{n} \rightarrow-\infty$ as $n \rightarrow \infty$. But (8) implies that $P_{2} u_{n-k}<$ z_{n} and, hence, $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Theorem 6. If m is even and there exist constants P_{2} and P_{5} such that

$$
\begin{equation*}
P_{2} \leq p_{n} \leq P_{5}<-1 \tag{14}
\end{equation*}
$$

then every bounded nonoscillatory solution of (1) tends to zero as $n \rightarrow \infty$.
Proof. Assume that (1) has a bounded nonoscillatory solution (u_{n}) and let (u_{n}) is eventually positive. Part (a) of Lemma 2 implies that either (9) or (10) holds. If (9) holds, then the argument used in the proof of Theorem 5 shows that $u_{n} \rightarrow \infty$ as $n \rightarrow \infty$ contradicting (u_{n}) being bounded. Therefore, (10) holds and by (b) of Lemma 2, together with (10), implies that $\left(z_{n}\right)$ is negative and increases to zero as $n \rightarrow \infty$. Since $\left(u_{n}\right)$ is bounded $\limsup u_{n}=a$ is nonnegative and finite. If $a>0$, then there is a increasing sequence of positive integers $\left(n_{i}\right)$ such that $u_{n_{i}-k} \rightarrow a$ as $i \rightarrow \infty$. Let $\alpha=P_{5}+1<0, \varepsilon=-\frac{\alpha a}{8}>0, \delta=\frac{\alpha a}{8 P_{5}}>0$ and $\lambda=\frac{-3 \alpha a}{4}>0$. Then there exists a positive integer n_{0} such that $z_{n_{i}}>-\varepsilon$ and $u_{n_{i}-k}>a-\delta>0$ for $i \geq n_{0}$. Thus, for each $i \geq n_{0}$ we have

$$
-\varepsilon<z_{n_{i}}<u_{n_{i}}+P_{5}(a-\delta)
$$

so

$$
-u_{n_{i}}<P_{5} a-P_{5} \delta+\varepsilon=(\alpha-1) a-\frac{\alpha a}{4}=-\lambda-a
$$

or $u_{n_{i}}>a+\lambda$ for $i \geq n_{0}$ contradicting $\limsup u_{n}=a>0$. Hence, we conclude that $\limsup _{n \rightarrow \infty} u_{n}=0$, which implies that $u_{n} \xrightarrow{n \rightarrow \infty} 0$ as $n \rightarrow \infty$.
Theorem 7. Suppose that there exists a constant P_{6} such that

$$
-1<P_{6} \leq p_{n} \leq 0
$$

and $\left(u_{n}\right)$ is a nonoscillatory solution of (1).
(i) If m is even and (7) holds, then $\left(u_{n}\right)$ is bounded.
(ii) If m is even or odd and (7^{\prime}) holds, then $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let $\left(u_{n}\right)$ be a nonoscillatory solution of (1) and let $\left(u_{n-k}\right)$ and ($u_{\tau_{n}}$) are both positive for $n \geq n_{0}$. Then part (c) of Lemma 2 implies that (10) holds. If m is even, it follows from (7^{\prime}) and (d) of Lemma 1 that $u_{n} \leq P_{6} u_{n-k}$ for $n \geq n_{0}$. (If (7) holds, then $u_{n} \leq u_{n-k}$ for $n \geq n_{0}$, so (i) is proved.) Thus $u_{n+k} \leq-P_{6} u_{n}, u_{n+2 k} \leq$ $\left(-P_{6}\right)^{2} u_{n}$ and by induction we see that $u_{n+i k} \leq\left(-P_{6}\right)^{i} u_{n}$ for every positive integer i. Since $0<-P_{6}<1$, the last inequality implies that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$.

If m is odd, then (7^{\prime}) and (d) of Lemma 1 imply that $0<z_{n}<M$ for some positive constant M, so $0<u_{n}<-P_{6} u_{n-k}+M$. If (u_{n}) is unbounded, then there exists an increasing sequence of positive integres $\left(n_{i}\right)$ such that $n_{1}>n_{0}, u_{n_{i}} \rightarrow \infty$ as $i \rightarrow \infty$ and $u_{n_{i}}=\max _{n_{1} \leq n \leq n_{i}} u_{n}$. New for each i we have

$$
u_{n_{i}}<-P_{6} u_{n_{i}-k}+M \leq-P_{6} u_{n_{i}}+M \text { or }\left(1+P_{6}\right) u_{n_{i}} \leq M,
$$

which is impossible in view of $\left(7^{\prime}\right)$. Thus, $\left(u_{n}\right)$ is bounded and there exists a constant $a>0$ such that $\limsup u_{n}=a$. Hence, there is a subsequence if $\left(u_{n}\right)$, say $\left(u_{t_{i}}\right)$ such that $u_{t_{i}} \rightarrow a$ as $i \rightarrow \infty$. Then from (7^{\prime}) we get $-P_{6} u_{t_{i}-k} \geq u_{t_{i}}-z_{t_{i}}$. Since $a>0$, there is a positive number ε satisfying $\left(1-P_{6}\right) \varepsilon<\left(1+P_{6}\right) a$ and so $0<-P_{6}(a+\varepsilon)<a-\varepsilon$. But for all sufficiently large $i, u_{t_{i}}<a+\varepsilon$, hence we have

$$
a-\varepsilon>-P_{6} u_{t_{i}-k} \geq u_{t_{i}}-z_{t_{i}} \text { for all such } i
$$

Letting $i \rightarrow \infty$ the last inequality contradicts $u_{t_{i}} \rightarrow a$ as $i \rightarrow \infty$ since $z_{t_{i}} \rightarrow 0$ as $i \rightarrow \infty$. Thus $u_{n} \rightarrow 0$ as $n \rightarrow \infty$ also in this case.

REFERENCES

1. R. P. Agarwal: Properties of solutions of higher order nonlinear difference equations. An. Sti. Univ. Iasi, 31 (1985), 165-172.
2. R. P. Agarwal: Properties of solutions of higher order nonlinear difference equations II. An. Sti. Univ. Iasi, 31 (1983), 85-96.
3. R. P. Agarwal: Difference calculus with applications to difference equations, in General Inequalities 4, ISNM 71 (1984), 95-110.
4. D. A. Georgiou, E. A. Grove, G. Ladas: Oscillations of neutral difference equations. Appl. Anal. 33 (1989), 243-253.
5. V. LJ. Kocić: Linearized oscillations for difference equations. Hiroshima Math. J., 22 (1992), 95-102.
6. G. Ladas, G. Qian: Comparison results and linearized oscillations for higher order difference equations. J. Math. \& Math. Sci. 15 (1992), 129-142.
7. B. S. Lalli, B. G. Zhang, J. Z. Li: On the oscillation of solutions and existence of positive solutions of neutral difference equations. J. Math. Anal. Appl. 158 (1991), 213-233.
8. B. S. Lalli, B. G. Zhang: On existence of positive solutions and bounded oscillations for neutral difference equations. J. Math. Anal. Appl. 166 (1992), 272-287.
9. J. Popenda, B. Szmanda: On the oscillation of solutions of certain difference equations. Demonstr. Math. 17 (1984), 153-164.
10. Z. Szafrański, B. Szmanda: A note on the oscillations of some difference equations. Fasc. Math. 21 (1990), 57-63.
11. Z. Szafrański, B. Szmanda: Oscillation and asymptotic behaviour of certain nonlinear difference equations. Riv. Mat. Univ. Parma, 4 (1995), 231-240.
12. B. Szmanda: Oscillatory behaviour of certain difference equations. Fasc. Math. 21 (1990), 65-78.
13. B. Szmanda: Oscillation of solutions of higher order nonlinear difference equations. Bull. Inst. Math., Acad. Sinica, (to appear).
14. E. Thandapani: Asymptotic and oscillatory behaviour of solutions of a second order nonlinear neutral delay difference equation. Riv. Mat. Univ. Parma, 1 (1992), 105113.
15. E. Thandapani: Oscillation theorems for higher order nonlinear difference equations. Indian J. Pure Appl. Math. 25 (1994), 519-524.
16. J. S. Yu, Z. C. WANG: Asymptotic behaviour and oscillation in neutral delay difference equations. Funkc. Ekvac. 37 (1994), 241-248.
17. B. G. Zhang, S. S. Cheng: Oscillation criteria and comparison theorems for delay difference equations. Fasc. Math. 25 (1995), 13-32.

Institute of Mathematics, (Received August 1, 1996)
Poznań University of Technology,
60-965 Poznań,
Poland

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 39A10

