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NOTE ON THE BEHAVIOR

OF SOLUTIONS OF DIFFERENCE

EQUATIONS OF ARBITRARY ORDER

B la_zej Szmanda

The nonlinear di�erence equation of the form

(1) �m(un + pnun�k) + qnf(u�n) = 0 (m � 1; n = 0; 1; 2; : : :)

is considered, where �m is the m-order forward di�erence operator; (pn) and

(qn) are sequences of real numbers with qn � 0 eventually, (�n) is a sequence

of integers with �n � n and �n ! 1 as n ! 1; k is a positive integer.

The function f is real valued function satisfying uf(u) > 0 for u 6= 0: The

asymptotic properties of nonoscillatory solutions of (1) are studied. Su�cient

conditions are also given to insure that all solutions of (1) when m is even,

are oscillatory.

1. INTRODUCTION

In this paper we study the asymptotic behavior of the solutions of the non-

linear di�erence equation of the form

(1) �m(un + pnun�k) + qnf(u�n ) = 0 (m � 1; n = 0; 1; 2; : : :);

where � is the forward di�erence operator, i.e.

�vn = vn+1 � vn and �ivn = �(�i�1vn) (i = 1; : : : ;m; �0vn = vn);

(pn) and (qn) are sequences of real numbers with qn � 0 eventually, (�n) is a sequen-

ce of integers with �n � n and �n ! 1 as n ! 1; k is a positive integer. The

function f is real valued function satisfying uf(u) > 0 for u 6= 0:
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By a solution of (1) we mean a sequence (un) which is de�ned for all n �
min
i�0

fi � k; �ig and satis�es (1) for n su�ciently large. We consider only such

solutions which are nontrivial for all large n: A solution (un) of (1) is said to be

nonoscillatory if the terms un of the sequence are eventually positive or eventually

negative. Otherwise it is called oscillatory.

Recently, there has been an increasing interest in the study of oscillation

and asymptotic behavior of solutions \delay" and \neutral delay" type di�erence

equations. Most of the known results are related to the equations of type (1) in the

case m = 1 or m = 2; see for example [4], [5], [7{12], [14], [16], [17]. Some results

concerning oscillatory and asymptotic behavior of solutions of di�erence equations

of higher order have been established in papers [1{3], [6], [13], [15].

Our purpose in this paper is to study the asymptotic behavior of nonoscilla-

tory solutions of equation (1). Also, we give oscillation theorem for (1) when m is

even. The obtained results extend some of those contained in [11].

2. MAIN RESULTS

Troughout this paper we assume that the following assumptions are satis�ed:

(2) f(u) is bounded away from zero if u is bounded away from zero,

(3)
1P

n=0

qn = 1:

Let (un) be a solution of (1). Set

(4) zn = un + pnun�k:

We begin with two lemmas that are useful in proving a number of our asymp-

totic results. All proofs in this note will be done only for the case when a nonoscilla-

tory solution of (1) is eventually positive, since the proof for an eventually negative

solution is similar.

Lemma 1. If (un) is an eventually positive (negative) solution of (1); then

(a) (�m�1zn) is eventually nonincreasing (nondecreasing) and �m�1zn !
L <1 (> �1) as n!1;

(b) if L > �1 (<1); then liminf
n!1

junj = 0;

(c) if zn ! 0 as n!1; then (�izn) is monotonic and

(5) �izn ! 0 as n!1 and �izn�i+1zn < 0

for i = 0; 1; : : : ;m� 1 with �mzn � 0:

(d) Let zn ! 0 as n!1: If m is even, then zn < 0 (zn > 0) for un > 0

(un < 0): If m is odd, the zn > 0 (zn < 0) for un > 0 (un < 0):
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Proof. Let (un) be an eventually positive solution of (1). Then there exists a

positive integer n0 such that un�k > 0 and u�n > 0 for n � n0: From (1) and (4)

�mzn = �qnf(u�n ) � 0; so (�m�1zn) is nonincreasing and converges to L < 1:

Thus, (a) holds.

If L > �1; then summing (1) from n0 to n and then letting n!1; we have

1P

i=n0

qif(u�i ) = �m�1zn0 � L <1:

The last inequality, together with (2) and (3) implies liminf
n!1

= 0 and so (b) holds.

Now suppose z ! 0 as n ! 1: Then we see that �izn ! 0 as n ! 1 for

i = 1; 2; : : :;m� 1: By (a), (�m�1zn) is nonincreasing and since qn 6� 0 eventually

we see that �m�1zn > 0 for n � n0: Hence, if m � 2; then (�m�2zn) is increasing

and so �m�2zn < 0 for n � n0: Continuing in this manner we obtain (c).

Part (d) follows immediately from (c).

In our next result we will ask that there exist constants P1 and P2 such that

either

(6) P1 � pn � 0;

(7) �1 � pn � 0;

or

(8) P2 � pn � �1:

Lemma 2. Let (un) be a nonoscillatory solution of (1): Thet the following state-

ments are true:

(a) If (6) holds and (un) is eventually positive (negative); then (�izn) is

monotonic and either

(9) �izn !�1 (�izn !1) as n!1 for i = 0; 1; : : : ;m� 1

or

(10) �izn ! 0 as n!1 and �izn�i+1zn < 0

for i = 0; 1; : : : ;m� 1 with �mzn � 0:

(b) Let (6) holds. If m is even, then zn < 0 (zn > 0) for un > 0 (un < 0): If

m is odd and (10) holds, then zn > 0 (zn < 0) for un > 0 (un < 0):

(c) If (7) holds, then (10) holds.

(d) If (8) holds, m is odd and un > 0 (un < 0); then �izn ! �1 (�izn !
1) as n!1 for i = 0; 1; : : : ;m� 1:
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Proof. If (un) is an eventually positive solution of (1), then there exists n0 such

that un�k > 0 and u�n > 0 for n � n0: From (a) and (b) of Lemma 1, we have

that (�m�1zn) is nonincreasing for n � n0; �m�1zn ! L � �1 as n ! 1; and

liminf
n!1

un = 0 if L > �1: If L = �1; then clearly (9) holds. If �1 < L < 0; then

a summation shows that zn � L1 for some constant L1 < 0: But from (6) we have

P1un�k � pnun�k < zn � L1 < 0;

which contradicts liminf
n!1

= 0: Thus L � 0: If L > 0; then we have �m�1zn � L

and a summation shows that zn ! 1 as n ! 1: Since un � zn hence un ! 1
as un ! 1; a contradiction. Therefore L = 0; i.e. �m�1zn ! 0 as n ! 1:

Moreover, �m�1zn > 0 since (�m�1zn) is nonincreasing and qn 6� 0 eventually.

Hence (�m�2zn) is increasing. Also, �m�2zn < 0 since otherwise (�m�2zn) is

eventually positive and increasing, which implies (zn) has a positive lower bound,

contradicting liminf
n!1

un = 0: Furthermore, if �m�2zn ! L2 < 0 as n ! 1; then

�m�2zn � L2 and a summation shows that eventually zn � L3 for some negative

constant L3: But this again contradicts liminf
n!1

un = 0: Therefore, (�m�2zn) is

increasing and tends to zero as n!1: Continuing in this manner we see that (10)

holds and this completes the proof of (a).

To prove (b) for un > 0 we need only observe that either (9) or (10) implies

zn < 0 when m is even, and (10) implies zn > 0 when m is odd.

Now suppose (7) holds. If (10) does not hold, then by (a), (9) holds, so zn < 0

for all large n: By (7), we have

un < �pnun�k � un�k

for all large n: But the last inequality implies that (un) is bounded which contradicts

(9).

For the proof of (d), again assume that (un) is eventually positive. If (9)

does not hold, then (10) holds, which implies that liminf
n!1

un = 0: From (b) we have

zn > 0 for n � n1 � n0: Thus, by (8), un > �pnun�k � un�k which condradicts

liminf
n!1

un = 0:

Theorem 1. Let pn � 0: Then every nonoscillatory solution (un) of (1) satis�es

the following :

(i) junj � bnm�1 for some constant b > 0 and all large n;

(ii) if nm�1=pn is bounded, then (un) is bounded,

(iii) if nm�1=pn ! 0 as n!1; then un ! 0 as n!1:

Proof. Let (un) be an eventually positive solution of (1). As before, from (1) we

have �mzn � 0 eventually, so zn � W (n); where W (n) is a polynomial of degree

less than or equal to m � 1: Hence, there exist constants b > 0 and n1 such that

zn � bnm�1 for n � n1: Clearly (i) follows since pn � 0: Also, pnun�k � bnm�1

and hence (ii) and (iii) follow.
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By imposing a stronger condition on (pn); namely, that there exists a constant

P3 > 0 such that

(11) 0 � pn � P3 < 1;

we can obtain much sharper results on the behavior of the solution of (1), than

those obtained in Theorem 1.

Theorem 2. Assume that (11) holds.

(i) If m is even, then every solution of (1) is oscillatory.

(ii) If m is odd, then every nonoscillatory solution of (1) tends to zero as

n!1:

Proof. If (un) is an eventually positive solution of (1), say un�k > 0 and u�n > 0

for n � n0; then, by (a) of Lemma 1, we have that (�m�1zn) is nonincreasing and

converges to L � �1 as n!1: Moreover, it is easy to see that if L < 0; then (zn)

is eventually negative contradicting un > 0: Thus, L � 0; and from (b) of Lemma

1, we have liminf
n!1

un = 0: It is clear since �mzn � 0; that �izn is monotonic for

i = 0; 1; : : : ;m� 1: Since (zn) is monotonic, then zn ! ` as n!1: Observe that

` � 0 since ` < 0 implies un < 0: Suppose ` > 0: For the case (zn) increasing, we

have

zn = un + pnun�k � un + pnzn�k � un + P3zn;

so zn(1 � P3) � un; which, in view of (11), contradicts liminf
n!1

un = 0: If (zn) is

decreasing, let 1� P3 = " > 0: Then zn � un + P3zn�k; and since ` is �nite

(12)
zn

zn�k
�

un

`
+ P3:

Since P3 + "

2
< 1; so there exists n1 > n0 such that zn=zn�k � P3 + "

2
for n � n1:

Hence from (12) we get un �
`"

2
contradicting liminf

n!1
un = 0: Thus, we have zn ! 0

as n!1; which implies, by (c) of Lemma 1, that (5) holds. Now observe that part

(d) of Lemma 1 implies that zn < 0 for m even and zn > 0 for m odd. But zn < 0

contradicts un > 0 and pn � 0; so (i) holds. For m odd, zn > 0; so un � zn ! 0 as

n!1 and (ii) holds.

In our next two theorems the sequence (pn) is allowed to oscillate.

Theorem 3. If (pn) is not eventually negative, then any solution (un) of (1) is

either oscillatory or satis�es liminf
n!1

junj = 0:

Proof. Assume (un) is a solution of (1) that is eventually positive. Then as

before, by (a) of Lemma 1, �m�1zn ! L <1 as n!1; and by (b) of Lemma 1,

liminf
n!1

un = 0 if L > �1: If L = �1; then clearly zn !�1 contradicting un > 0

since (pn) is not eventually negative.

Theorem 4. If there exists a constant P4 such that

(13) pn � P4;
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then any nonoscillatory solution (un) of (1) satis�es either junj ! 1 as n ! 1
or liminf

n!1
junj = 0: Moreover, if P4 � �1; then the second conclusion holds.

Proof. Let (un) be an eventually positive solution of (1). As in the proof of

Theorem 3, we see that �m�1zn ! L <1; and that if L > �1; then liminf
n!1

un =

0: Furthermore, if L = �1; then z ! �1 as n ! 1: Thus, it follows from (13)

that

P4un�k � un + pnun�k = zn !�1 as n!1;

so pn < 0 and un !1 as n!1:

If P4 � �1; then clearly either liminf
n!1

un = 0; or un+pnun�k = zn < 0 for all

large n: Therefore, un < �pnun�k � un�k for all large n; which implies that (un)

is bounded. But (un) bounded contradicts L = �1 and the proof is complete.

Theorem 5. Assume that (8) holds. If m is odd and (un) is a nonoscillatory

solution of (1); then junj ! 1 as n!1:

Proof. Let (un) be nonoscillatory solution of (1) and assume that (un) is eventually

positive. By (d) of Lemma 2, zn !�1 as n!1: But (8) implies that P2un�k <

zn and, hence, un !1 as n!1:

Theorem 6. If m is even and there exist constants P2 and P5 such that

(14) P2 � pn � P5 < �1;

then every bounded nonoscillatory solution of (1) tends to zero as n!1:

Proof. Assume that (1) has a bounded nonoscillatory solution (un) and let (un)

is eventually positive. Part (a) of Lemma 2 implies that either (9) or (10) holds. If

(9) holds, then the argument used in the proof of Theorem 5 shows that un !1
as n ! 1 contradicting (un) being bounded. Therefore, (10) holds and by (b) of

Lemma 2, together with (10), implies that (zn) is negative and increases to zero as

n ! 1: Since (un) is bounded limsup
n!1

un = a is nonnegative and �nite. If a > 0;

then there is a increasing sequence of positive integers (ni) such that uni�k ! a as

i ! 1: Let � = P5 + 1 < 0; " = ��a

8
> 0; � = �a

8P5
> 0 and � = �3�a

4
> 0: Then

there exists a positive integer n0 such that zni > �" and uni�k > a � � > 0 for

i � n0: Thus, for each i � n0 we have

�" < zni < uni + P5(a � �);

so

�uni < P5a� P5� + " = (�� 1)a�
�a

4
= �� � a;

or uni > a + � for i � n0 contradicting limsup
n!1

un = a > 0: Hence, we conclude

that limsup
n!1

un = 0; which implies that un ! 0 as n!1:

Theorem 7. Suppose that there exists a constant P6 such that

(70) �1 < P6 � pn � 0
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and (un) is a nonoscillatory solution of (1):

(i) If m is even and (7) holds, then (un) is bounded.

(ii) If m is even or odd and (70) holds, then un ! 0 as n!1:

Proof. Let (un) be a nonoscillatory solution of (1) and let (un�k) and (u�n ) are

both positive for n � n0: Then part (c) of Lemma 2 implies that (10) holds. If m is

even, it follows from (70) and (d) of Lemma 1 that un � P6un�k for n � n0: (If (7)

holds, then un � un�k for n � n0; so (i) is proved.) Thus un+k � �P6un; un+2k �
(�P6)

2un and by induction we see that un+ik � (�P6)
iun for every positive integer

i: Since 0 < �P6 < 1; the last inequality implies that un ! 0 as n!1:

If m is odd, then (70) and (d) of Lemma 1 imply that 0 < zn < M for some

positive constant M; so 0 < un < �P6un�k + M: If (un) is unbounded, then there

exists an increasing sequence of positive integres (ni) such that n1 > n0; uni !1
as i!1 and uni = max

n1�n�ni
un: New for each i we have

uni < �P6uni�k + M � �P6uni + M or (1 + P6)uni �M;

which is impossible in view of (70). Thus, (un) is bounded and there exists a

constant a > 0 such that limsup
n!1

un = a: Hence, there is a subsequence if (un); say

(uti) such that uti ! a as i ! 1: Then from (70) we get �P6uti�k � uti � zti :

Since a > 0; there is a positive number " satisfying (1 � P6)" < (1 + P6)a and so

0 < �P6(a + ") < a� ": But for all su�ciently large i; uti < a + "; hence we have

a� " > �P6uti�k � uti � zti for all such i:

Letting i!1 the last inequality contradicts uti ! a as i!1 since zti ! 0

as i!1: Thus un ! 0 as n!1 also in this case.
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