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MODULI OF CONTINUITY

AND SPACES OF FUNCTIONS

�Arp�ad Sz�az 1

By introducing a natural generalization of the usual modulus of continuity, we

prove the closedness of various spaces of bounded and continuous functions

in a uni�ed way. Moreover, we prove an extension of the theorem on the

uniform continuity of continuous functions on compact sets. We give some

su�cient conditions for the uniform convergence of the composition of uni-

formly convergent sequences. The latter results can be applied to easily prove

a Leibniz-type rule for the di�erentiation of parametric Riemann{Stieltjes in-

tegrals, and a Helly-type convergence theorem for path integrals.

1. THE UNIFORM METRIC

Throughout in the sequel, X and Y will denote metric spaces and Y X will
denote the family of all functions from X into Y:

Since each nonvoid set is a metric space with its discrete metric, the following
de�nition would not be generalized by assuming only that X is a nonvoid set.

De�nition 1.1. The extended real valued function d de�ned by

d(f; g) = sup
�
d
�
f(x); g(x)

�
: x 2 X

	

for all f; g 2 Y X will be called the uniform metric on Y X :

By introducing some obvious modi�cation of the corresponding metric space
de�nitions, one can easily prove the following two basic theorems.

Theorem 1.2. The uniform metric on Y X is an extended real valued metric on

Y X :
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Remark 1.3. Note that if X is in�nite, then the uniform metric on Y X is a metric
if and only if Y is bounded.

Theorem 1.4. The generalized metric space Y X is complete if and only if Y is

complete.

Corollary 1.5. A closed subspace of Y X is complete whenever Y is complete.

Remark 1.6. Note that if the constant members of Y X are contained in some
complete subspace of Y X , then Y is also complete.

In the sequel, we shall also use the following more particular

De�nition 1.7. If A is a subset of a metric or generalized metric space X and

0 < r <1; then the set A�r =
�
x 2 X : 9a 2 A : d(a; x) < r

	
will be called the

r-closure of A in X:

Moreover, the set A will be called r-closure in X if A�r = A: The set A is

called strongly closed in X if it is r-closed in X for all 0 < r <1:

Remark 1.8. Note that the closure of A in X can now be expressed by

A� =
\

0<r<1

A�r :

Therefore, the r-closed sets, and hence the strongly closed sets, are closed.

2. MODULI OF CONTINUITY

De�nition 2.1. If f 2 Y X and ; 6= A � X; then the extended real valued function

!Af de�ned by

!Af (r) = sup
�
d
�
f(a); f(x)

�
: a 2 A; x 2 X; d(a; x) � r

	

for all 0 � r � 1; will be called the modulus of continuity of f with respect to A:

Remark 2.2. Note that !af = !
fag

f ; where a 2 X; is a local modulus of continuity

of f and !f = !Xf is a global modulus of continuity of f:

Remark 2.3. Moreover, it is also worth noticing that !f (1) = !Xf (1) =
diam(f(X)):

The de�nition of !Af (1) can also be justi�ed by the next theorem which

shows that the function !Af is continuous at the point 1:

Theorem 2.4. If f 2 Y X and ; 6= A � X; then !Af is a nondecreasing function

on [0;1] such that !Af (0) = 0 and !Af (1) = lim
r!1

!Af (r):

Proof. To prove the above limit property, note that for each � < !Af (1) there

exist a0 2 A and x0 2 X such that � < d
�
f(a0); f(x0)

�
: Therefore, by de�ning

� = d(a0; x0) we evindently have

� < d
�
f(a0); f(x0)

�
� !Af (�) � !Af (r) � !Af (1)
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for all � < r �1:

Remark 2.5. A particular case of Theorem 2.4 gives dim
�
f(X)

�
= lim

r!1
!f (r) for

all f 2 Y X :

Theorem 2.6. If f 2 Y X and ; 6= A � X; then !Af (1) � !f (1) � 2!Af (1):

Proof. By corresponding de�nitions it is clear that !Af (1) � !Xf (1) = !f (1):
Moreover, if x; y 2 X and a 2 A; then we evidently have

d
�
f(x); f(y)

�
� d

�
f(x); f(a)

�
+ d

�
f(a); f(y)

�
� !Af (1) + !Af (1);

whence the inequality !f (1) � 2!Af (1) is also immediate.

Theorem 2.7. If f; g 2 Y X ; then d(f; g) � !f (1) + !g(1) + d
�
f(X); g(X)

�
:

Proof. For each x; a; b 2 X; we have

d
�
f(x); g(x)

�
� d

�
f(x); f(a)

�
+ d

�
f(a); g(b)

�
+ d

�
g(b); g(x)

�

� !f (1) + d
�
f(a); g(b)

�
+ !g(1);

and hence

d(f; g) � !f (1) + d
�
f(a); g(b)

�
+ !g(1)

Therefore, since

d
�
f(X); g(X)

�
= inf

�
d
�
f(a); g(b)

�
: a; b 2 X

	
;

the stated inequality is also true.

Remark 2.8. Note that the inequalities in Theorems 2.6 and 2.7 can be rewritten
by using Remark 2.3.

Theorem 2.9. If f; g 2 Y X ; ; 6= A � X and 0 � r � 1; then

!Af (r) � !Ag (r) + 2d(f; g):

Proof. For each a 2 A and x 2 X; with d(a; x) � r; we have

d
�
f(a); f(x)

�
� d

�
f(a); g(a)

�
+ d

�
g(a); g(x)

�
+ d

�
g(x); f(x)

�

� d(f; g) + !Ag (r) + d(f; g);

whence the stated inequality is immediate.

Remark 2.10. A paricular case of Theorem 2.9 gives

diam
�
f(X)

�
� diam

�
g(X)

�
+ 2d(f; g)

for all f; g 2 Y X :
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3. SPACES OF BOUNDED FUNCTIONS

De�nition 3.1. For each ; 6= A � X and 0 � r �1 we de�ne

BrA(X;Y ) =
�
f 2 Y X : !Af (r) <1

	
:

Note that for each f 2 Y X we have f 2 BrA(X;Y ) if and only if there exists an
M <1 such that

a 2 A; x 2 X; d(a; x) � r ) d
�
f(a); f(x)

�
�M:

Remark 3.3. Therefore B(X;Y ) = B1X (X;Y ) is just the family of all bounded
members of Y X :

By the corresponding de�nitions and Theorems 2.4 and 2.6, it is clear that
we also have

Theorem 3.4. If ; 6= A 2 X and 0 � r � s � 1; then

B(X;Y ) = B1A (X;Y ) � BsA(X;Y ) � BrA(X;Y ) � B0
A(X;Y ) = Y X :

Moreover, as an immediate consequence of Theorems 1.2 and 2.7, we can also
state

Theorem 3.5. The family B(X;Y ); with the corresponding restriction of the uni-

form metric, is a metric space.

On the other hand, by using Theorem 2.9, we can also easily prove

Theorem 3.6. The family BrA(X;Y ) is a strongly closed subset of Y X :

Proof. If f is in the s-closure of BrA(X;Y ) in Y
X for some 0 < s <1; then there

exists a g 2 BrA(X;Y ) such that d(f; g) < s: Hence, by Theorem 2.9, it is clear that

!Af (r) � !Ag (r) + 2d(f; g) � !Ag (r) + 2s <1;

and thus f 2 BrA(X;Y ) also holds.

Remark 3.7. Thus, in particular, the family B(X;Y ) is strongly closed in Y X :

From Theorem 3.6, by Corollary 1.5 and Remark 1.6, it is clear that we also
have

Corollary 3.8. The space BrA(X;Y ) is complete if and only if Y is complete.

Remark 3.9. Thus, in particular, the space B(X;Y ) is complete if and only if Y
is complete.

An even more straightforward application of De�nition 3.1 and Theorem 2.9
yields

Theorem 3.10. If f 2 Y X and g 2 BrA(X;Y ); then j!Af (r)� !Ag (r)j � 2d(f; g):
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Remark 3.11. A particular case of this theorem gives

��diam�
f(X)

�
� diam

�
g(X)

��� � 2d(f; g)

for all f 2 Y X and g 2 B(X;Y ):

Moreover, as an immediate consequence of Theorem 3.11, we can also state

Corollary 3.12. The function f 7! !Af (r)
�
f 2 BrA(X;Y )

�
; is uniformly conti-

nuous.

Remark 3.13. Thus, in particular, the function f 7! diam
�
f(X)

� �
f 2 B(X;Y )

�
;

is uniformly continuous.

From Theorem 3.11, we can also at once get

Theorem 3.14. If f 2 Y X and g 2 B(X;Y ); then d(!AF ; !
A
g ) � 2d(f; g) for all

; 6= A � X:

Hence it is clear that we also have

Corollary 3.15. The family of the functions f 7! !Af
�
f 2 B(X;Y )

�
; where

; 6= A 2 X; is equi-uniformly continuous.

4. SPACES OF CONTINUOUS FUNCTIONS

De�nition 4.1. For each ; 6= A � X; we de�ne

CA(X;Y ) =
�
f 2 Y X : lim

r!0
!Af (r) = 0

	
:

Remark 4.2. Note that, for each f 2 Y X ; we have f 2 CA(X;Y ) if and only if for
each " > 0 the exists a � > 0 such that

a 2 A; x 2 X; d(a; x) < � ) d
�
f(a); f(x)

�
< ":

Remark 4.3. Therefore Ca(X;Y ) = Cfag(X;Y ); where a 2 X; is the family of all
members of Y X which are continuous at a and UC(X;Y ) = CX(X;Y ) is the family
of all uniformly continuous members of Y X :

Remark 4.4. By Remark 4.2, it is also clear that CA(X;Y ) � CB(X;Y ) whenever
; 6= B � A � X: Therefore,

CA(X;Y ) �
\
a2A

Ca(X;Y )

and thus in particular

UC(X;Y ) �
\
a2X

Ca(X;Y ) = C(X;Y ):

Moreover, by using Theorem 2.9, we can also easily prove



Moduli of continuity and spaces of functions 49

Theorem 4.5. The family CA(X;Y ) is a closed subset of Y X :

Proof. If f is in closure of CA(X;Y ) in Y X , then for each " > 0 there exists a
g 2 CA(X;Y ) such that d(f; g) < "=4: Moreover, since lim

r!0
!Ag (r) = 0; there exists

a � > 0 such that !Ag (r) < "=2 for all 0 � r < �: Hence, by Theorem 2.9, it is clear
that

!Af (r) � !Ag (r) + 2d(f; g) < "

for all 0 � r < �: Therefore, lim
r!0

!Af (r) = 0; and hence f 2 CA(X;Y ) is also true.

Remark 4.6. Useful particular cases of Theorem 4.4 give the families Ca(X;Y );
where a 2 X; C(X;Y ) and UC(X;Y ) are closed in Y X :

Moreover, from Theorem 4.5, by 1.5 and Remark 1.6, it is clear that we also
have

Corollary 4.7. The space CA(X;Y ) is complete if and only if Y is complete.

Remark 4.8. Thus, in particular, the spaces Ca(X;Y ); where a 2 X; C(X;Y ) and
UC(X;Y ) are complete if and only if Y is complete.

A simple application of Remark 4.2 also gives

Theorem 4.9. If ; 6= A � X and 0 < r <1; then

(1) f 2 CA(X;Y ) ) f jA 2 UC(A; Y );

(2) f jA�r 2 UC(A�r; Y ) ) f 2 CA(X;Y ):

Moreover, by using a standard compactness argument, we can also easily
prove the next important

Theorem 4.10. If A is nonvoid compact subset of X; then

CA(X;Y ) =
\
a2A

Ca(X;Y ):

Proof. If this is not the case, then by Remark 4.4 there exists an f 2 Y X such
that f 2 Ca(X;Y ) for all a 2 A; but f 62 CA(X;Y ): Therefore, by Remark 4.2,
there exists an " > 0 such that for each � > 0 there exist a 2 A and x 2 X

such that d(a; x) < � and d
�
f(a); f(x)

�
� ": Hence, by induction, we can de�ne

sequences (an) and (xn) in A and X; respectively, such that d(an; xn) < 1=n and
d
�
f(an); f(xn)

�
� " for all n 2 N: Moreover, since A is compact, there exist a

subsequence (akn ) of (an) and a point a 2 A such that a = lim
n!1

akn : Hence, since

d(a; xn) � d(a; akn) + d(akn ; xkn) � d(a; akn) + 1=kn

for all n 2 N; it is clear that we also have a = lim
n!1

xkn : Hence, by using that

f is continuous at the point a; we can infer that f(a) = lim
n!1

f(akn ) and f(a) =

lim
n!1

f(xkn). Therefore, because of the continuity of the metric in Y; we also have

lim
n!1

d
�
f(akn ); f(xkn)

�
= d

�
f(a); f(a)

�
= 0:
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Hence, since " � d
�
f(akn ); f(xkn)

�
for all n 2N; it follows that

" � lim
n!1

d
�
f(akn ); f(xkn )

�
= 0 < "

and this contradiction proves the theorem.

Now, as an immediate consequence of Theorem 4.10, we can also state

Corollary 4.11. If X is a compact, then C(X;Y ) = UC(X;Y ):

5. CONTINUITY OF THE COMPOSITION

By assuming that 
 is also a metric space, in addition to the results of
Section 2, we can also easily prove

Theorem 5.1. If ';  2 X
 and f; g 2 Y X ; then

d(f � '; g �  ) � !
'(
)
f

�
d(';  )

�
+ d(f; g):

Proof. By de�ning F = f � '; G = g �  ; A = '(
); we evidently have

d
�
F (t); G(t)

�
= d

�
f
�
'(t)

�
; g
�
 (t)

��

� d
�
f
�
'(t)

�
; f
�
 (t)

��
+ d

�
f
�
 (t)

�
; g
�
 (t)

��

� !Af
�
d(';  )

�
+ d(f; g)

for all t 2 
: Hence, it follows that

d(F;G) � !Af
�
d(';  )

�
+ d(f; g):

Now, as an immediate consequence of Theorem 5.1, we can also state

Corollary 5.2. The function (f; ') 7! f � '
�
f 2 Y X ; ' 2 X


�
is continuous at

each point (f; ') of Y X �X
 with f 2 C'(
)(X;Y ):

Proof. Note that if f 2 Y X and ' 2 X
 such that f 2 C'(
)(X;Y ); then for each

" > 0 there exists a � > 0 such that !
'(
)
f (r) < "=2 for all 0 � r < �: Therefore, by

de�ning � = minf�; "=2g and using Theorem 5.1, we evidently have

d(f � '; g �  ) � !
'(
)
f

�
d(';  )

�
+ d(f; g) < "

for all g 2 Y X and  2 X
 with d(f; g) < � and d(';  ) < �:

Remark 5.3. In particular, Corollary 5.2 shows that the function (f; g) 7! f � '

(f 2 Y X ; ' 2 X
) is continuous at each point of UC(X;Y )�X
:

Moreover, combining Corollary 5.2 with Theorem 4.10, we can also easily
prove the following more important
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Theorem 5.4. If 
 is compact, then the function

(f; ') 7! f � '
�
f 2 C(X;Y ); ' 2 C(
; X)

�

is continuous.

Proof. Note that if f 2 C(X;Y ) and ' 2 C(
; X); then, by using that the
continuous image of a compact set is compact, we can infer that '(
) is a compact
subset of X: Therefore, by theorem 4.10, we also have f 2 C'(
)(X;Y ): And thus,
Corollary 5.2 can be applied to get the conclusion of the theorem.

Remark 5.5. Note that if 
 is compact, then by Corollary 4.11 we have f � ' 2
UC(
; Y ) for all f 2 C(X;Y ) and ' 2 C(
; X):
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