UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 8 (1997), 24-28.

ABOUT THE EQUIVALENCE OF SOME FUNCTIONAL EQUATIONS

N. Neamţu

The purpose of this paper is to demonstrate the equivalence of LOBA-CHEVSKY's functional equation

(1)
$$f(x)f(y) = f\left(\frac{x+y}{2}\right)^2 \qquad (f: \mathbf{R} \to \mathbf{R})$$

with functional equations

(2)
$$f(x)^p f(y)^q = f\left(\frac{px+qy}{p+q}\right)^{p+q} \qquad (p,q \in \mathbf{R}, \ p+q \neq 0)$$

 and

(3)
$$\prod_{i=1}^{n} f(x_i)^{p_i} = f\left(\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} p_i}\right)^{\sum_{i=1}^{n} p_i} \left(p_i \in \mathbf{R}, \sum_{i=1}^{n} p_i \neq 0.\right)$$

0. The following properties of LOBACHEVSKY's functional equation are known [1, 3]:

a) Functional equation (1) is equivalent with

(4)
$$f(x+y)f(x-y) = f(x)^2;$$

b) For every solution f of (1) we have: $f>0,\ x\in {\bf R}$ if $f(0)>0;\ f<0$ if f(0)<0 and f=0 if f(0)=0;

(5)
$$f(x)f(-x) = f(0)^2$$

⁰1991 Mathematics Subject Classification: 39B22

d) The most general solution of (1) is

(6)
$$f(x) = f(0)g(x)$$

where $g\,:\,{\bf R}\to{\bf R}$ is the most general solution of CAUCHY's multiplicative functional equation

(7)
$$g(x+y) = g(x)g(y);$$

e) Let $f, f(0) \neq 0$ be a solution of (1). The function f is continuous on \mathbf{R} if and only if f is continuous in zero;

f) Let $f, f(0) \neq 0$ be a solution of (1). If f is bounded on a neighbourhood $(-\varepsilon, \varepsilon)$ of zero, then f is continuos on \mathbf{R} .

1. Lemma 1. If $f : \mathbf{R} \to \mathbf{R}$, $f(0) \neq 0$ is solution of (1), then f is solution of functional equation

(8)
$$f(x)^m f(y)^n = f\left(\frac{mx+ny}{m+n}\right)^{m+n}, \qquad (m, n \in \mathbf{N}^*).$$

Proof. From (4) we successively obtain

$$f(2x)f(0) = f(x)^2;$$
 $f(3x)f(x)f(-x) = f(x)^3,$

hence $f(3x)f(0)^2 = f(x)^3$. We assume

(9)
$$f(mx)f(0)^{m-1} = f(x)^m \qquad (m > 3, m \in \mathbf{N}).$$

We have (see (6), (7), (9))

$$f((m+1)x)f(0)^{m} = g(mx+x)f(0)^{m+1} = g(mx)g(x)f(0)^{m+1}$$
$$= \frac{f(mx)}{f(0)}\frac{f(x)}{f(0)}f(0)^{m+1} = f(mx)f(x)f(0)^{m-1}$$
$$= \frac{f(x)^{m}}{f(0)^{m-1}}f(x)f(0)^{m-1} = f(x)^{m+1},$$

hence

$$f((m+1)x)f(0)^m = f(x)^{m+1}.$$

Taking in account (6), (7), (9), the left-hand side of (8) becomes

$$\begin{aligned} f(x)^m f(y)^n &= f(mx)f(ny)f(0)^{m+n-2} = \frac{f(mx)}{f(0)} \frac{f(nx)}{f(0)} f(0)^{m+n} \\ &= g(mx)g(ny)f(0)^{m+n} = g(mx+ny)f(0)^{m+n} \\ &= f(mx+ny)f(0)^{m+n-1} \end{aligned}$$

and the right-hand side of (8) becomes:

$$f\left(\frac{mx+ny}{m+n}\right)^{m+n} = f\left((m+n)\,\frac{mx+ny}{m+n}\right)f(0)^{m+n-1} = f(mx+ny)f(0)^{m+n-1},$$

which implies (8).

2. Lemma 2. If $f : \mathbf{R} \to \mathbf{R}$, $f(0) \neq 0$ is the solution of (1), then f is solution of functional equation

(10)
$$f(x)^k f(y)^{\ell} = f\left(\frac{kx + \ell y}{k + \ell}\right)^{k+\ell}; \qquad (k, \ell \in \mathbf{Z}, \ k+1 \neq 0).$$

Proof. From (5) and (9) results

$$f(-mx) = \frac{f(0)^2}{f(mx)} = f(x)^{-m} f(0)^{m+1},$$

hence

$$f(kx)f(0)^{k-1} = f(x)^k$$
 $(k \in \mathbf{Z}).$

We have

$$f(x)^k f(y)^{\ell} = f(kx) f(\ell y) f(0)^{k+\ell-2} = f(kx + \ell y) f(0)^{k+\ell-1}$$

and

$$f\left(\frac{kx+\ell y}{k+\ell}\right)^{k+\ell} = f\left((k+\ell)\,\frac{kx+\ell y}{k+\ell}\right)f(0)^{k+\ell-1} = f(kx+\ell y)f(0)^{k+\ell-1},$$

which proves that (10) is true.

3. Lema 3. If $f : \mathbf{R} \to \mathbf{R}$, f(0) > 0 is a solution of (1), then f is also a solution of functional equation

(11)
$$f(x)^r f(y)^s = f\left(\frac{rx+sy}{r+s}\right)^{r+s} \qquad (r,s \in \mathbf{Q}, \ r+s \neq 0)$$

Proof. We have (see b. (9))

$$f(x) = f\left(n\frac{x}{n}\right) = \frac{f(x/n)^n}{f(0)^{n-1}}, \text{ i.e.}$$

$$f\left(\frac{1}{n}x\right) = f(0)^{1-(1/n)}f(x)^{1/n}, \text{ and}$$

$$f\left(\frac{m}{n}x\right)f(0)^{(m/n)-1} = f(x)^{m/n}.$$

If r = m/n, $s = m_1/n_1$ $(n, n_1 \in \mathbf{N}^*, m, m_1 \in \mathbf{Z})$, we obtain

$$\begin{aligned} f(x)^r f(y)^s &= f(x)^{m/n} f(y)^{m_1/n_1} = f\left(\frac{m}{n}x\right) f\left(\frac{m_1}{n_1}y\right) f(0)^{(m/n) + (m_1/n_1) - 2} \\ &= g\left(\frac{m}{n}x + \frac{m_1}{n_1}y\right) f(0)^{(m/n) + (m_1/n_1)} = g(rx + sy) f(0)^{r+s} \\ &= f(rx + sy) f(0)^{r+s-1} \end{aligned}$$

and

(11)
$$f\left(\frac{rx+sy}{r+s}\right)^{r+s} = f\left((r+s)\frac{rx+sy}{r+s}\right)f(0)^{r+s-1}.$$

4. Lemma 4. If $f : \mathbf{R} \to \mathbf{R}$, f(0) > 0 and f is bounded on a neighbourhood $(-\varepsilon, \varepsilon)$ of zero, is a solution of (1), then f is a solution of functional equation (2). **Proof.** Let $(r_n)_{n \in \mathbf{N}}$, $(s_n)_{n \in \mathbf{N}}$ two sequences,

 $r_n, s_n \in \mathbf{Q}, \ r_n + s_n \neq 0, \ \lim_{n \to +\infty} r_n = p, \ \lim_{n \to +\infty} s_n = q; \ p + q \neq 0 \ (p, q \in \mathbf{R} \setminus \mathbf{Q}).$

We have

(12)
$$f(x)^{r_n} f(y)^{s_n} = f\left(\frac{r_n x + s_n y}{r_n + s_n}\right)^{r_n + s_n}.$$

Taking into account b), e) and f) and passing to $\lim_{n \to +\infty}$ in (12) we obtain functional equation (2).

Proposition 1. Let $f : \mathbf{R} \to \mathbf{R}$, f(0) > 0 is bounded on a neighbourhood $(-\varepsilon, \varepsilon)$ of zero, then Lobachevsky's functional equation (1) is equivalent with equation (2). **Proof.** Every solution of (1) (which verify the assumptions) is solution of (2) (Lemma 4). Reciprocally, every solution of (2) for p = q = 1 is also solution for (1).

Proposition 2. In the same assumptions as in Proposition 1 the solution of (1) is a convex function, *i.e.*

 $\alpha f(x) + \beta f(y) \ge f(\alpha x + \beta y) \qquad (\alpha, \beta > 0, \ \alpha + \beta = 1).$

The proof results from inequality [2]

 $a^{\alpha}b^{\beta} \le \alpha a + \beta b$ $(a, b, \alpha, \beta > 0, \alpha + \beta = 1)$

anf from (2)

5. Lemma 5. If $f : \mathbf{R} \to \mathbf{R}$, f(0) > 0, f is bounded on small neighbourhood $(-\varepsilon, \varepsilon)$ of zero is solution of (1), then f is solution of (3). The proof results by mathematical induction. For n = 2, functional equation (3) becomes (2) and by Lemma 4 is true. We suppose that (3) is verified for n > 2 and results that (3) is true for n + 1.

Proposition 3. Under the same assumptions as in Lemma 5, Lobachevski's functional equation (1) is equivalent with (3).

The proof is similar with the proof of Proposition 1.

Proposition 4. Under the same assumptions as in Lemma 5, we have

$$\sum_{i=1}^{n} \alpha_i f(x_i) \ge f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \qquad (\alpha_i > 0, \ \sum_{i=1}^{n} \alpha_i = 1.$$

The proof results from equality [2]

$$\prod_{i=1}^{n} a_i^{\alpha_i} \le \sum_{i=1}^{n} \alpha_i a_i \qquad \left(a_i, \alpha_i > 0, \quad \sum_{i=1}^{n} \alpha_i = 1\right)$$

and from functional equation (3).

REFERENCES

- 1. J. ACZÉL: Lectures on functional equations and their applications. Academic Press, 1966.
- G. M. FIHTENHOLŢ: Curs de calcul diferențial şi integral, vol. I, pp. 249-250. Editura Tehnică, Bucureşti, 1964.
- 3. N. NEAMŢU: A qualitative study about Lobachevsky's functional Equation. Buletinul Științific al Universității Technice din Timișoara 938 (53) Matem.-Fizică (1994), 26-35.

Universitatea "Politehnica", Catedra de Matematică No. 1, Piața Horațiu 1, 1900 Timișoara, Romania (Received April 29, 1996)