Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. 7 (1996), 72-73

EXTENSIONS OF AN INEQUALITY

Murray S. Klamkin

Dedicated to the memory of Professor Dragoslav S. Mitrinović

Inequality (2) is proved.

The inequality

$$
\begin{equation*}
a_{1} a_{2} \cdots a_{n} \geq\left(S-(n-1) a_{1}\right)\left(S-(n-1) a_{2}\right) \cdots\left(S-(n-1) a_{n}\right) \tag{1}
\end{equation*}
$$

$S=a_{1}+a_{2}+\cdots+a_{n}, \quad a_{i}>0$ and all the factors in the right hand side are nonnegative, was established by Mitrinović and Adamović [1] and an extension of it was given in [2] (there is no loss of generality by assuming all the right hand factors are positive). Here we give a generalization of (1) which leads to a different extension.

We may assume that $a_{1} \geq a_{2} \cdots \geq a_{n}$. It is now easy to show that the vector

$$
\left(S-(n-1) a_{n}, S-(n-1) a_{n-1}, \ldots, S-(n-1) a_{1}\right)
$$

majorizes the vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, i.e.,

$$
S-(n-1) a_{n}+S-(n-1) a_{n-1}+\cdots+S-(n-1) a_{n-r+1} \geq a_{1}+a_{2}+\cdots+a_{r}
$$

for $r=1,2, \ldots, n-1$, and equality for $r=n$. It now follows by the majorization inequality [3] that

$$
\begin{equation*}
\sum_{i=1}^{n} F\left(S-(n-1) a_{i}\right) \geq \sum_{i=1}^{n} F\left(a_{i}\right) \tag{2}
\end{equation*}
$$

for all convex functions over the given domain. In particular, by choosing $F(x)=$ $-\ln x$, we obtain (1). Letting $F(x)=x^{p}$, we obtain

[^0]\[

$$
\begin{gather*}
\left(S-(n-1) a_{1}\right)^{p}+\left(S-(n-1) a_{2}\right)^{p}+\cdots+\left(S-(n-1) a_{n}\right)^{p} \tag{3}\\
\geq a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}
\end{gather*}
$$
\]

for $p>1$ or $p<0$. For $1>p>0$, the inequality is reversed. For p a positive even integer, x^{p} is convex for all x so that in this case the a_{i} and the $S-(n-1) a_{i}$ need not all be positive.

Finaly, we can generate many triangle inequalities from (2). For example, since x^{x} and $x \ln x$ are convex for $x>0$,

$$
\begin{equation*}
(b+c-a)^{b+c-a}+(c+a-b)^{c+a-b}+(a+b-c)^{a+b-c} \geq a^{a}+b^{b}+c^{c} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
(b+c-a)^{b+c-a}(c+a-b)^{c+a-b}(a+b-c)^{a+b-c} \geq a^{a} b^{b} c^{c} \tag{5}
\end{equation*}
$$

where a, b, c are sides of a triangle.

REFERENCES

1. D. S. Mitrinović: Analytic Inequalities. Springer-Verlag, Heidelberg, 1970, pp. 208209.
2. M. S. Klamkin: Extensions of some geometric inequalities. Math. Mag., 49 (1976), 28-30.
3. A. W. Marshall, I. Olkin: Inequalities: Theory of Majorization and its Applications. Academic Press, N.Y., 1979.

Department of Mathematics,

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 26D15

