UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 7 (1996), 68-71.

ORDINAL DECOMPOSITIONS OF SEMIGROUPS

Miroslav Ćirić, Stojan Bogdanović

In this paper we characterize the complete lattice of ordinal decompositions of an arbitrary semigroup by complete 1-sublattices of the lattice of its strongly prime ideals. We also give another proof of the Lyapin's theorem concerning indecomposability of the components of the greatest ordinal decomposition of a semigroup.

Ordinal decompositions of semigroups were first defined and studied by A. M. KAUFMAN [5], in connection with studying of linearly ordered groups, where they were called "successively-annihilating sums". After that, they were studied by a number of authors, in connection with various important problems of the Theory of semigroups, and they were obtained the name "ordinal sums" (for more informations we refer to [6], [8], [9] and [10]).

A fundamental result concerning ordinal decompositions was obtained by E. S. LYAPIN [7]. By this result, ordinal decompositions of any semigroup Sform a complete sublattice of the partion lattice of S, and the components of the greatest ordinal decomposition of S are ordinally indecomposable. The purpose if this paper is to give a characterization of this lattice. We also give another proof of indecomposability of components in the greatest ordinal decomposition of a semigroup. The methodology applied here is based on the idea of T. TAMURA [12] that semilattice decompositions can be studied through quasi-orders satisfying certain conditions, which is developed by the authors in [3], where they established connections between semilattice and chain decompositions and certain sublattices of the lattice of ideals of a semigroup.

If ξ is a binary relation on a set A, ξ^{-1} will denote the relation defined by: $a\xi^{-1}b \Leftrightarrow b\xi a$, for $a \in A$, $a\xi = \{x \in A \mid a\xi a\}$, $\xi a = \{x \in A \mid x\xi a\}$, and for $X \subseteq A$, $X\xi = \bigcup_{x \in X} x\xi$ and $\xi X = \bigcup_{x \in X} \xi x$. By a *quasi-order* we mean a reflexive

⁰1991 Mathematics Subject Classification: Primary 20M10, Secondary 06F05.

Supported by Grant 042B of RFNS through Math. Inst. SANU.

and transitive binary relation. For a quasi-order ξ on a set A, $\tilde{\xi}$ will denote the *natural equivalence* of ξ defined by: $\tilde{\xi} = \xi \cap \xi^{-1}$. A binary relation ξ on a semigroup S is: *positive*, if $a\xi ab$ and $b\xi ab$, for all $a, b \in S$, *linear*, if for all $a, b \in S$, $a\xi b$ or $b\xi a$, and it satisfies the *cm*-property, if for $a, b, c \in S$, $a\xi c$ and $b\xi c$ implies $ab\xi c$, [12].

A subset K of a lattice L is complete for meets (joins) if for any non-empty subset X of K, K contains the meet (join) of X in L, whenever it exists, and K is a complete subset of L if it is complete both for meets and joins. Clearly, any complete subset of L is its sublattice. If L is a lattice with unity 1, then any sublattice of L containing 1 will be called a 1-sublattice of L.

An ideal I of a semigroup S is completely prime if for $a, b \in S$, $ab \in I$ implies $a \in I$ or $b \in I$. A subset A of a semigroup S is consistent if for $x, y \in S$, $xy \in A$ implies $x, y \in A$. A consistent subsemigroup of S will be called a *filter*. It is well-known that a subset A of a semigroup S is a filter of S if and only if S - A is completely prime ideal of S. By $\mathcal{I}d(S)$ we will denote the lattice of all ideals of a semigroup S, which is a conditionally complete lattice with the unity. Let K be a subset of $\mathcal{I}d(S)$ complete for meets, containing the unity of $\mathcal{I}d(S)$. Then for any $a \in S$, there exists a smallest element of K containing a, in notation K(a), called the principal element of K generated by a.

A congruence ϱ on a semigroup S is a semilattice (chain) congruence if S/ϱ is a semilattice (chain). A semigroup S is an ordinal sum of semigroups S_{α} , $\alpha \in Y$, if Y is a chain and for any $a \in S_{\alpha}$, $b \in S_{\beta}$, $\alpha < \beta$ implies ab = ba = a. In this case, the related chain congruence will be called an ordinal sum congruence on S, the related partition will be called an ordinal decomposition of S, and the components $S_{\alpha}, \alpha \in Y$, will be called ordinal components of S. A semigroup S is ordinally indecomposable if it has no an ordinal decomposition with more than one component. Note that the sum of any two components in an ordinal decomposition of a semigroup can be considered as the ordinal sum of posets (see G. BIRKHOFF [1, p. 198]), with respect to its partial orders defined by: $a \leq b \Leftrightarrow a = b$ or ab = ba = a.

For undefined notions and notations we refer to [1], [2], [4], [8] and [11].

To characterize ordinal decompositions of a semigroup we introduce the following notion:

Definition 1. An ideal P of a semigroup S is strongly prime if for $x, y \in S$, $xy = p \in P$ implies x = p or y = p or $x, y \in P$.

It is easy to check the following:

Lemma 1. The set of strongly prime ideals of a semigroup S is a complete 1-sublattice of $\mathcal{I}d(S)$.

The lattice of strongly prime ideals of a semigroup S will be denoted by $\mathcal{I}d^{sp}(S)$. Now we are ready to prove the main theorem of this paper.

Theorem 1. The lattice of ordinal decompositions of a semigroup S is isomophic to the lattice of complete 1-sublattices of $\mathcal{I}d^{sp}(S)$.

Proof. Clearly, it is enough to establish an order isomorphism between the poset of ordinal decompositions of S and the poset of complete 1-sublattices of $\mathcal{I}d^{sp}(S)$.

This isomorphism will be established through quasy-orders on S satysfying certain conditions.

By Proposition 2 [3], the mapping $\xi \mapsto \overline{\xi}$ is an isomorphism of the poset of linear positive quasi-orders on S satisfying the *cm*-property onto the poset of chain congruences on S. On the other hand, by Theorems 3 and 5 [3], the mapping $\xi \mapsto K_{\xi}$, where $K_{\xi} = \{I \in \mathcal{I}d(S) \mid I\xi = I\}$, is an isomorphism of the poset of linear positive quasi-orders on S satisfying the *cm*-property and the poset of complete 1-sublattices of $\mathcal{I}d^{\operatorname{cs}}(S)$) consisting of completely prime ideals, and also, the principal elements of K_{ξ} are characterized by $K_{\xi}(a) = a\xi$, for any $a \in S$.

Thus, it remains to prove that ξ is an ordinal sum congruence on S if and only if K_{ξ} is a sublattice of $\mathcal{I}d^{sp}(S)$, for any linear positive quasi-order ξ on S satisfying the *cm*-prooperty.

Let ξ be an ordinal sum congruence on S. Assume $a, x, y, p \in S$ such that $xy = p \in a\xi$. As we noted above, $a\xi$ is a completely prime ideal of S, so $x, y \in a\xi$, or $x \in a\xi$, $y \notin a\xi$ or $x \notin a\xi$, $y \in a\xi$. If $x \in a\xi$, $y \notin a\xi$ or $x \notin a\xi$, $y \in a\xi$, then $x\xi \subseteq a\xi$, and so $y \notin x\xi$, or $y\xi \subseteq a\xi$, and so $x \notin y\xi$. Therefore, $(x, y) \notin \xi$, whence xy = yx = x or xy = yx = y, i.e. x = p or y = p. Hence, $a\xi \in \mathcal{Id}^{sp}(S)$, for any $a \in S$, whence K_{ξ} is a sublattice of $\mathcal{Id}^{sp}(S)$, since it is a complete sublattice of $\mathcal{Id}(S)$.

Conversely, let K_{ξ} be a sublattice of $\mathcal{I}d^{\operatorname{sp}}(S)$. Assume $a, b \in S$ such that $a\widetilde{\xi} < b\widetilde{\xi}$. Then $(b, a) \in \xi$ and $(a, b) \notin \xi$, i.e. $b \notin a\xi$, and also $ab = p \in a\xi$, $ba = q \in a\xi$, whence a = p = q, i.e. ab = ba = a, since $a\xi$ is strongly prime. Therefore, $\widetilde{\xi}$ is an ordinal sum congruence on S. \Box

Corollary 1. A semigroup S is ordinally indecomposable if and only if it has no proper strongly prime ideals.

Now we give another proof on indencomposability of the components of the greatest ordinal decomposition of a semigroup:

Theorem 2. The components of the greatest ordinal decomposition of a semigroup S are ordinally indecomposable.

Proof. Let $\{S_{\alpha} \mid \alpha \in Y\}$ be the greatest ordinal decomposition of S, let θ be related ordinal sum congruence on S and let ξ be a linear positive quasi-order on S satisfying the *cm*-property such that $\tilde{\xi} = \theta$. Let $\alpha \in Y$, let P be a strongly prime ideal of S_{α} and let $a \in P$. Then $a\xi \cap \xi a = S_{\alpha}$, and since ξ is linear, then $a\xi \cup \xi a = S$. Let $P_a = S - \xi a = a\xi - S_{\alpha}$. By Lemma 2 [3], ξ is positive and it satisfies the *cm*-property if and only if $u\xi$ is a filter of S, for any $u \in S$. By this it follows that P_a is a completely prime ideal of S, whence $P_a = \bigcup_{x \in P_a} x\xi$, and hence, P_a is strongly prime, by Theorem 1 and Lemma 1.

Let $x \in P$, $y \in S$. If $y \in S_{\alpha}$, then $xy, yx \in P$, since P is an ideal of S_{α} . Let $y \notin S_{\alpha}$. Then xy = yx = x, and so $xy, yx \in P$, or xy = yx = y, and so $y = xy = yx \in x\xi \subseteq a\xi$, whence $y = xy = yx \in a\xi - S_{\alpha} = P_a$. Thus, $P' = P \cup P_a$ is an ideal of S. Further, let $x, y \in S$ such that $xy = p \in P'$. If $p \in P_a$, then clearly x = p or y = p or $x, y \in P_a \subseteq P'$. Let $p \in P$. Then x = p or y = p or $x, y \in a\xi$, and in the last case, $x, y \in P_a \subseteq P'$, or $x, y \in S_{\alpha}$, and then x = p or y = p or x = p. $x, y \in P \subseteq P'$, since P is a strongly prime ideal of S_{α} . Therefore, P' is a strongly prime ideal of S, and since $a\xi$ is the smallest strongly prime ideal of S containing a and $a \in P' \subseteq a\xi$, then $P' = a\xi$, so $P = S_{\alpha}$. Hence, by Corollary 1, S_{α} is ordinally indecomposable. \Box

REFERENCES

- G. BIRKHOFF: Lattice theory. Amer. Math. Soc. Coll. Publ. Vol. 25, (3rd. edition, 3rd printing), Providence, 1979.
- 2. S. BOGDANOVIĆ, M. ĆIRIĆ: Polugrupe. Prosveta, Niš, 1993.
- 3. M. ĆIRIĆ, S. BOGDANOVIĆ: The lattice of positive quasi-orders on a semigroup. Israel J. Math. (to arrear).
- 4. G. GRÄTZER: Universal algebra. Van Nostrand Princeton, 1968.
- A. M. KAUFMAN: Successively-annihilating sums of associative systems (Russian). Uch. Zap. Leningrad. Gos. Ped. Inst., 80 (1949), 145-165.
- E. S. LYAPIN: Semigroups (Russian). Fizmatgiz, Moscow, 1960. English transl. Amer. Math. Soc. 1968 (2nd edition).
- E. S. LYAPIN: Identities of successively-annihilating bands of semigroups. Izv. Vysh. Uch. Zav. Mat., 1 (200) 1979, 38-45 (in Russian).
- 8. M. PETRICH: Lectures in semigroups. Akad. Verlag, Berlin, 1977.
- L. N. SHEVRIN: Strong bands of semigroups. Izv. Vysh. Uch. Zav. Mat. 6 (49) (1965), 156-165 (in Russian).
- L. N. SHEVRIN, A. YA. OVSYANIKOV: Semigroups and their subsemigroup lattices. Izd. Ural. Univ. Vol I, 1990, Vol II, 1991 (in Russian).
- 11. G. Szász: Théorie des treillis. Akadémiai Kiadó, Budapest, et Dunod, Paris, 1971.
- T. TAMURA: Quasi-orders, generalized archimedeaness and semilattice decompositions. Math. Nachr., 68 (1975), 201-220.

(Received September 25, 1995)

Department of Mathematics, Philosophical Faculty, University of Niš, 18000 Niš, Ćirila i Metodija 2, Yugoslavia

Faculty of Economics, University of Niš, 18000 Niš, Trg JNA 11, Yugoslavia