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ORDINAL DECOMPOSITIONS
OF SEMIGROUPS

Miroslav C’im’c’, Stojan Bogdanovié

In this paper we characterize the complete lattice of ordinal decompositions of
an arbitrary semigroup by complete 1-sublattices of the lattice of its strongly
prime ideals. We also give another proof of the Lyapin’s theorem concerning
indecomposability of the components of the greatest ordinal decomposition of

a semigroup.

Ordinal decompositions of semigroups were first defined and studied by A.
M. KAUFMAN [5], in connection with studying of linearly ordered groups, where
they were called “successively-annihilating sums”. After that, they were studied
by a number of authors, in connection with various important problems of the
Theory of semigroups, and they were obtained the name “ordinal sums” (for more
informations we refer to [6], [8], [9] and [10]).

A fundamental result concerning ordinal decompositions was obtained by
E. S. LyapiN [7]. By this result, ordinal decompositions of any semigroup S
form a complete sublattice of the partion lattice of S, and the components of the
greatest ordinal decomposition of S are ordinally indecomposable. The purpose
if this paper is to give a characterization of this lattice. We also give another
proof of indecomposability of components in the greatest ordinal decomposition of
a semigroup. The methodology applied here is based on the idea of T. TAMURA
[12] that semilattice decompositions can be studied through quasi-orders satisfying
certain conditions, which is developed by the authors in [3], where they established
connections between semilattice and chain decompositions and certain sublattices
of the lattice of ideals of a semigroup.

If £ is a binary relation on a set A, £~ will denote the relation defined by:
al tb & béa, fora € A af = {r € A|aka}, éa={x € A| x&a}, and for
X CA X¢=U,ex x€§ and €EX =, x §2. By a quasi-order we mean a reflexive
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and transitive binary relation. For a quasi-order £ on a set A, g will denote the
natural equivalence of ¢ defined by: € = ¢NE~'. A binary relation € on a semigroup
S is: positwe, if a& ab and b&ab, for all a,b € S, linear, if for all a,b € S, a&b or
b& a, and 1t satisfies the em-property, if for a,b,¢c € S, a& ¢ and b& ¢ implies ab& ¢,
[12].

A subset K of a lattice L is complete for meets (joins) if for any non-empty
subset X of K, K contains the meet (join) of X in L, whenever it exists, and
K is a complete subset of L if it 18 complete both for meets and joins. Clearly,
any complete subset of L is its sublattice. If L 1s a lattice with unity 1, then any
sublattice of L containing 1 will be called a 1-sublattice of L.

An ideal I of a semigroup S i1s completely prime if for a, b € S, ab € I implies
a €l orbéel. Asubset A of asemigroup S is consistent if for 2,y € S, zy € A
implies z,y € A. A consistent subsemigroup of S will be called a filter. It is
well-known that a subset A of a semigroup S is a filter of S if and only if S — A is
completely prime ideal of S. By Zd(S) we will denote the lattice of all ideals of a
semigroup S, which is a conditionally complete lattice with the unity. Let K be a
subset of Zd(S) complete for meets, containing the unity of Zd(S). Then for any
a € S, there exists a smallest element of K containing a, in notation K (a), called
the principal element of K generated by a.

A congruence g on a semigroup S is a semilattice (chain) congruence if S/g is
a semilattice (chain). A semigroup S is an ordinal sum of semigroups S,, o € Y,
if Y is a chain and for any @ € S,, b € S5, o <  implies ab = ba = a. In
this case, the related chain congruence will be called an ordinal sum congruence
on S, the related partition will be called an ordinal decomposition of S, and the
components Sy, € Y, will be called ordinal components of S. A semigroup S is
ordinally indecomposable if 1t has no an ordinal decomposition with more than one
component. Note that the sum of any two components in an ordinal decomposition
of a semigroup can be considered as the ordinal sum of posets (see G. BIRKHOFF [1,
p. 198]), with respect to its partial orders defined by: a < b < a =bor ab = ba = a.

For undefined notions and notations we refer to [1], [2], [4], [8] and [11].

To characterize ordinal decompositions of a semigroup we introduce the fol-
lowing notion:
Definition 1. An ideal P of a semigroup S s strongly prime if for x;y € S,
xy=p€ P impliecsex =pory=porx,yc P.

It is easy to check the following:
Lemma 1. The set of strongly prime ideals of a semigroup S is a complete 1-
sublattice of Zd(S).

The lattice of strongly prime ideals of a semigroup S will be denoted by
Zd®P(S). Now we are ready to prove the main theorem of this paper.
Theorem 1. The lattice of ordinal decompositions of a semigroup S is isomophic
to the lattice of complete 1-sublattices of Td=P(S).
Proof. Clearly, it is enough to establish an order isomorphism between the poset
od ordinal decompositions of S and the poset of complete 1-sublattices of Zd*P(S).
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This isomorphism will be established through quasy-orders on S satysfying certain
conditions.

By Proposition 2 [3], the mapping & — gis an isomorphism of the poset of
linear positive quasi-orders on S satisfying the em-property onto the poset of chain
congruences on S. On the other hand, by Theorems 3 and 5 [3], the mapping
& — K¢, where K, = {I € Zd(S) | I¢ = I}, is an isomorphism of the poset
of linear positive quasi-orders on S satisfying the cm-property and the poset of
complete 1-sublattices of Zd °%(S)) consisting of completely prime ideals, and also,
the principal elements of K, are characterized by K¢(a) = a&, for any a € S.

Thus, it remains to prove that gis an ordinal sum congruence on S if and
only if K¢ is a sublattice of Zd®P(S), for any linear positive quasi-order £ on S
satisfying the em-prooperty.

Let gbe an ordinal sum congruence on S. Assume a,z,y,p € S such that
zy = p € af. As we noted above, a¢ is a completely prime ideal of S, so =,y € a&,
orxz €al, y¢alorxegal, ycal. faxecal, y¢alorxdal, yeE a, then
2& C af, and so y & z&, or y& C a&, and so x ¢ y&. Therefore, (z,y) ¢ &, whence
ry=yr =wxoray=yr =y, e x =pory=p Hence, a € Td"P(S), for any
a € S, whence K¢ is a sublattice of Zd3P(S), since it is a complete sublattice of
Zd(S).

Conversely, let K¢ be a sublattice of Zd®P(S). Assume a,b € S such that
ag< bg. Then (b,a) € & and (a,b) ¢ £, i.e. b¢ aé, and also ab=p € af, ba=q €
a&, whence a = p = ¢, 1.e. ab = ba = a, since a& is strongly prime. Therefore, gis
an ordinal sum congruence on S. O
Corollary 1. A semigroup S is ordinally indecomposable if and only if it has no
proper strongly prime ideals.

Now we give another proof on indencomposability of the components of the
greatest ordinal decomposition of a semigroup:

Theorem 2. The components of the greatest ordinal decomposition of a semigroup
S are ordinally indecomposable.

Proof. Let {S, | @ € Y} be the greatest ordinal decomposition of S, let § be
related ordinal sum congruence on S and let £ be a linear positive quasi-order on
S satisfying the em-property such that & = 8. Let « € Y, let P be a strongly
prime ideal of S, and let @ € P. Then a& Néa = S,, and since £ is linear, then
aUa =S. Let P, =S5 —&a = af —S,. By Lemma 2 [3], £ is positive and it
satisfies the em-property if and only if u& is a filter of S, for any v € S. By this
it follows that P, is a completely prime ideal of S, whence P, = | z&, and
hence, P, is strongly prime, by Theorem 1 and Lemma 1.

Let z € P, ye S. Ify € S,, then zy,yr € P, since P is an ideal of S,.
Let y ¢ S,. Then 2y = yo = @, and so zy,yx € P, or 2y = yx = y, and so
y=ay=yx € € Caf, whence y = a2y =yx € a{ — S, = P,. Thus, PP=PUDP,
is an ideal of S. Further, let x,y € S such that xy = p € P’. If p € P,, then clearly
z=pory=poraz,yc€ P, CP. Letp€e P. Thenaz =pory=pora,yc a,
and in the last case, z,y € P, C P, or ¢,y € Sy, and then # = p or y = p or

reP,
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z,y € P C P’ since P is a strongly prime ideal of S,. Therefore, P’ is a strongly
prime ideal of S, and since a§ is the smallest strongly prime ideal of S containing a
and a € P’ C a€, then P’ = af, so P = S,. Hence, by Corollary 1, S, is ordinally
indecomposable. O
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